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would prevent pathological neovascularization without 
adversely affecting normal revascularization. The effect 
of BMP9 on vascular tuft formation may reflect its ability 
to modulate VEGF signaling, which is the main driver of 
tuft formation.

During retinal angiogenesis, Alk1 signaling 
maintains homeostasis by offering a counterbalance 
to proangiogenic pathways, such as the one mediated 
by VEGF, by contributing to the specification of ECs 
into stalk and tip cells and the proper remodeling of the 
vasculature [19], [41]. Consistent with this notion, BMP9 

decreased VEGFR2 expression and increased VEGFR1 
expression in ECs, likely altering the sensitivity of VEGF-
VEGFR2 signaling. These changes, combined with the 
effects of Alk1 signaling on the expression of endothelial 
tip and stalk cell markers, likely contribute to the reduction 
of pathological angiogenesis caused by BMP9.

Recently, numerous classes of Alk1 inhibitors have 
been developed for the prevention of tumor angiogenesis 
[42], [43]. These inhibitors have been shown to prevent 
tumor angiogenesis, and can increase the anti-angiogenic 
effects of VEGF inhibitors. These results may at first 

Figure 6: Effects of BMP9 and VEGFR2 blockade on CNV. A. Phalloidin (red) and IsoB4 staining of choroid-sclera complexes 
two weeks after laser burn and treatment with adenoviral particles. B. Quantification of neovascular area following laser-burn (n = 4 
animals/group). All histograms represent mean ± standard error of the mean. **P < 0.01, ***P < 0.005. Scale bar: 75 μm.



Oncotarget55966www.impactjournals.com/oncotarget

seem to contradict ours, which didn’t show inhibition of 
retinal and choroidal angiogenesis with Alk1Fc. Some 
discrepancies in Alk1 signaling in tumor angiogenesis 
may be explained in part by cell context, dose, and timing, 
as well as Alk1 cross-talk with other signaling pathways, 
the micro-tumor environment, and the stage of cancer at 
the time of treatment. In line with this supposition, tumor 
vessels are known to behave aberrantly and are notably 
more tortuous and leaky than vessels from tissues such as 
the retina. 

We did however observe that combination of 
Alk1Fc with DC101 abrogated pathological neovessel 
formation in OIR induced by Alk1 inhibition. These 
data provide evidence that Alk1 modulates angiogenesis 
at least in part through modulation of VEGF signaling. 
This is line with a study showing that treatment with 
bevacizumab, an antibody that binds and neutralises 
human VEGF, decreases the number of dysplastic vessels 
in the brain of mice deficient for Alk1 [44]. In addition, we 
also show that BMP9/Alk1 signaling results in changes in 
VEGFR1 expression in ECs. This suggest that in blood 
vessels stimulated with BMP9, higher VEGFR1 levels 
may contribute to decreased VEGF signaling through 
the negative regulation of VEGF bioavailability [45]. 
These data, along with studies showing that BMP/Smad 
signaling modulates Notch activity in ECs [19] [30], 
demonstrate that Alk1 is an important regulator of the 
response of ECs to angiogenic signals, and that modulators 
of Alk1 signaling may affect the response of blood vessels 
to VEGF. Modulation of Alk1 activity may lead to the 
development of novel therapeutic strategies to possibly 
overcome resistance to VEGF antagonists in diseases such 
as AMD.

The data we present here suggest that Alk1-based 
agonists could also be of interest for the treatment of a 
variety of ischemic retinopathies including ROP and 
diabetic retinopathy. Arguably, BMP9/Alk1 signaling 
targets may be implicated as positive effectors of the 
desired quiescence of EC and eventual mediators of lateral 
side-effects on non-vascular retina cells. Thus, future 
studies on targets of Alk1 signaling might be needed to 
limit this possibility. Finally, a study showing that BMP9 
promotes stabilization of endothelial junctions suggests 
that Alk1 agonists could prevent the loss of retinal blood 
barrier function and permeability [46] associated with 
ROP and diabetic retinopathies, and thus could help 
prevent serious complications of vascular leakage such as 
macular edema.

Overall, results from the current study reveal 
BMP9 as an effective and potent inhibitor of pathological 
neovascularization associated with wet AMD. Moreover, 
BMP9 agonists represent promising complements that 
would lower the conventional dose of anti-VEGF agents 
required to achieve an equivalent therapeutic index. Thus, 
BMP9 and anti-VEGF combined therapies would limit the 
aforementioned adverse effects commonly associated with 

VEGF inhibitors. 

materials and Methods

Mice and adenoviruses

Adenoviruses were cloned and produced as 
previously reported [19]. C57BL/6J WT mice were 
purchased from The Jackson Laboratory. Cdh5-CreERT2 
mice were provided by Ralf Adams (Max Planck Institute 
for Molecular Biomedicine). Alk1flox mice were kindly 
provided by Paul S Oh (University of Florida). All animals 
were manipulated according to the institutional guidelines 
as defined by the Canadian Council on Animal Care 
(CCAC). 

Oxygen-induced retinopathy

C57BL/6J mouse pups at postnatal day (P)7 
and their fostering mothers (CD1, Charles River) 
were submitted to 75% oxygen in oxycycler chamber 
for 5 days. Pups were then returned to normoxia and 
administered 50 μl (1x108 CFU) of either control, BMP9/
ALK1Fc-expressing viruses and/or 50 μg/ g of body 
weight of DC101 (InVivoMAb, BioXcell Fermentation) 
or IgG isotype (intraperitonal [I.P.] injections). Eyes were 
enucleated at P17 and processed for immunostaining. 

Laser-induced choroid neovascularization

Eight weeks old C57BL/6J mice were anesthetized 
with a ketamine/xylazine mix prior to applying a 
photocoagulating laser (400mW intensity, 0.05s exposure 
time). Four spots were burned around the optical nerve. 
Mice received 2x108 CFU I.P. injections of either control, 
BMP9/ALK1Fc-expressing viruses and/or 50 μg DC101/ 
g of body weight. Eyes were enucleated after 14 days and 
processed for immunostaining.

Immunohistochemistry

Ocular globes were initially fixed for 15 min in 
4% paraformaldehyde (PFA). Retinas or choroids were 
collected after eyes dissection in phosphate buffered saline 
(PBS) and blocked for 1h in PBS 3% BSA 0.1% Triton 
X-100. Fixation was prolonged in 1% PFA overnight for 
choroid extraction or ocular globe sectioning. Prior to 
sectioning, eyes were maintained in sucrose gradients 
(10-30%), cryo-preserved in a matrix gel and sliced in 14 
μm sections on a cryostat (Leica CM3050S). Staining with 
either FITC-labeled isolectin GS IB4 (Life technologies 
corporation), rhodamine phalloidin (Cedarlane 
Laboratories) or goat anti-mouse Alk1 primary (R&D 
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systems) and anti-goat secondary (Life technologies) 
antibodies were performed on whole and/or sectioned 
retinas/choroids. Retinas and choroids were then mounted 
in fluoromount aqueous medium (Sigma-Aldrich). 

Quantification of retinal vaso-obliteration and 
neovascularization

Neovascularization was quantified using the 
SWIFT_NV macro set and ImageJ software developed 
by A Stahl and L Smith as described previously [31]. 
Briefly, the composite flatmount image was divided into 
four quadrants and assigned a manual threshold value 
based on fluorescence intensity such that only the areas 
of greatest intensity are shown as a neovascularization 
map. The individual maps for each quadrant are then 
combined to give a neovascularization overlay for the 
entire retinal flat mount. The area of the overlay is then 
compared to the overall area of the retina, without any 
avascular areas subject to vaso-obliteration, to obtain 
percent neovascularization for each individual retina. The 
vaso-obliterated area was quantified by measuring the 
central retinal area devoid of blood vessels and comparing 
it to the whole retinal surface area. For each flatmount, 
quantification was performed by two independent 
graders in a masked fashion, and the average of their 
measurements was used for subsequent analysis.

ELISA

The BMP9 levels in mouse serum were determined 
by ELISA using BMP-9 Duoset kit (R&D systems) 
according to the instructions of the manufacturer. Optical 
density was measured and corrected at 450nm and 570nm 
respectively using a plate reader (Tecan).

Real-time PCR

Eyes from OIR or control mice were dissected and 
lysed in 1% β-mercapto-ethanol RLT buffer. Total RNA 
extraction and cDNA synthesis were performed using 
the RNeasy extraction (Qiagen) and iscript (BioRad) 
kits respectively. Real-time amplifications of various 
target genes (Alk1, Alk2, Bmpr2, Eng and Alk3) were 
performed on 7500 Fast Real-Time PCR System (Applied 
Biosystems) using corresponding primers. Primers were 
obtained from QIAGEN (Quantitect Primer Assays).

Sprouting assays

Sprouting assays were performed as previously 
described [19]. Briefly, after siRNA transfection with 
control or VEGFR2 siRNA (25 pmol of RNAimax, Life 
Technologies), HUVECs (250,000 cells/well in 6-well 

plates) were resuspended in 300 μl fibrinogen solution 
(2.5 mg/ml fibrinogen, Sigma-Aldrich) in EBM-2 (Lonza) 
supplemented with 2% FBS and 50 μg/ml aprotinin 
(Sigma-Aldrich), and plated on top of a pre-coated fibrin 
layer (400 μl fibrinogen solution clotted with 1 U thrombin 
(Sigma-Aldrich) for 20 min at 37°C). The second layer of 
fibrin was clotted for 1 hr at 37°C. NHDF cells (250,000 
cells/well), in EBM-2 supplemented with 2% FBS and 25 
ng/ml VEGF, were then plated on top of the fibrin layers. 
Cultures were incubated at 37°C, 5% CO2.

Statistical analyses

All data are shown as mean ± standard error of 
the mean (SEM). Statistical analyses were performed 
for all quantitative data using Prism 6.0 (Graph Pad). 
Statistical significance for paired samples and for multiple 
comparisons was determined by Student’s t test and 
ANOVA, respectively. Data were considered statistically 
significant if the p value was less than 0.05.
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