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ABSTRACT

Recently, microRNAs (miRNAs) have drawn more and more attentions because 
accumulating experimental studies have indicated miRNA could play critical roles in 
multiple biological processes as well as the development and progression of human 
complex diseases. Using the huge number of known heterogeneous biological datasets to 
predict potential associations between miRNAs and diseases is an important topic in the 
field of biology, medicine, and bioinformatics. In this study, considering the limitations 
in the previous computational methods, we developed the computational model of 
Heterogeneous Graph Inference for MiRNA-Disease Association prediction (HGIMDA) 
to uncover potential miRNA-disease associations by integrating miRNA functional 
similarity, disease semantic similarity, Gaussian interaction profile kernel similarity, 
and experimentally verified miRNA-disease associations into a heterogeneous graph. 
HGIMDA obtained AUCs of 0.8781 and 0.8077 based on global and local leave-one-out 
cross validation, respectively. Furthermore, HGIMDA was applied to three important 
human cancers for performance evaluation. As a result, 90% (Colon Neoplasms), 88% 
(Esophageal Neoplasms) and 88% (Kidney Neoplasms) of top 50 predicted miRNAs 
are confirmed by recent experiment reports. Furthermore, HGIMDA could be effectively 
applied to new diseases and new miRNAs without any known associations, which 
overcome the important limitations of many previous computational models.

INTRODUCTION

MiRNAs are one category of short non-coding RNAs 
(~22nt) which could inhibit the protein production and gene 
expression through binding to the 3’-UTRs of the target 
mRNAs at the post-transcriptional and translational level [1–
4]. However, miRNAs could also serve as positive regulators 
according to some studies [5, 6]. In the recent several years, 
thousands of miRNAs have been detected based on various 
experimental methods and computational models since the 
first two miRNAs (Caenorhabditis elegans lin-4 and let-7) 

were discovered more than twenty years ago [7–10]. There 
are 26845 entries in the latest version of miRBase, including 
more than 1000 human miRNAs [11]. Furthermore, 
accumulating evidences indicated that miRNAs are 
important components in cells, which could play critical 
roles in multiple important biological processes, including 
cell proliferation [12], development [13], differentiation 
[14], and apoptosis [15], metabolism [16, 17], aging [16, 17], 
signal transduction [18], and viral infection [14]. Therefore, 
it is no surprise that miRNAs have close associations with 
the development, progression, and prognosis of many human 
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diseases [19–24]. For example, the miRNA deregulation is 
closely related to the development of various cancers [25–
28]. Calin et al. firstly clarified that miR-15 and miR-16 are 
deleted in more than half cases of B-cell chronic lymphocytic 
leukemia (B-CLL), and this discovery also become the first 
evidence for the fact that miRNAs are involved in cancer 
formation [29]. He et al. firstly reported that there are 
links between the enhanced expression of miR-17 cluster 
in B-cell lymphomas and the development of c-Myc-
induced tumorigenesis [30]. Besides, miR-122 suppresses 
cell proliferation and tumorigenesis by targeting IGF1R in 
some breast cancer cases [31]. Experiments further showed 
that the regulation of Ad6 by miR-122 could significantly 
improves the safety profile of the whole body after systemic 
administration, which allows increasing therapeutic doses 
and therefore improves anticancer efficacy of prostate 
cancer [32]. Therefore, identifying disease-related miRNAs 
could effectively promote disease biomarker detection for 
the treatment, diagnosis and prevention of human complex 
diseases [33]. Considering vast amount of miRNA-related 
biological datasets has been generated, it is urgent to develop 
powerful computational models to predict novel human 
disease-miRNA associations [34–46].

Many computational methods have been proposed 
to predict potential miRNA-disease associations based 
on the assumption that miRNAs with similar functions 
tend to be related to phenotypically similar diseases [24, 
47–51]. Jiang et al. [52] presented a hypergeometric 
distribution-based computational model to predict novel 
miRNA-disease associations. This model is mainly based 
on the integration of disease phenotype similarity network, 
miRNA functional similarity network, and the known human 
disease-miRNA association network. Only adopting miRNA 
neighbor information seriously influences the prediction 
performance of this model. Shi et al. [53] further proposed 
a computational model to exploit the functional associations 
between miRNA and disease by implementing the algorithm 
of random walk on protein-protein interaction (PPI) 
network. Considering the assumption that disease tends to 
be associated with miRNAs whose target genes also have 
associations with this disease, they paid attentions to the 
functional links between disease genes and miRNA targets 
in PPI network by integrating the information of miRNA–
target interactions, disease–gene associations, and PPIs. 
In addition, Mork et al. [54] proposed the computational 
model of miRPD by integrating protein–disease associations 
and miRNA–protein interactions to further predict novel 
miRNA-disease associations. Xu et al. [55] presented an 
integrated disease-specific miRNA prioritization approach 
without the rely on known disease-miRNA associations. 
This method integrates known disease–gene associations 
and context-dependent miRNA-target interactions. They 
converted the association probability of a miRNA-disease 
pair into the functional similarity calculation between the 
targets of this miRNA and known associated genes of this 
diseases. However, the predict performances of above 

several methods were seriously limited by miRNA-target 
interactions with high false-positive and false-negative 
results or the incomplete disease-gene association network.

Under the basic assumption that functionally similar 
miRNAs are regarded to be involved in similar diseases and 
vice versa, Xuan et al. [56] proposed reliable computational 
model of HDMP by combining the distribution of miRNAs 
related with the disease in the k neighbors and miRNA 
functional similarity to predict the potential disease-related 
miRNAs. The miRNA functional similarity used in HDMP 
was integrated by disease phenotype similarity, disease 
semantic similarity based on the disease terms information 
content, and known miRNA-disease associations. The 
important improvement of HDMP over previous studies lies 
in that it assigned higher weights to members in the same 
miRNA cluster or family when miRNA functional similarity 
was calculated. However, HDMP cannot be applied to 
the new diseases which do not have any known related 
miRNAs. In addition, HDMP is local network similarity-
based computational model, which does not make full 
use of global network similarity information, which could 
effectively benefit the prediction performance improvement 
as demonstrated by many previous studies. Chen et al. 
[57] proposed the first global network similarity-based 
computational model, RWRMDA, to predict novel human 
miRNA–disease associations by considering the information 
of human miRNA–miRNA functional similarity and known 
human miRNA–disease associations. The new associations 
were predicted by adopting the method of random walk 
on miRNA functional similarity network. RWRMDA has 
obtained excellent prediction performance based on cross 
validation and case studies of several important human 
cancers. However, it also has the important limitation that 
it could not work for new diseases which do not have 
any known related miRNAs. Recently, Chen et al. [40] 
developed a novel computational method of WBSMDA by 
integrating known miRNA-disease associations, miRNA 
functional similarity, disease semantic similarity, and 
Gaussian interaction profile kernel similarity for diseases 
and miRNAs. WBSMDA could be implemented for the 
prediction of potential related miRNAs for the diseases 
which do not have any known related miRNAs and new 
miRNAs which do not have any known associated diseases. 
However, the performance of WBSMDA is still not very 
satisfactory.

Some studies developed machine learning-based 
computational models to predict novel miRNA-disease 
associations. For example, Xu et al. [58] constructed 
a heterogeneous miRNA-target dysregulated network 
(MTDN) which combines miRNA-target interactions 
and the expression profiles of miRNAs and mRNAs in 
tumor and non-tumor tissues. In addition, they performed 
feature extraction based network topology information 
and constructed support vector machine (SVM) classifier 
to identify positive miRNA–disease associations from 
negative associations. It is well-known that collecting known 
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negative associations is a very difficult and even impossible 
task. Therefore, inaccurate selection of negative samples 
would seriously decrease the prediction performance of 
supervised classifier such as SVM. By integrating disease 
semantic similarity, miRNA functional similarity, and 
known miRNA-disease associations, Chenet al. [59] 
proposed a novel computational model of RLSMDA in the 
framework of semi-supervised learning to predict potential 
disease-related miRNAs. RLSMDA could be applied to the 
diseases without any known related miRNAs. Furthermore, 
RLSMDA did not need the information of negative miRNA-
disease associations. The limitation of RLSMDA lies in the 
selection of parameter values and the combination of two 
classifiers in the different spaces.

In this study, we developed a novel computational 
model of HGIMDA for potential miRNA-disease association 
prediction. HGIMDA showed superior performance to four 
classical miRNA-disease association prediction methods 

(WBSMDA [40], RLSMDA [59], RWRMDA [57], and 
HDMP [56]). In the case studies of several important human 
cancers, 45, 44, and 44 out top 50 predicted miRNAs for 
Colon Neoplasms, Esophageal Neoplasms, and Kidney 
Neoplasms were verified by recent experimental reports.

RESULTS

Performance evaluation

We implemented Local and global LOOCV based 
on the recorded miRNA-disease associations in the 
HMDD database [60] to evaluate the prediction accuracy 
of HGIMDA (See Figure 1) and four state-of-the-art 
computational models for miRNA-disease association 
prediction: WBSMDA [40], RLSMDA [59], RWRMDA 
[57], and HDMP [56]. In the validation framework of 
LOOCV, each known association was treated as test sample 

Figure 1: Flowchart of potential disease-miRNA association prediction based on the computational model of HGIMDA. 
a. Constructing the heterogeneous graph by integrating miRNA functional similarity, disease semantic similarity, Gaussian interaction 
profile kernel similarity, and experimentally verified miRNA-disease associations; b. Predicting potential miRNA-disease associations 
based on an iterative equation and obtaining the stable association probability.
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in turn and other known associations were used for model 
training. The difference between local and global LOOCV 
lies in whether we simultaneously investigated all the 
diseases. In the local LOOCV, test sample was ranked 
with the candidate samples composed of all the miRNAs 
without any known associations with the investigated 
disease. However, in the global LOOCV, test sample was 
ranked with all the miRNA-disease pairs without any known 
confirmed associations. The test samples which obtained 
ranks higher than the given threshold were considered as 
successful predictions. Furthermore, we drew Receiver 
operating characteristics (ROC) curve by plotting the true 
positive rate (TPR, sensitivity) against the false positive 
rate (FPR, 1-specificity) at different thresholds. Sensitivity 
denotes the percentage of the test samples which obtained 
ranks higher than the given threshold. Meanwhile, specificity 
denotes the percentage of negative miRNA-disease pairs 
with ranks lower than the threshold. Area under the ROC 
curve (AUC) is calculated to demonstrate the prediction 
ability of HGIMDA. AUC=1 indicates the model has perfect 
prediction performance; AUC=0.5 indicates the model only 
has random prediction performance.

The performance comparisons in the framework of 
local and global LOOCV have been shown in Figure 2. 
As a result, HGIMDA, WBSMDA, RLSMDA, HDMP 
obtained AUCs of 0.8781, 0.8030, 0.8426, and 0.8366 in the 
global LOOCV, respectively. For local LOOCV, HGIMDA, 
WBSMDA, RLSMDA, HDMP, RWRMDA obtained AUCs 
of 0.8077, 0.8031, 0.6953, 0.7702, and 0.7891, respectively. 
Global LOOCV cannot be implemented for RWRMDA 
model, for the reason that this model cannot uncover the 
missing associations for all the diseases simultaneously. 
In conclusion, HGIMDA has shown reliable and effective 
prediction performance and potential application value for 
potential miRNA–disease association prediction.

Case studies

Here, we further implement case studies of several 
important human complex diseases to further validate the 
prediction ability of HGIMDA. Predictive results were 
verified by checking recent experimental reports from 
another two databases about miRNA-disease associations, 
miR2Disease [61] and dbDEMC [62].

Figure 2: Performance comparisons between HGIMDA and four state-of-the-art disease-miRNA association prediction 
models (BSMDA, RLSMDA, HDMP, and RWRMDA) in terms of ROC curve and AUC based on local and global 
LOOCV, respectively. As a result, HGIMDA achieved AUCs of 0.8781 and 0.8031 in the global and local LOOCV, significantly 
outperforming all the previous classical models.
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Colon Neoplasms is one of the biggest threatens to 
human life worldwide [63, 64]. Studies show that about 
half of the Colon Neoplasms patients die of metastatic 
disease within 5 years from diagnosis [65, 66]. With 
the rapid development of high-throughput sequencing 
technologies, researchers have identified several miRNAs 
associated with Colon Neoplasms. For example, miR-
126, which is usually lost in Colon Neoplasms, takes 
phosphatidylinositol 3-kinase signaling as a target and 
suppresses neoplastic cells growth [67]. It is also found 
that miR-145 could inhibit Colon Neoplasms cells growth 
by targeting the insulin receptor substrate-1 [68]. By 
implementing HGIMDA to identify potential miRNAs 
associated with Colon Neoplasms, 10 out of the top 10 

and 45 out of the top 50 predicted Colon Neoplasms 
related miRNAs were confirmed based on miR2Disease 
and dbDEMC (See Table 1). For example, miR-20a and 
miR-155 were confirmed to be up-regulated in Colon 
Neoplasms [69]. MiR-20a and miR-19b shown differential 
expression between neoplastic conditions and non-
tumoral colon tissues [70]. MiR-18a was confirmed to be 
upregulated in colon cancer tissues which suggested that 
miR-18a is correlated with Colon Neoplasms [71]. An 
inverse correlation of miR-21 was found in 10 colorectal 
cell lines which suggested it is a useful diagnostic 
biomarker for Colon Neoplasms prognosis [72, 73].

Esophageal Neoplasms is reported as the sixth-
leading cause of deaths related with cancers and the eighth 

Table 1: Here, we implemented HGIMDA to predict potential Colon Neoplasms-related miRNAs

miRNA Evidence miRNA Evidence

hsa-mir-20a dbDEMC hsa-mir-106b dbDEMC

hsa-mir-155 dbDEMC hsa-mir-143 dbDEMC

hsa-mir-18a dbDEMC hsa-mir-200a unconfirmed

hsa-mir-21 dbDEMC hsa-mir-9 dbDEMC

hsa-mir-19b dbDEMC hsa-mir-1 dbDEMC

hsa-mir-34a dbDEMC hsa-mir-15a dbDEMC

hsa-mir-19a dbDEMC hsa-mir-34c miR2Disease

hsa-let-7a dbDEMC hsa-let-7g dbDEMC

hsa-mir-125b dbDEMC hsa-mir-146b unconfirmed

hsa-mir-221 dbDEMC hsa-mir-141 dbDEMC

hsa-mir-92a dbDEMC hsa-mir-125a dbDEMC

hsa-let-7b dbDEMC hsa-mir-200c dbDEMC

hsa-mir-146a dbDEMC hsa-mir-214 dbDEMC

hsa-mir-29b dbDEMC hsa-mir-34b dbDEMC

hsa-let-7c dbDEMC hsa-mir-29c dbDEMC

hsa-mir-200b dbDEMC hsa-mir-101 unconfirmed

hsa-mir-16 dbDEMC hsa-mir-181b dbDEMC

hsa-let-7d dbDEMC hsa-mir-210 dbDEMC

hsa-mir-199a unconfirmed hsa-mir-205 dbDEMC

hsa-mir-29a dbDEMC hsa-mir-24 miR2Disease

hsa-let-7e dbDEMC hsa-mir-133a dbDEMC

hsa-mir-223 dbDEMC hsa-mir-25 dbDEMC

hsa-let-7f dbDEMC hsa-mir-132 miR2Disease

hsa-mir-222 dbDEMC hsa-mir-181a dbDEMC

hsa-let-7i dbDEMC hsa-mir-429 unconfirmed

As a result, 10 out of the top 10 and 45 out of the top 50 predicted Colon Neoplasms related miRNAs were confirmed based 
on miR2Disease and dbDEMC (1st column: top 1–25; 2nd column: top 26–50). 
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most common cancer worldwide based on the pathological 
characteristics [74]. The number of male patients is three 
to four times higher than the number of the female patients 
[75]. The overall 5-year survival ranges from 15% to 25% 
[76]. It is suggested that the survival rate could increase 
to 90% if the tumors could be diagnosed at an early 
stage [77]. Therefore, the early detection of Esophageal 
Neoplasms is vital to cancer treatment [78, 79]. There 
are a lot of miRNAs which have been confirmed to be 
connected with Esophageal Neoplasms. For example, 
miR-98 and miR-214 could suppress migration and 
invasion in human esophageal squamous cell carcinoma 
by post-transcriptionally regulating enhancer of zeste 

homolog 2 [80]. HGIMDA was implemented to identify 
potential related miRNAs for Esophageal Neoplasms 
based on known associations in the HMDD database. 
As a result, 9 out of the top 10 and 44 out of the top 50 
predicted Esophageal Neoplasms related miRNAs were 
experimentally confirmed by reports from dbDEMC (See 
Table 2).

Kidney Neoplasm is a nonhomogeneous cancer 
which accounts for 3% of adult malignancies [81]. 
There has been an increasing trend for the incidence 
and mortality rates of Kidney Neoplasm over the past 
few years. Specifically, more than 250,000 new cases 
of kidney cancer are diagnosed every year [82]. As the 

Table 2: We implemented HGIMDA to prioritize candidate miRNAs for Esophageal Neoplasms based on known 
associations in the HMDD database

miRNA Evidence miRNA Evidence

hsa-mir-17 dbDEMC hsa-mir-30c dbDEMC

hsa-mir-18a dbDEMC hsa-mir-127 dbDEMC

hsa-mir-19b dbDEMC hsa-mir-24 dbDEMC

hsa-mir-200b dbDEMC hsa-mir-10b dbDEMC

hsa-mir-125b dbDEMC hsa-mir-181a dbDEMC

hsa-let-7d dbDEMC hsa-mir-106a dbDEMC

hsa-mir-221 dbDEMC hsa-mir-7 dbDEMC

hsa-let-7e dbDEMC hsa-mir-191 dbDEMC

hsa-mir-29b dbDEMC hsa-mir-142 dbDEMC

hsa-let-7f unconfirmed hsa-mir-20b unconfirmed

hsa-let-7i dbDEMC hsa-mir-18b dbDEMC

hsa-mir-16 dbDEMC hsa-mir-195 dbDEMC

hsa-mir-29a dbDEMC hsa-mir-30d dbDEMC

hsa-mir-222 dbDEMC hsa-mir-182 dbDEMC

hsa-mir-106b dbDEMC hsa-mir-199b dbDEMC

hsa-mir-9 dbDEMC hsa-mir-30a dbDEMC

hsa-mir-1 dbDEMC hsa-mir-194 dbDEMC

hsa-let-7g dbDEMC hsa-mir-302b dbDEMC

hsa-mir-125a dbDEMC hsa-mir-15b unconfirmed

hsa-mir-146b dbDEMC hsa-mir-92b dbDEMC

hsa-mir-218 unconfirmed hsa-mir-302c dbDEMC

hsa-mir-429 dbDEMC hsa-mir-107 dbDEMC

hsa-mir-181b dbDEMC hsa-mir-30e unconfirmed

hsa-mir-132 dbDEMC hsa-mir-373 dbDEMC

hsa-mir-93 dbDEMC hsa-mir-219 unconfirmed

As a result, 9 out of the top 10 and 44 out of the top 50 predicted Esophageal Neoplasms related miRNAs were confirmed by 
experimental reports from dbDEMC (1st column: top 1–25; 2nd column: top 26–50) 
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most common form of adult Kidney Neoplasm [83], renal 
cell carcinoma (RCC) is comprised of several different 
types of cancer [84–86], including chromophobe RCC 
(chRCC), collecting duct carcinoma (CDC), clear cell 
RCC (ccRCC), and papillary RCC (PRCC) [87–89]. 
Experiments indicated that the histopathology of Kidney 
Neoplasm has been connected with different genetic 
changes [90, 91]. Recently, accumulating studies have 
shown that many miRNAs are associated with Kidney 
Neoplasms. For example, miR-215, miR-200c, miR-192, 
miR-194 and miR-141 were downregulated in Kidney 
Neoplasms [92]. What’s more, their common target 
ACVR2B was found to have strong expression in renal 
childhood neoplasms [92]. Furthermore, miR-21 was 

up-regulated in Kidney Neoplasms which corresponds 
to lower Kidney Neoplasms survival [93]. Finally, 
we implemented HGIMDA on Kidney Neoplasms for 
potential disease-related miRNA prediction. As a result, 
9 out of the top-10 candidates and 44 out of the top-50 
candidates of Kidney Neoplasm related miRNAs were 
verified by dbDEMC (See Table 3). As for the top 5 
confirmed Kidney Neoplasms related miRNAs, miR-17 
was found differentially expressed in Kidney Neoplasms 
compared to normal cell tissues [94]. MiR-20a, miR-
155, and miR-18a were found up-regulated in Kidney 
Neoplasms while miR-145 was found down-regulated.

The results in cross validation and independent 
case studies exploring on three important human complex 

Table 3: We implemented HGIMDA on Kidney Neoplasms for potential disease-related miRNA prediction

miRNA Evidence miRNA Evidence

hsa-mir-17 dbDEMC hsa-mir-222 dbDEMC

hsa-mir-20a dbDEMC hsa-let-7i dbDEMC

hsa-mir-155 dbDEMC hsa-mir-200a dbDEMC

hsa-mir-18a dbDEMC hsa-mir-106b dbDEMC

hsa-mir-145 dbDEMC hsa-mir-143 dbDEMC

hsa-mir-19b dbDEMC hsa-mir-9 dbDEMC

hsa-mir-34a dbDEMC hsa-mir-1 dbDEMC

hsa-mir-19a dbDEMC hsa-mir-34c dbDEMC

hsa-let-7a dbDEMC hsa-mir-146b dbDEMC

hsa-mir-125b unconfirmed hsa-let-7g dbDEMC

hsa-mir-126 dbDEMC hsa-mir-125a dbDEMC

hsa-mir-221 unconfirmed hsa-mir-34b dbDEMC

hsa-mir-92a unconfirmed hsa-mir-214 dbDEMC

hsa-mir-146a dbDEMC hsa-mir-29c dbDEMC

hsa-mir-200b dbDEMC hsa-mir-101 dbDEMC

hsa-let-7b unconfirmed hsa-mir-181b dbDEMC

hsa-mir-29b dbDEMC hsa-mir-205 unconfirmed

hsa-mir-199a dbDEMC hsa-mir-210 dbDEMC

hsa-let-7c dbDEMC hsa-mir-133a unconfirmed

hsa-let-7d dbDEMC hsa-mir-429 dbDEMC

hsa-mir-16 dbDEMC hsa-mir-25 dbDEMC

hsa-mir-29a dbDEMC hsa-mir-93 dbDEMC

hsa-let-7e dbDEMC hsa-mir-181a dbDEMC

hsa-mir-223 dbDEMC hsa-mir-24 dbDEMC

hsa-let-7f dbDEMC hsa-mir-218 dbDEMC

As a result, 9 out of the top 10 and 44 out of the top 50 predicted Kidney Neoplasms related miRNAs were confirmed by 
dbDEMC
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diseases have fully indicated the outstanding prediction 
ability of HGIMDA. Therefore, we further used HGIMDA 
to prioritize candidate miRNAs for all the diseases 
investigated in HMDD (See Supplementary Table 1). We 
anticipate that these prediction results could be confirmed 
by experimental research in the future.

DISCUSSION

Recently, more and more researchers start to 
propose new computational models to search novel 
miRNA-disease associations. In this paper, considering the 
hypothesis that functional similar miRNAs are likely to be 
involved in similar diseases and vice versa, we presented 
the computational model of HGIMDA to predict new 
human complex diseases related miRNAs by integrating 
Gaussian interaction profile kernel similarity, disease 
semantic similarity, miRNA functional similarity, and 
known miRNA-disease associations into a heterogeneous 
graph. The excellent performance of HGIMDA has been 
demonstrated by the reliable results from both case studies 
and cross validation of Colon Neoplasms, Esophageal 
Neoplasms and Kidney Neoplasms. It could be anticipated 
that HGIMDA can serve as an effective tool for predicting 
potential miRNA-disease associations, and will be helpful 
in human disease prevention, treatment, diagnosis, and 
prognosis.

The reasons of reliable performance of HGIMDA 
may come from the following several factors. Firstly, 
the success of HGIMDA is mainly dependent on the 
integration of several reliable biological datasets into 
a heterogeneous graph. Especially, the number of 
known miRNA-disease associations used in this method 
significantly increases compared with known associations 
used for previous methods. Secondly, similar to the 
process of random work, HGIMDA is an iterative process 
to find the optimal solutions based on global network 
similarity information, whose improvement over local 
network-similarity-based models has been fully indicated 
by the previous studies. However, there are essential 
differences between HGIMDA and traditional random 
walk. Traditional random walk set the initial probability 
vector only based on known related miRNAs with the 
investigated disease. Therefore, when this disease has 
no known related miRNAs, random walk can’t work. 
Here, various disease similarity measures, various 
miRNA similarity measures, and known miRNA-disease 
association were combined to implement prediction, which 
ensures that HGIMDA could be used to predict related 
miRNAs for new diseases which have no known related 
miRNAs and miRNAs without any known associated 
diseases. Therefore, the application scope of classical 
random walk has been significantly broadened. This 
distinct advantage overcomes the important limitations 
of many previous computational models. Furthermore, 

HGIMDA could effectively uncover the missing miRNA-
disease associations for all the diseases simultaneously. 
Limitations also exist in this method. Firstly, the known 
miRNA-disease associations with experimental evidences 
are still insufficient. By integrating more available 
biological information in the future, the prediction 
performance of HGIMDA could be further improved 
[95–97]. Secondly, HGIMDA may cause bias to miRNAs 
which have more associated disease records. Finally, the 
selection of the parameter value in formula (11) is still not 
well solved.

MATERIALS AND METHODS

Human miRNA-disease associations

Accumulating biological experiments have 
produced plenty of miRNA–disease associations. The 
human miRNA-disease association dataset used in this 
study was downloaded from HMDD database (June, 2013) 
[60], including 5430 distinct experimentally confirmed 
human miRNA-diseases associations about 383 diseases 
and 495 miRNAs. Adjacency matrix A is defined to 
represent known miRNAs-disease associations. If miRNA 
m(i) is related to disease d(j), the entity A(m(i), d(j)) is 1, 
otherwise 0. Furthermore, variables nm and nd are denoted 
as the number of miRNAs and diseases in the known 
association dataset, respectively.

MiRNA functional similarity

Based on the assumption that miRNAs with 
similar functions tend to be associated with similar 
diseases and vice versa [24, 47–49, 56], Wang et al. [48] 
proposed the method of miRNA functional similarity 
calculation. We obtained miRNA functional similarity 
from http://www.cuilab.cn/files/images/cuilab/misim.zip 
and established miRNA functional similarity matrix FS 
to represent the miRNA functional similarity network, in 
which FS(i,j) is the functional similarity score between 
miRNA m(i) and m(j).

Disease semantic similarity

The relationships among different diseases can be 
described as a Directed Acyclic Graph (DAG). Disease 
D can be represented as DAG(D)=(D,T(D),E(D)), where 
T(D) represents all ancestor nodes of D and D itself, E(D) 
represents all direct edges from parent nodes to child 
nodes. Disease MeSH descriptors were downloaded from 
the National Library of Medicine (http://www.nlm.nih.gov) 
[98], including Category A for anatomic terms, Category 
B for organisms, Category C for diseases, Category D for 
drugs and chemicals and so on. Here, we selected the MeSH 
descriptor of Category C to construct disease DAGs. The 
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location of each disease term in the DAG could be decided 
by the tree number of each MeSH descriptor.

The contribution of disease d in DAG(D) to the 
semantic value of disease D is defined as follows:

D d if d D

D d max D d d children of d if d D

D 1  

D *D ' | '      D{ }( )
( )

( )






= =

= ∈ ≠  (1)

Here, D is the semantic contribution factor. The 
contribution score for disease d is inversely proportional 
to the distance between disease d and D. The semantic 
value of disease D could be defined as follows:
 D D dDV

d T D D∑( ) ( )=
( )∈
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It is obviously that two diseases with larger shared part of 
their DAGs may have greater similarity score. Therefore, 
the semantic similarity score between disease d(i) and d(j) 
is defined as follows:

 
∑ )(

)
) )

) )(
( (

( (= ∩
+

+
) )( (∈

d i d j
D t D t

DV i DV j
SS ( ), ( )

t T i T j i j
 (3)

Gaussian interaction profile kernel similarity

Gaussian interaction profile kernel similarity for 
diseases are constructed based on the assumption that 
similar diseases tend to be associated with miRNAs with 
similar functions and vice versa [24, 47–49]. Binary vector 
IP(d(u)) is defined to represent the interaction profiles 
of disease d(u) by observing whether there are known 
associations between disease d(u) and each miRNA or not. 
Therefore, Gaussian interaction profile kernel similarity of 
diseases d(u) and d(v) is defined as follows.

 KD d u d v exp d IP d u IP d v( ), ( ) || ( ) ( ) ||2( )( ) ( ) ( )= − −g  (4)

Here, g d  is used for kernel bandwidth control, which is 
obtained by normalizing a new bandwidth parameter g 'd  
by the average number of associated miRNAs per disease.
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Similarly, Gaussian interaction profile kernel similarity 
between miRNA m(i) and m(j) is constructed as follows:

 KM m i m j exp m IP m i IP m j( ), ( ) || ( ) ( ) ||2g( )( ) ( ) ( )= − −  (6)
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Integrated similarity for miRNAs and diseases

Considering that miRNA functional similarity 
scores do not cover all the miRNAs, we integrate miRNA 

functional similarity scores and Gaussian interaction 
profile kernel similarity scores for miRNAs to calculate 
the new integrated similarity scores. That is to say, for the 
miRNA pair without known functional similarity score, 
we use Gaussian interaction profile kernel similarity score 
as integrated similarity; for the miRNA pair with known 
functional similarity score, we use the average value 
of Gaussian interaction profile kernel similarity score 
and functional similarity score as integrated similarity. 
Therefore, the integrated similarity between miRNA m(i) 
and m(j) is defined as follows:
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Similarly, the integrated similarity between diseases d(u) 
and d(v) is defined as follows:

( )
( ) ( )

( )







=

+

SD d u d v

KM d u d v SS d u d v
d u and d v hassemantic similarity

KM d u d v otherwise

( ), ( )

( ), ( ) ( ), ( )

2 ( ) ( )

( ), ( ) 
(9)

HGIMDA

We developed the computational model of HGIMDA 
by integrating miRNA functional similarity, disease semantic 
similarity, Gaussian interaction profile kernel similarity, 
and experimentally verified miRNA-disease associations 
to predict potential miRNA-disease associations. Based on 
the similar nature of miRNA-disease associations, miRNA 
similarity, disease similarity, and known miRNA-disease 
associations could be combined together to predict potential 
associations. For example, for disease d and miRNA m, 
we could define their potential association probability as 
follows if they have no known associations.

 
i
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=
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=
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This equation means that we can infer potential association 
between disease d and miRNA m by summarizing all paths 
with the length equal to three. We consider the iteration 
of above procedure and represent the equation as matrix 
multiplications. Therefore, the iterative equation could be 
obtained as follows:

 SM SD AP(i 1)   P(i) 1( )+ = × × + −a a  (11)

Here, a is a decay factor similar to the restart probability 
in the random walk with restart. According to previous 
literature [99], association probability matrix P will 
converge when SM and SD are properly normalized 
utilizing equation (12) and (13), respectively.
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After some steps, the iteration is stable (the change 
between P(i) and P(i + 1) measured by L1 norm is less 
than a given cutoff, here we adopt the cutoff as 10−6).
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