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AKT-ions with a TWIST between EMT and MET
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AbstrAct
The transcription factor Twist is an important regulator of cranial suture during 

embryogenesis. Closure of the neural tube is achieved via Twist-triggered cellular 
transition from an epithelial to mesenchymal phenotype, a process known as 
epithelial-mesenchymal transition (EMT), characterized by a remarkable increase in 
cell motility. In the absence of Twist activity, EMT and associated phenotypic changes 
in cell morphology and motility can also be induced, albeit moderately, by other 
transcription factor families, including Snail and Zeb. Aberrant EMT triggered by Twist 
in human mammary tumour cells was first reported to drive metastasis to the lung in 
a metastatic breast cancer model. Subsequent analysis of many types of carcinoma 
demonstrated overexpression of these unique EMT transcription factors, which 
statistically correlated with worse outcome, indicating their potential as biomarkers 
in the clinic. However, the mechanisms underlying their activation remain unclear. 
Interestingly, increasing evidence indicates they are selectively activated by distinct 
intracellular kinases, thereby acting as downstream effectors facilitating transduction 
of cytoplasmic signals into nucleus and reprogramming EMT and mesenchymal-
epithelial transition (MET) transcription to control cell plasticity. Understanding 
these relationships and emerging data indicating differential phosphorylation of Twist 
leads to complex and even paradoxical functionalities, will be vital to unlocking their 
potential in clinical settings.

IntroductIon

EMt And sIgnAlIng

EMT is an ancient developmental process that is 
characterized by morphological changes in epithelial cells, 
whereby they acquire a mesenchyme phenotype  [1]. The 
hallmarks of EMT are functionally decreased adhesive 
capacity and increased mobility  [2]. This is facilitated 
by epithelial phenotype changes where cells switch 
from apical-basal polarity to anterior-posterior polarity, 
characteristically illustrated with disrupted intercellular 

junctions and increased migratory potential of individual 
cells. The basis of EMT in physiology is to remove/
replace unnecessary epithelia at specific locations or 
developmental stages. Biochemically, EMT cells exhibit 
distinct patterns of upregulated gene expression of proteins 
engaged in remodeling of cell-cell contact, cytoskeleton, 
and interaction with extracellular matrix (ECM)  [3]. In the 
last two decades, a group of transcription factors including 
the Twist, Snail and Zeb families, have been identified as 
the EMT-inducing transcription factors governing the 
EMT process in vitro, as inducers, enhancers, or both  
[4]. Overexpression of these proteins in untransformed 
mammalian epithelial cells induces potent cell scattering 
phenotypes that also functionally resemble the original 
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EMT in mouse model  [5, 6]. Therefore, the EMT process 
is generally recognized as a reprogramming event 
essentially driven at the transcriptional level, whilst being 
initiated and coupled with ECM signaling  [7, 8] (Figure 
1). 

Many pathways are associated with EMT. One of 
the well-documented signaling axes is the transforming 
growth factor (TGF) cascade  [9] that induces cell 
scattering with increased invasive potential in a variety of 
cancer cells with epithelial origin  [10, 11]. In addition to 
TGFβ, the receptor tyrosine kinases (RTKs) such as EGFR 
family  [12], c-Met  [13], VEGFR  [14, 15], PDGFR  
[16] and others (such as Wnt pathway  [17, 18]) are all 
capable of initiating and/or maintaining EMT phenotypes. 
Importantly, activation of these membrane-associated 
signaling complexes often correlates with elevated 
expression level of the EMT-inducing transcription 
factors, and conversely, in addition to maintaining the 
EMT gene signature, can also maintain and enhance RTK 
signaling through feedback or feed-forward signaling 
loops  [19, 20]. With a particular focus on understanding 
these mechanisms connecting the EMT transcriptional 
response with the activation of the upstream signalosomes, 
a number of studies revealed that three intracellular 
cascades, mTOR/PI3K/Akt, MAPK and Rho GTPases are 
core mediators transducing signals to activate the EMT-
inducing transcription factors  [21-24]. These findings 

have been demonstrated in many types of carcinomas, 
with great consistency  [25]. 

The invasive behaviors of metastatic cancer cells 
closely resemble the physiological EMT phenotypes 
and effectively respond to the known upstream signaling 
cascades. Metastasis initiates with a small portion of the 
cancer cells within the primary organ disseminating from 
the tumor mass and by expressing remarkably high level 
of proteases, digest matrix barriers and subsequently 
invade into surrounding tissues  [26, 27]. Local invasive 
cancer cells further intravasate into lymphatic and/or 
blood vessels and transit to distant organs where they 
extravasate and re-colonize as a metastatic tumour lesion  
[28, 29]. A specific biological impact of the EMT inducers 
in cancer metastasis is demonstrated by depletion of the 
EMT inducers in invasive cancer cells, which significantly 
attenuates the metastatic spread, whilst in most cases 
having little to no effect on the primary tumor growth  
[30]. This indicates that cancer cells preferentially take 
advantage of the physiological EMT signaling to support 
their invasion.

thE plAstIcIty of EMt

Although TGF signaling triggers robust EMT 
activation in epithelial cells, a reversal of the EMT 
phenotype was observed when TGFβ signaling was 

figure 1: plastic epithelial-to-mesenchymal transition. Transcriptional regulation of EMT by activated Twist, Snail and Zeb 
oncogenic proteins is often accompanied with cellular morphological change. EMT: epithelial-mesenchymal transition; MET: mesenchymal-
epithelial transition. Red: high level; blue: low level.
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disrupted by withdrawal  [31] or pharmacological 
inhibition  [32], indicating a high degree of plasticity in 
the EMT process  [33]. In an in vivo orthotopic metastatic 
mouse model, such reversal was discovered in the cancer 
cells that had undergone EMT to colonize and establish 
the metastatic tumour. It was found that the activity of 
Twist was significantly reduced at the initial phase of 
metastatic colonization in the lung and the cancer cells re-
exhibited a classical epithelial phenotype with decreased 
migratory potential, with this process being coined MET 
(mesenchymal-to-epithelial transition)  [34]. In contrast 
to the EMT phenotype which supports the cancer cell 
invasion but restricts their proliferation, MET favors 
re-activation of the proliferative potential, but limits 
invasiveness. In addition to Twist, other EMT inducers also 
displayed downregulated activity during the establishment 
of metastatic growth  [35], and MET was postulated to 
be essential to maintain cancer cell survival in metastatic 
sites  [36, 37]. Moreover, experimental evidence also 
demonstrated that the cells with phenotypic characters 
of EMT antagonize stress-induced apoptosis, including 
resistance to hypoxic pressure and DNA-damaging 
reagents. These observations support a hypothesis that 
the cancer cells with EMT properties potentially possess 
a “stemness” capacity  [38-40], although many aspects 
of this concept are still to be convincingly demonstrated  
[41].

rEgulAtIon of thE EMt-InducIng 
trAnscrIptIon fActor twIst

Considering the interplay between membrane-
associated signaling complexes and EMT-inducing 
transcription factors, as well as the impact of EMT 
on cancer metastasis, it is essential to understand the 
fundamental mechanisms of how signals are transduced 
to activate the EMT inducers such as Twist. Twist belongs 
to the basic helix-loop-helix (bHLH) transcription factor 
family. In mammals, Twist exists as two forms that 
are crucial for proper prenatal development  [42, 43], 
although their functional roles in postnatal physiology are 
still vague. Across species from fruit fly to human, it is 
evolutionarily conserved and recognizes a palindromic-
like consensus sequence CANNTG, also called E-box, 
in the proximal region of promoters. Its binding capacity 
is preferentially mediated through hetero-dimerization 
of Twist with other family members to implement its 
transcriptional regulation  [44]. A recent study employing 
ChIP coupled with high-throughput sequencing for the 
analysis of Twist-binding DNA elements revealed that 
Twist can bind to two tandem E-boxes, a unique feature 
that distinguishes it from other bHLH transcription factors  
[45]. To date, clinical studies have shown evidence to 
support a pro-metastatic role for Twist regulated EMT 
gene expression during cancer progression  [46-49]. This 
includes a number of studies indicating that overexpression 

of Twist enhances carcinoma metastasis  [50, 51] and 
associates with unfavorable clinical prognosis  [52-
55]. Mechanistically, Twist-promoted cancer metastasis 
is mediated through its transcription activity that is 
hijacked by cancer cells  [25]. Twist binding to E-boxes 
can transcriptionally repress E-cadherin expression, and 
consequently disrupts the intercellular adhesion and 
induce single cancer cell dissemination from the primary 
location  [56]. In parallel, Twist overexpression remodels 
cytoskeleton and upregulates several essential signaling 
molecules such as Akt2 and TGFβ2 to robustly induce the 
EMT phenotype  [57]. 

differential phosphorylation of twist as a 
functional switch

Interestingly, TGFβ2 upregulation by Twist can be 
enhanced by Akt-mediated phosphorylation of Twist on 
serine 42 (S42), which increases binding to the TGFβ2 
promoter. Thus, Akt-directed Twist phosphorylation 
on S42 is crucial for the crosstalk between PI3K/Akt 
and TGFβ pathways in metastatic breast cancer  [57] 
and is also demonstrated to be an invasive signature 
in other cancer models  [58]. Not limited to S42 
phosphorylation, independent studies have highlighted 
other phosphorylation sites on Twist including serine 68 
(S68)  [59], serine 18 (S18) and serine 20 (S20)  [60], as 
well as threonine 121 (T121) and serine 123 (S123)  [61] 
that are differentially phosphorylated by MAPK (JNK, 
ERK, p38), casein kinase 2 and Akt, respectively, most 
of which are suggested to activate and/or enhance Twist 
functions through promoting its stability in a context-
dependent manner. Analysis of the protein sequences of 
Twist family members in mammals demonstrates that 
all these crucial phosphorylation sites are evolutionarily 
conserved (Figure 2), implying that the Twist proteins 
across species potentially share a functional homology and 
the two Twist isoforms may display redundant functions. 
Clearly, Twist-phosphorylating kinases are mainly the 
two important intracellular signaling mediators Akt and 
MAPK, both of which are indisputably involved in cell 
proliferation, differentiation and invasion in cancer cells 
and key players of drug resistance in clinic. These two 
nodes can be activated by drivers of EMT and metastasis 
including well-known receptor signaling kinases such 
as TGFβ, RTKs, ECM-mediated integrin pathway and 
canonical or non-canonical WNT signaling, which in turn 
facilitate EMT and cancer metastasis via regulation of 
Akt and MAPK. The increasing evidence demonstrating 
the activity of Twist in regulation of cell migration and 
invasion which are controlled by a posttranslational 
modifications may have many critical implications for 
controlling metastatic lesions, when cancer cells need 
to re-establish high levels of proliferation and growth. 
Intriguingly, the basal level of Twist in non-neoplastic 
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or non-metastatic cells is generally low, indicating that 
Twist activation starts from an activated transcription 
program. To date, it has been shown that dependent upon 
the types of malignancy, Twist can be transcriptionally 
upregulated by NF-κB  [62, 63], STAT3  [64-66], 
DLX4  [67], MYCN and MYC  [68], HMGA2  [69] 
and SOX2  [70],, indicating that activation of Twist is 
a coordinated event between epigenetic transcriptional 
regulation and post-translational modification. Following 
phospho-activation, as a core element involved in the 
activation of transcriptional complexes, Twist can drive 
the transcription of a number of target genes, many of 
which are oncogenic. Although Twist was shown to 
be a transcriptional repressor that inversely correlates 
with E-cadherin expression  [71], it may possibly not 
be directly involved in suppressing CDH1 transcription, 
rather, this is suggested to be mediated by Snail2, a direct 
transcription target downstream of Twist  [72]. It should 
also be noted that the activation of Snail proteins, like 
Twist, is also under the control of phosphorylation  [73]. 
Depending on the upstream kinases, phosphorylated 
Snail may exhibit enhanced repressing activity  [74], or 
rapid degradation  [75]. Direct binding of Snail proteins 
within the regulatory region of CDH1 has been reported 
to mediate its repressing  [76] (Figure 3). Thus, it seems 
that the repression of CDH1 transcription is a sequential 
program controlled by phospho-activated Twist/Snail 

axis. A recent study focusing on the specificity of Twist-
mediated transcription, revealed that Twist dimers can 
uniquely recognized a tandem stretch of E-boxes  [45]. 
The biological consequence of such interaction in relation 
to preferential to transcriptional activation, repression, or 
both, remains to be determined. Undoubtedly, whether any 
related transcriptional specificity is correlated with the 
multifaceted phosphorylation patterns is also an essential 
question.

Inhibition and reversal of twist-induced EMt at 
the site of metastasis

The metastasizing cancer cells displaying an 
EMT phenotype are found to exhibit higher resistance 
to environmental stress  [77, 78]. High expression level 
of EMT signatures observed in circulating invasive 
cells supports survival in the blood stream  [79, 80] , 
allowing subsequent extravasation of these cells from the 
blood or lymphatic vessels and establishment in distant 
organs/tissues. Suppression of the EMT capability in the 
circulating cancer cells can efficiently attenuate the anti-
apoptotic competence  [81]. Therefore, the EMT state 
actively supports cancer cells to overcome environmental 
stress. As mentioned above, the signaling mediators that 
link extracellular signals to EMT inducers often converge 

figure 2: twist structure and phosphorylation conservation in mammals. Twist has three major domains including a 
N-terminal flexible domain, a basic helix-loop-helix domain that is responsible for DNA-binding and a C-terminal Twist-box. Differential 
phosphorylation patterns that have been reported are indicated. In mammals there are two members in Twist family. The phosphorylated 
amino acids highlighted in red are highly conserved in both members across three species (m: mouse; r: rat; h: human). CK2: casein kinase 
2; bHLH: basic helix-loop-helix; T-box: Twist-box.
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to two major signaling nodes PI3K/Akt and MAPK, both 
of which are responsible for drug resistance to clinical 
therapies in many types of cancer  [82]. Indeed, the 
metastatic cancer cells associated with EMT clearly show 
remarkable resistance to a number of small molecular 
inhibitors in clinic  [83-85]. As EMT programming limits 
cell proliferation, it is critical for re-establishing cancer 
cells at the distant metastatic site to overcome this barrier 
for colonization. In this regard, it raises the fundamental 
question of how EMT is revered, or more specifically 
how EMT inducers, such as Twist, are deactivated. Whilst 
further insights are being made, the current understanding 
remains somewhat limited, with changes in Twist stability 
the best described. In different types of cancer cells, Twist 

instability can be induced by changes in microRNA  [86-
88]. In addition to the regulation of Twist stability at RNA 
level, two notable studies suggest that deactivation of Twist 
in metastatic lesion may be triggered by elevated protein 
instability, mediated by either de-phosphorylation of S68 
by the small C-terminal Domain Phosphatase 1  [89], or 
Akt1-directed phosphorylation of Twist on T121 and S123 
that promotes β-TrCP-mediated Twist1 ubiquitination and 
degradation  [90]. These two discoveries elucidate the 
suppression of Twist1 activity through potential kinase-
regulated autonomous feedback signaling and further 
highlights the developing contribution of phosphorylation 
to the regulation of the EMT process. 

figure 3: upstream and downstream regulation of twist. At transcriptional level, NF-κB, STAT3, DLX4, MYCN, MYC, 
HMGA2 and SOX2 have been shown to upregulate Twist in response to the activation of TGFbeta, RTKs, WNT and Integrin pathways. 
Being a central hub, translated Twist undergoes differential phosphorylation directly mediated by Akt, MAPK and CK2 kinases in a 
context-dependent manner. Activation of Twist via phosphorylation triggers oncogenic gene expression such as AKT, TGFB and PDGFR, 
and represses E-cadherin (CDH1), Claudins (CLDN), Raf kinase inhibitor protein (RKIP) and Nephrin1 (NPHS1) that are crucial for 
cell-cell contact through its downstream target Snail, an epigenetic event that actively leads to an reinfoced EMT activation. PTM: post-
translational modification.
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dIscussIon

Metastatic spread is a key issue in clinical cancer 
therapy because it represents the major cause of death 
for cancer patients. Many types of invasive cancer with 
epithelial origin represent an advanced EMT phenotype 
that exhibits a high grade of plasticity. Establishment 
and outgrowth of metastases in distant organs primarily 
requires local re-colonization, which is reflected by 
decreased motility and increased proliferation potential 
of the cancer cells. Such reversal from EMT to MET in 
breast cancer-associated metastases was experimentally 
recognized in Twist-induced metastatic models  [34, 
35]. However, the mechanisms of how Twist activity 
is regulated during the establishment of metastases is 
currently undetermined. What factors in the metastatic 
site determine the need of its inactivation? Recent studies 
in mouse model shed some lights on these issues  [90]. 
Cancer cell proliferation in the metastatic site requires high 
level of global Akt activity which is principally capable of 
inducing cell migration, and Twist was reported to inhibit 
environmental stress-triggered senescence  [91, 92]. 
The opposing roles of Akt1 and Akt2 during metastatic 
progression  [93, 94] may provide a ration interpretation 
by proposing a model whereby when cancer cells need 
to disseminate, Akt2-mediated phosphorylation on S42 of 
Twist is dominant; whilst during metastatic colonization, 
Akt1-mediated phosphorylation on T121 and S123 
triggers ubiquitination-dependent degradation of Twist and 
promotes proliferation. This would imply the existence of 
a dynamic pool of Akt isoforms that differentially regulates 
cancer cell behavior at both primary and metastatic sites. 
If this is true in vivo, the predominance of individual Akt 
isoforms will be the fundamental factor to determining the 
cancer cell behavior and fate. Interestingly, independent 
study has shown that Akt isoforms are individually 
regulated by specific microRNAs thus distinguishes the 
spatiotemporal Akt isoforms-contributed activity  [95].

This model whereby Twists oncogenic functions 
are regulated by the predominant Akt isoforms raises 
further crucial questions to be elucidated : 1) what are 
the signals in cancer cells that would control the switch 
of Twist-phosphorylating modulators between the Akt1 
and Akt2 isoforms? 2) How do Akt1 and Akt2 compete 
with each other to impose dominant control of Twist 
phosphorylation? 3) What controls the Akt1 and Akt2 
ratio specifically in the metastatic lesion? These questions 
still remain unanswered and studies have reported 
contradictory observations, including a structural study 
of Twist linking T121 and S123 phosphorylation in 
prostate cancer to Twist mediated metastasis, as opposed 
to Twist degradation  [96]. This discrepancy may indicate 
difference between cancer types or progression stages. 
An explanation for the dominating status of Akt1 and 
Akt2 may be that there exists a feed-back signaling loop 
through multiple signaling cross-talks that eventually 

leads to microRNA-mediated degradation of individual 
Akt isoforms, thereby modulating entire Akt pool activity  
[95, 97]. Alternatively, it is also proposed that distinct 
phosphorylation patterns of Twist require different 
co-activators, which may determine the selectivity of 
phosphorylation motifs on Twist exposed to Akt isoforms. 
In fact, such phospho-specific phenotypes coupled with 
distinct cell fate in cancer have been also found similar to 
other EMT-drivers such as Snail family  [75, 98]. Thus, 
phosphorylation of EMT-promoting molecules seems 
to, at least in part, elaborately act as a functional “on/
off” signal in favor of cancer cell migration, invasion 
and survival. Moreover, on-site de-phosphorylation by 
specific phosphatases could also contribute, either directly 
through targeting Twist, or indirectly by deactivating 
upstream kinases such as tyrosine receptors, to influence 
Twist stability. Insights into this may be found in the 
activity of SHP2 in a well-studied metastasis model, 
which is tremendously increased and promotes metastatic 
colonization  [99]. 

Additionally, more experimental data is needed to 
explore the mechanistic interplay between Twist (and/
or others)-induced EMT and metastasis. A recent study 
challenged the conventional role of Twist-induced EMT 
in promotion of metastasis. In a pancreatic cancer model, 
depletion of Twist or Snail did not inhibit pancreatic 
metastasis; rather, EMT was crucial for the tumors to 
resist to the treatment of DNA-damaging reagents  [100], 
another important notion closely related to current clinical 
cancer therapies  [101, 102]. Moreover, it would be 
interesting to know whether Twist phosphorylation on 
different sites occurs simultaneously, individually or step-
wisely. Does one site phosphorylation/de-phosphorylation 
influence the others? The answers to these questions will 
facilitate a better understanding of the affiliated signaling 
events that regulate the transition between EMT and MET 
during cancer progression, which will greatly facilitate 
development of diagnostic tools for clinical applications. 
Furthermore, such phospho-pattern-specific biomarkers 
may not only predict whether the cancer cells in metastatic 
tumors start a second wave of dissemination, but also be 
considered as potential druggable targets  [103]. 
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