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INTRODUCTION 

For quite a long time, genetic information was 
considered to be only stored in protein-coding genes and 
RNA was just transcriptional noise and intermediary between 
a DNA sequence and its encoded protein [1–5]. However, 
sequence analysis indicates that ~ 20,000 protein-coding 
genes in the human genome make up only a very small 
fraction (approximately 1.5%) of the complete human genome 
[6–12]. In other word, more than 98% of the human genome 
does not encode protein sequences, yielding tens of thousands 
of non-coding RNAs (ncRNAs). Further studies demonstrate 
that the proportion of non-protein-coding sequences would 
significantly increase with organism complexity and ncRNAs 
have been confirmed to play very critical regulation roles 
in various fundamental and important biological processes 
[13, 14]. According to the transcript lengths, ncRNAs 

could be further divided into two categories: small ncRNAs 
(transcripts with the length shorter than 200 nucleotides, 
such as microRNA (miRNA), transfer RNA, and Piwi 
interacting RNA) and long ncRNAs (lncRNA, transcripts 
with the length more than 200 nucleotides) [11, 15–17]. The 
functional features of protein-coding genes and lncRNAs are 
significantly different. LncRNAs have less conservation across 
species, much more tissue-specific pattern, and relatively 
lower expression level than protein-coding genes [4, 18, 19]. 
Therefore, it is no surprise that lncRNAs were considered to 
be transcriptional noise when they were first discovered [3, 4].  
The first two lncRNAs, H19 and Xist, were discovered 
based on traditional gene mapping approaches in the early 
1990s [20–22]. In the recent several years, with the rapid 
development of high-throughput sequencing technologies 
and computational models, researchers have identified a 
large number of lncRNAs in eukaryotic organisms ranging 
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ABSTRACT
In recent years, accumulating evidences have shown that the dysregulations 

of lncRNAs are associated with a wide range of human diseases. It is necessary and 
feasible to analyze known lncRNA-disease associations, predict potential lncRNA-
disease associations, and provide the most possible lncRNA-disease pairs for 
experimental validation. Considering the limitations of traditional Random Walk with 
Restart (RWR), the model of Improved Random Walk with Restart for LncRNA-Disease 
Association prediction (IRWRLDA) was developed to predict novel lncRNA-disease 
associations by integrating known lncRNA-disease associations, disease semantic 
similarity, and various lncRNA similarity measures. The novelty of IRWRLDA lies in 
the incorporation of lncRNA expression similarity and disease semantic similarity to 
set the initial probability vector of the RWR. Therefore, IRWRLDA could be applied 
to diseases without any known related lncRNAs. IRWRLDA significantly improved 
previous classical models with reliable AUCs of 0.7242 and 0.7872 in two known 
lncRNA-disease association datasets downloaded from the lncRNADisease database, 
respectively. Further case studies of colon cancer and leukemia were implemented 
for IRWRLDA and 60% of lncRNAs in the top 10 prediction lists have been confirmed 
by recent experimental reports. 
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from nematodes to humans [19, 23]. For example, Guttman 
et al. (2009) integrated gene expression data, the presence 
of chromatin marks for promoter regions and gene bodies, 
and the known annotations of coding transcripts to propose 
the first large-scale lncRNA discovery approach. In their 
studies, 1600 novel mouse large intervening non-coding 
RNAs (lincRNAs) across four mouse cell types have been 
discovered [23]. Another important example of lncRNA 
discovery is that Cabili et al. (2011) integrated chromatin 
marks and RNA-sequencing (RNA-seq) data to identify more 
than 8000 lincRNAs across 24 different human cell types and 
tissues [24]. 

In recent years, accumulating evidences have shown 
that lncRNAs play critical regulation roles in various 
fundamental and vital biological processes, including 
cell differentiation, proliferation and apoptosis, cell 
cycle control, cellular transport, transcriptional and post-
transcriptional regulation, epigenetic regulation, organ or 
tissue development, and tumorigenesis [3, 12, 23, 25–27]. 
This important discovery has ended the arguments on 
lncRNA functions and disabused the false viewpoint that 
the lack of conservation would imply lack of functions 
[4, 28–30]. Complex secondary and tertiary structures 
of lncRNAs allow them to modulate the action of 
proteins or miRNAs [28, 31]. Furthermore, other studies 
revealed that lncRNAs could regulate protein-coding 
genes in oncogenic and tumor suppressive pathways 
at transcriptional, posttranscriptional, and epigenetic 
levels [32]. Experimental studies in the melanoma cell 
lines indicated that lncRNA sprouty homolog 4 intronic 
transcript 1 (SPRY4-IT1) could inhibit cell proliferation 
and apoptosis [33]. However, the exact mechanism behind 
lncRNA-related regulation interactions still remains 
unclear for most of the lncRNAs [28]. Recently, with the 
development of novel experimental and computational 
approaches, the dysregulations of lncRNAs are confirmed 
to be associated with a wide range of human diseases, 
such as many types of cancers [34, 35], neurodegenerative 
disorders [36], cardiovascular diseases [37], and diabetes 
[38]. Especially, some specific lncRNAs have been found 
to be associated with various diseases. For example, the 
dysfunction of lncRNA H19 is associated with various 
cancers, such as Breast cancer, Lung cancer, Colon 
cancer, Gastric cancer, Liver cancer, and Bladder cancer 
[3]. Based on a knockdown approach, down-regulation 
of H19 could significantly decrease the clonogenicity 
and anchorage-independent growth of breast and lung 
cancer cell [39]. For the bladder cancer, H19 has been 
considered as a potential prognostic biomarker for the 
early recurrence [40]. Recent studies also indicated that 
H19 could enhance carcinogenesis and metastasis of 
gastric cancer through the direct upregulation of ISM1 
and the indirect suppression of CALN1 expression [41].

Nowadays, more than 15,000 human lncRNAs 
have been annotated and stored in GENCODE [30]. 
However, a relatively limited number of lncRNAs have 

been extensively studied to shed light on their functions 
and potentially associated diseases. Therefore, identifying 
disease-related lncRNAs is still a great challenge. The 
identification of lncRNA-disease associations could not 
only benefit better understanding of underlying mechanism 
causing various human diseases at lncRNA level, but also 
accelerate potential biomarker identification for disease 
diagnosis, treatment, prognosis, and drug response 
prediction [42–45]. The study of identifying novel 
lncRNA–disease associations has attracted the attentions 
of more and more researchers and become one of the most 
important topics in the research fields of lncRNAs and 
diseases. Considering the increasing number of newly 
discovered lncRNAs each year, identifying disease-
lncRNA associations based on biological experiments has 
encountered many bottlenecks due to experimental time 
and cost. On the other hand, the detailed information of 
lncRNA sequence, expression, function has been also 
collected by some publicly available databases, such as 
NRED [46], lncRNAdb [25], NONCODE [26]. Therefore, 
it is necessary and feasible to analyze known lncRNA-
disease associations, predict potential lncRNA-disease 
associations, and provide the most possible lncRNA-
disease pairs for experimental validation. Computational 
models could significantly decrease the time and cost of 
biological experiments by quantifying the association 
probability of each lncRNA-disease pair [47–51]. 

Some computational methods have been developed 
to predict potential disease-lncRNA associations. In 
2013, Chen et al. developed a reliable computational tool 
of LRLSLDA to predict novel human lncRNA-disease 
associations based on the assumption that similar diseases 
tend to be related with functionally similar lncRNAs. 
This model is mainly based on a semi-supervised learning 
framework of Laplacian Regularized Least Squares [48], 
which integrates known disease–lncRNA associations 
and lncRNA expression profile. Therefore, LRLSLDA 
doesn’t need the information of negative samples, which 
are difficult to obtain. However, this model has an intrinsic 
problem that two different classifiers were obtained in the 
disease space and lncRNA space, respectively. How to 
directly obtain a single classifier or reasonably combine 
these two classifiers is not yet completely solved. In 2015, 
based on the assumption that similar diseases tend to be 
associated with lncRNAs with similar functions, Chen 
et al. further developed two novel lncRNA functional 
similarity calculation models (LNCSIM) [52]. In the 
model of LNCSIM, disease semantic similarity was first 
calculated based on the directed acyclic graph (DAG) 
which represents the relationships among different 
diseases. Then, lncRNA functional similarity was 
further obtained by calculating the semantic similarity 
between their associated disease groups. When LNCSIM 
and LRLSLDA were further combined, the predictive 
performance was improved in both cross validation and 
case studies of colorectal cancer and lung cancer. However, 
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how to select semantic contribution decay factor is worthy 
of further research. Based on the same assumption, 
Sun et al. developed a global network similarity-based 
computational model of RWRlncD to identify potential 
lncRNA-disease associations by implementing classical 
random walk with restart (RWR) on the constructed 
lncRNA functional similarity network [53]. RWRlncD 
integrates known lncRNA-disease association networks, 
disease similarity network, and lncRNAs functional 
network. However, RWRlncD can only be applied to 
the lncRNAs with known related diseases, limiting the 
wide application of RWRlncD. In the same framework 
of RWR, Zhou et al. developed the model of RWRHLD 
to predict the potential lncRNA-disease associations 
by implementing random walk on the heterogeneous 
network constructed by the integration of lncRNA-
lncRNA crosstalk network, disease-disease similarity 
network, and known lncRNA-disease association 
network [54]. Specially, lncRNA crosstalk network 
was constructed based on the assumption that similar 
lncRNAs tend to share significantly interacting miRNAs. 
Therefore, RWRHLD cannot be applied to the lncRNAs 
without known lncRNA-miRNA interactions. Yang et al. 
implemented a propagation algorithm on the coding-non-
coding gene-disease bipartite network to infer potential 
lncRNA-disease associations [55]. The coding-non-
coding gene-disease bipartite network was constructed 
by integrating known lncRNA-disease associations and 
gene-disease associations. However, this computational 
model cannot be applied to the diseases without any 
known related genes. Recently, the computational 
model of KATZLDA was developed to identify potential 
lncRNA-disease associations by known lncRNA-disease 
associations and various similarity measures of diseases 
and lncRNAs [56]. More importantly, this new model 
could be applied to diseases without any known related 
lncRNAs and lncRNAs without any known associated 
diseases.

Considering the fact that known disease-lncRNA 
associations are still rare, some methods that didn’t 
rely on known lncRNA-disease associations have 
been developed to infer potential lncRNA-disease 
associations. For example, Liu et al. integrated human 
lncRNA expression profiles and gene expression profiles 
to construct lncRNA-gene co-expression network and 
identify potential disease-lncRNA associations based 
on known disease-gene associations and gene-lncRNA  
co-expression relationships [57]. However, the important 
limitation of this computational model is that the output 
of tissue-specific lncRNAs is only tissue-related diseases 
rather than specific disease names. Li et al. predicted 
novel associations between vascular disease and lncRNAs 
based on the genome location [58]. However, some 
lncRNAs have no neighbor gene within 50 kb distance 
and the functions of lncRNA are not always related with 
its neighbor genes. Recently, I have developed the model 

of HyperGeometric distribution for LncRNA-Disease 
Association inference (HGLDA) to predict novel lncRNA-
disease associations based on the integration of miRNA-
disease associations with lncRNA-miRNA interactions. 
HGLDA obtained the reliable performance in the leave-
one-out cross validation (LOOCV) and case studies about 
breast cancer, lung cancer, and colorectal cancer [49]. 
However, these three models cannot be applied to the 
diseases without any known associated genes or miRNAs.

RWR has been widely used in various important 
problems in computational biology, such as disease-
lncRNA association prediction [53, 54], disease-related 
miRNA identification [59, 60], drug-target interaction 
inference [61, 62], and disease gene identification [63, 64].  
Here, the model of Improved Random Walk with 
Restart for LncRNA-Disease Association prediction 
(IRWRLDA) was developed to predict novel lncRNA-
disease associations by integrating known lncRNA-
disease associations, disease semantic similarity, lncRNA 
functional similarity, lncRNA expression profile similarity, 
and lncRNA Gaussian interaction profile kernel similarity. 
For any given disease, traditional RWR set the initial 
probability vector only based on known related lncRNAs 
with this disease. Therefore, RWR cannot work if this 
disease has no known related lncRNAs. Compared with 
traditional RWR, the novelty of IRWRLDA lies in the 
incorporation of lncRNA expression similarity and disease 
semantic similarity to set the initial probability vector 
of the RWR. Therefore, IRWRLDA could be applied to 
diseases without any known related lncRNAs. LOOCV 
was implemented for evaluating the performance of 
IRWRLDA based on two versions of lncRNA-disease 
association datasets (June-2012 Version and June-2014 
Version) consisting of known experimentally verified 
lncRNA-disease associations downloaded from the 
LncRNADisease database [3]. As a result, IRWRLDA 
significantly improved previous classical models with 
reliable AUCs of 0.7242 and 0.7872 in the datasets 
of June-2012 and June-2014 Version, respectively. 
Further case studies of colon cancer and leukemia were 
implemented for IRWRLDA. As a result, 60% of lncRNAs 
in the top 10 prediction lists were confirmed by recent 
experimental reports. 

RESULTS 

Performance evaluation

LOOCV was implemented to evaluate the prediction 
performance of IRWRLDA based on two versions of 
lncRNA-disease association datasets (June-2012 Version 
and June-2014 Version) downloaded from lncRNADisease 
database (see Figure 1 and Methods section for the detail 
of IRWRLDA). When LOOCV was implemented for 
the investigated disease, each known related lncRNA 
was left out in turn as a test sample and other known 
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related lncRNAs were regarded as training samples. All 
the lncRNAs without known association evidences with 
the investigated disease were considered as candidate 
samples. How well the left-out test sample was ranked 
relative to candidate samples would be evaluated. If the 
rank of test sample exceeded the given threshold, then it 
can be considered as a successful prediction. Furthermore, 
true positive rate (TPR, sensitivity) and false positive rate 
(FPR, 1-specificity) could be correspondingly obtained 
according to different thresholds. Sensitivity indicates the 
percentage of the test samples with ranks higher than the 
given threshold and specificity indicates the percentage 
of candidate samples below this threshold. Therefore, 
Receiver-operating characteristics (ROC) curve can be 
drawn by plotting TPR versus FPR at different thresholds. 
Area under ROC curve (AUC) was further calculated to 
evaluate the performance of IRWRLDA. If AUC = 1, it 
means perfect performance has been obtained and if AUC 
= 0.5, it means the prediction result is random.

Comparison between IRWRLDA with other three 
state-of-the-art disease-lncRNA association prediction 
models (LRLSLDA [48], RWRlncD [53], and NRWRH 
[54, 61]) in the framework of LOOCV was implemented. 
LRLSLDA is the first large-scale lncRNA-disease 
association prediction model, which has obtained reliable 
performance in the framework of both cross validation 

and case studies. Therefore, this model was selected for 
performance comparison. RWRlncD and NRWRH have 
been successfully used to predict novel lncRNA-disease 
associations by independent third party [53, 54]. The 
comparison between these two models and IRWRLDA 
could further demonstrate the reasonability of setting 
the initial probability vector of random walk by lncRNA 
expression similarity and disease semantic similarity. 

As a result, IRWRLDA achieved AUCs of 0.7242 
and 0.7872 for the June-2012 Version and June-2014 
Version datasets, respectively (see Figure 2), significantly 
improving all the previous classical models. RWRlncD 
can only be applied to the diseases with known related 
lncRNAs. Therefore, when investigated disease only has 
1 known lncRNA, LOOCV cannot be implemented. To be 
fair, left-out known lncRNA was considered to obtain the 
random rank in that case, i.e. for N candidate lncRNAs, 
the rank of left-out known lncRNA was regarded as 
(N+1)/2. Therefore, huge jumps could be observed on 
the ROC curves of RWRlncD in Figure 2 at the exact 
point of FPR = 0.5. IRWRLDA could be successfully 
applied to new diseases without any known related 
lncRNAs by integrating lncRNA expression similarity, 
disease semantic similarity, and known lncRNA-disease 
associations to jointly decide the initial probability vector 
of the RWR. When investigated disease only has 1 known 

Figure 1: Flowchart of IRWRLDA, demonstrating the basic ideas of uncovering potential disease-lncRNA associations 
by implementing random walk on the lncRNA similarity network constructed based on integrated lncRNA similarity. 
IRWRLDA consists of the following three steps: (1) decide the initial probability of all the lncRNAs, (2) implement random walk on the 
lncRNA similarity network constructed based on integrated lncRNA similarity, and (3) obtain stable probability of random walk and rank 
candidate lncRNAs. The essential difference between IRWRLDA and traditional RWR lies in the initial probability of lncRNAs.
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lncRNA and this lncRNA is regarded as the test sample 
to implement LOOCV, the initial probability of lncRNA 
could be obtained by calculating the maximum of two 
scores defined in this paper. However, in some cases, 
the initial probability could be equal to zero for all the 
lncRNAs, then the left-out known related lncRNAs would 
again obtain random rank. Therefore, there are still small 
jumps for the ROC curve of IRWRLDA at the exact point 
of FPR = 0.5. The same applies for NRWRH, although it 
also could be applied to disease without known related 
lncRNAs by regarding the investigated disease as seed 
node of random walk.

Case studies

Case studies of colon cancer and leukemia were 
implemented to further demonstrate reliable prediction 
performance of IRWRLDA. For the investigated disease, 
known lncRNA-disease associations in the June-2012 
Version dataset were used as training samples and other 
lncRNAs without known associations with this disease 
in the June-2012 Version dataset were used as candidate 

samples. Furthermore, predictive results were validated 
based on the updates of LncRNADisease database after 
June, 2012 and recent experimental literatures. 

As one of the most common causes of cancer-related 
deaths worldwide, colon cancer has posed a great threat 
to global public health. Colon cancer patients and colon 
cancer deaths increases by 1,200,000 and 600,000 each 
year, respectively [65–67]. Colon cancer is usually caused 
by the combination of various factors, such as genetic and 
epigenetic changes [68, 69]. Specially, lncRNAs have been 
demonstrated to play a critical role in the development 
and progression of colon cancer [3]. As a result, six 
out of top ten potential colon cancer-related lncRNAs 
predicted by IRWRLDA were confirmed by the updates 
in the lncRNADisease database [3] and recent biological 
experiments [70, 71]. For example, top four potentially 
related lncRNAs (CRNDE, KCNQ1OT1, MALAT1, and 
HOTAIR) were validated by lncRNADisease database [3]. 
Recently, Li et al (2015) have investigated the expression 
of NEAT1 (ranked 5th in the prediction results) in 239 
clinical cases of colon cancer specimens and matched 
normal tissues and demonstrated that NEAT1 may play 

Figure 2: Comparison between IRWRLDA with other three the-state-of-art disease-lncRNA association prediction 
models in the framework of LOOCV was implemented. As a result, IRWRLDA achieved AUCs of 0.7242 and 0.7872 for the 
June-2012 Version and June-2014 Version datasets, respectively, significantly improving all the previous classical models.
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an oncogenic role in colon cancer differentiation, invasion 
and metastasis and serve as an important biomarker of 
colon cancer recurrence and prognosis [70]. Furthermore, 
according to another experimental literature [71], copy-
number alterations of lncRNA GNAS-AS1 (8th in the 
prediction results) are much frequent in colon cancer 
samples.

Leukemia is a group of cancers which begin in 
the bone marrow and cause a large amount of abnormal 
white blood cells. The major causes of leukemia are the 
expression changes of protein coding genes and ncRNAs 
[72]. Recently, further evidences have demonstrated 
that the mutations and dysregulations of lncRNAs 
are associated with the development and progression 
of leukemia [3]. Therefore, IRWRLDA was further 
implemented to predict leukemia-related lncRNAs. 
As a result, six out of top ten potentially leukemia-
related lncRNAs have been confirmed by the updates 
in the lncRNADisease database and recent biological 
experiments [73, 74]. For example, MEG3, WT1-AS, 
DLEU2 and CDKN2B-AS1 were ranked 1st, 2nd, 4th and 
6th, respectively. The associations between these lncRNAs 
and leukemia were confirmed by the recent updates in the 
lncRNADisease database. H19 (3rd of the predictive list) 
was further confirmed to play critical roles in leukemia 
based on the observation that the loss of imprinting (LOI) 
of H19 was a frequent event in adult T-cell leukemia 
[73]. Another confirmed lncRNA was RRP1B (8th in the 
prediction results), which showed differential expression 
between acute myeloid leukemia patients with different 
treatments [74]. 

As mentioned above, many new lncRNA-disease 
associations have been added to the LncRNADisease 
database after June-2012 Version was publicly released. 
Therefore, I downloaded these new lncRNAs associated 
with colon cancer and leukemia and removed these 
lncRNAs which were not investigated in this study. 
Performance comparisons between IRWRLDA and 
LRLSLDA were implemented according to the rankings 
of these new disease-related lncRNAs in the case studies 
of colon cancer and leukemia (See Table 1). As a result, 
IRWRLDA significantly improved the prediction ability of 
LRLSLDA with higher ranks for these new disease-related 
lncRNAs.

Applicability of IRWRLDA to diseases without 
any known related lncRNAs

In order to fully demonstrate that IRWRLDA 
could be effectively applied to human diseases without 
any known related lncRNAs, further case studies for 
these colon cancer and leukemia were implemented 
by removing all the known lncRNAs associated with 
investigated disease. In this validation framework, all the 
diseases don’t have any known associated lncRNAs. In 
the lncRNADisease database, there are fourteen lncRNA-

disease associations related with these four diseases 
after removing lncRNAs which were not investigated in 
this study. Therefore, IRWRLDA and LRLSLDA were 
implemented and the ranks of these seven associations 
were observed for each disease, respectively. As a result, 
it can be observed that IRWRLDA always provide higher 
rankings for these associations than LRLSLDA (See  
Table 2). 

Leukemia is a group of cancers, including acute 
lymphoblastic leukemia (ALL), chronic lymphocytic 
leukemia (CLL), acute myeloid leukemia (AML), and 
chronic myeloid leukemia (CML) and so on. Each disease 
has its own pathological and mechanism properties and 
deserves to be investigated separately. Therefore, further 
case studies for these four kinds of important leukemia 
were implemented by removing all the known lncRNAs 
associated with investigated disease. As a result, it can 
also be observed that IRWRLDA significantly improve 
the predictive performance of LRLSLDA (See Table 3).

DISCUSSION

Biological experiments have been the main methods 
to identify disease-lncRNA associations all the time. 
However, with an increasing number of newly discovered 
lncRNAs each year, experiment-based identification 
methods encounter many bottlenecks. Fortunately, a 
vast amount of lncRNA-related biological datasets in 
various publicly available databases make computational 
prediction feasible. In this study, the model of IRWRLDA 
was developed to effectively identify potential lncRNA-
disease associations. First, lncRNA expression similarity, 
disease semantic similarity, and known lncRNA-disease 
associations were integrated to jointly decide the initial 
probability vector of the RWR. Furthermore, RWR 
would be implemented on the lncRNA similarity network 
constructed based on lncRNA functional similarity and 
lncRNA Gaussian interaction profile kernel similarity. 
IRWRLDA could be successfully applied to new diseases 
without any known associated lncRNAs. IRWRLDA 
significantly improved previous classical models in the 
validation framework of LOOCV based on two versions of 
known lncRNA-disease association datasets. In addition, 
60% of the top 10 disease-lncRNA associations based on 
the prediction results of IRWRLDA were confirmed by 
recent biological experiment literatures. 

IRWRLDA has demonstrated its reliable prediction 
performance in both cross validation and case studies 
of colon cancer and leukemia. The reliable performance 
could be largely attributed to four key factors listed as 
follows. Firstly, experimentally confirmed lncRNA-
disease associations were obtained from highly reliable 
database and used as the training samples to identify 
the novel associations between lncRNAs and diseases. 
Secondly, various types of biological datasets were 
integrated to quantify the similarity between lncRNAs or 
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diseases, including lncRNA functional similarity, lncRNA 
expression similarity, and disease semantic similarity. 
This data integration could effectively decrease the 
prediction bias. Furthermore, global network similarity 
measure was adopted in this study, whose advantage 
over local similarity measure-based models has been 
fully demonstrated in plenty of previous studies. More 
importantly, there are essential differences between 

IRWRLDA and traditional RWR. When the given disease 
is investigated, traditional RWR sets the initial probability 
vector only based on known related lncRNAs with this 
disease. Therefore, when this disease has no known related 
lncRNAs, RWR cannot work. Compared with traditional 
RWR, known lncRNA-disease associations, lncRNA 
expression similarity, and disease semantic similarity 
were combined to decide the initial probability vector 

Table 1: Performance comparisons between IRWRLDA and LRLSLDA based on the rankings of 
newly updated disease associated lncRNAs in LncRNADisease database for the Colon cancer and 
Leukemia

Disease lncRNA IRWRLDA LRLSLDA
Colon cancer CRNDE 1 32
Colon cancer KCNQ1OT1 2 6
Colon cancer MALAT1 3 3
Colon cancer HOTAIR 4 15
Colon cancer LSINCT5 52 115

Leukemia MEG3 1 4
Leukemia WT1-AS 2 110
Leukemia DLEU2 4 10
Leukemia CDKN2B-AS1 6 2
Leukemia MIR155HG 12 71
Leukemia DLEU1 18 63

Average ranks 9.55 39.18

Table 2: Performance comparisons between IRWRLDA and LRLSLDA based on the rankings of 
fourteen lncRNA-disease associations related with colon cancer and leukemia 

Disease lncRNA IRWRLDA LRLSLDA
Colon cancer CRNDE 1 35
Colon cancer MALAT1 2 7
Colon cancer HOTAIR 3 11
Colon cancer KCNQ1OT1 4 52
Colon cancer H19 6 1
Colon cancer MEG3 8 4
Colon cancer LSINCT5 21 92

Leukemia MEG3 1 4
Leukemia WT1-AS 2 49
Leukemia DLEU2 4 13
Leukemia CDKN2B-AS1 6 2
Leukemia MIR155HG 13 75
Leukemia DLEU1 18 74
Leukemia TCL6 20 102

Average ranks 7.79 37.21
Here, case studies were implemented by removing all the known lncRNAs associated with investigated disease to fully 
demonstrate that IRWRLDA could be effectively applied to human diseases without any known related lncRNAs.
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of the RWR in the model of IRWRLDA, which ensures 
that IRWRLDA could be used to predict related lncRNAs 
for the diseases without any known related lncRNAs. 
Therefore, the application scope of classical RWR was 
significantly broadened. 

However, there are also some limitations existing 
in the current version of IRWRLDA. For example, 
how to obtain integrated lncRNA similarity based on 
lncRNA functional similarity and lncRNA Gaussian 
interaction profile kernel similarity mentioned could be 
further improved. Furthermore, RWR was implemented 
on lncRNA similarity network constructed based on 
lncRNA functional similarity and lncRNA Gaussian 
interaction profile kernel similarity, while lncRNA 
expression similarity was used to decide the initial 
probability of candidate lncRNAs without known 
associations with the investigated disease. Among 
various lncRNA similarity measures, an effective 
approach need to be further developed to select 
which kinds of data sources for constructing lncRNA 
similarity network and other kinds of data sources 
to decide lncRNA initial probability. Furthermore, 
IRWRLDA may cause bias to lncRNAs with more 
known associated diseases or/and lncRNAs with 
more known interacting miRNAs or/and lncRNAs 
with miRNA interaction partners which has been 
associated with more diseases. However, heterogeneous 
biological datasets have been integrated in the model of 
IRWRLDA, which could not only effectively improve 
the prediction accuracy, but also decrease the prediction 
bias. More importantly, although IRWRLDA has 
significantly improved previous classical models, the 
room for improvement is still large. Finally, designing 
personalized computational models for disease-related 
lncRNAs identification and using personalized lncRNA 
biomarkers for different patients would deserve further 
investigation in the future [75–78]. 

MATERIALS AND METHODS

LncRNA-disease associations

Two versions of known lncRNA-disease association 
datasets (June-2012 Version and June-2014 Version) were 
downloaded from the LncRNADisease database [3], which 
was regarded as the gold standard in the cross validation 
(see Supplementary Tables S1 and S2). After removing the 
duplicate associations with different evidences, there were 
293 and 621 distinct experimentally confirmed lncRNA-
disease associations in these two datasets, respectively.

Disease semantic similarity

Disease semantic similarity matrix SS was 
constructed, where SS(i,j) in row i column j indicated 
the semantic similarity between disease d(i) and d(j), 
calculated based on their disease MeSH descriptors and 
DAGs [52]. Taking Disease A as an example, DAG(A) = 
(D(A),E(A)) could be constructed, where D(A) is a node 
set consisting of the nodes of disease A itself and its 
ancestor diseases, and E(A) is an edge set composed of 
the direct edges from parent nodes to child nodes. In the 
traditional disease semantic similarity calculation model 
[52], disease terms in the same layer would have the same 
contribution to the semantic value of disease A. Actually, 
it is inaccurate to assign the same contribution value to 
two disease terms located in the same layer when they do 
not appear in the disease DAGs with the same frequency. 
In this work, the contribution of disease term t to the 
semantic value of disease A was calculated based on the 
assumption that a more specific disease term should have 
a greater contribution to the semantic value of disease A.

( )  [      /    ]AC t log thenumber of DAGsincluding t thenumber of diseases=−  (1) 

The sematic value of disease A was obtained by summing 
up the contribution from all the disease terms in the 
DAG(A).

Table 3: Performance comparisons between IRWRLDA and LRLSLDA based on the rankings of 
seven lncRNA-disease associations related with ALL, CLL, AML, and CML

Disease lncRNA IRWRLDA LRLSLDA
AML MEG3 2 4
AML WT1-AS 35 92
CML MEG3 2 6
ALL CDKN2B-AS1 13 2
CLL DLEU2 1 14
CLL DLEU1 71 117
CLL MIR155HG 59 118

Average ranks 26.14 50.43
Here, case studies were implemented by removing all the known lncRNAs associated with investigated disease to fully 
demonstrate that IRWRLDA could be effectively applied to human diseases without any known related lncRNAs.
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( )( )
( )  At DAG A

C A C t
∈

=∑    (2)

The semantic similarity between disease A and B 
can be calculated by summing the contributions of disease 
terms shared by these two diseases DAGs: 

( ) ( ) ( ) ( ) ( )( )
( ) ( )

 
,  

A Bt D A D B
C t C t

SS A B
C A C B

∈
+

∩=
+

∑
 (3)

LncRNA expression similarity

LncRNA expression similarity matrix ES was further 
constructed, where ES(i,j) was the lincRNA expression 
similarity between lncRNAs l(i) and l(j) when they were both 
lincRNA, otherwise 0. Based on the fact that comprehensive 
expression data of lncRNA are still unavailable so far and 
lincRNA occupies a large part of all the lncRNAs, lincRNA 
expression profiles were downloaded from UCSC Genome 
Bioinformatics (http://genome.ucsc.edu/) in October, 2012, 
including 21626 lincRNAs’ expression profiles in 22 human 
tissues or cell types (Supplementary Table S3). LincRNA 
expression similarity was obtained by calculating the 
Spearman correlation coefficient between the expression 
profiles of each lincRNA pair.

LncRNA functional similarity

Based on the assumption that lncRNAs with similar 
function tend to interact with similar miRNAs and similar 
miRNAs tend to be associated with similar diseases, the 
model of LFSCM calculates lncRNA functional similarity 
by integrating disease semantic similarity, miRNA-
disease associations, and lncRNA-miRNA interactions in 
the previous study [49]. By this way, lncRNA functional 
similarity matrix FS was constructed, where FS(i,j) is the 
functional similarity between lncRNA l(i) and l(j).

LncRNA gaussian interaction profile kernel 
similarity

Based on the assumption that similar lncRNAs 
shows similar interaction and non-interaction pattern 
with the diseases [48, 79], lncRNA Gaussian interaction 
profile kernel similarity matrix KL was obtained based on 
known lncRNA–disease associations, where KL(i,j) was 
the Gaussian interaction profile kernel similarity between 
lncRNA l(i) and l(j) defined as follow:

2( ( ), ( )) ( || ( ( )) ( ( )) || )lKL l i l j exp IP l i IP l jg= − −  (4) 

( )( )' 2

1

1 / ( | | )
nl

l l
i

IP l i
nl

g g
=

= ∑   (5)

where IP(l(i)) and IP(l(j)) are the binary vectors to encode 
whether known associations exist between lncRNA l(i), 

l(j) and each disease, respectively. The parameter lg  was 
denoted to control the kernel bandwidth and obtained 
through the normalization of a new bandwidth parameter 

'
lg  by the average number of associations with diseases 

for all the lncRNAs. 

LncRNA integrated similarity

Based on lncRNA functional similarity and lncRNA 
Gaussian interaction profile kernel similarity mentioned 
above, lncRNA integrated similarity matrix LS was 
obtained as follows with trivial combinatorial coefficients, 
where LS(i,j) is the integrated similarity between lncRNA 
l(i) and l(j).

( , ) ( , ) ,
( , ) 2

( , )

FS i j KL i j i j IF
LS i j

KL i j otherwise

+ ∈= 
  (6)

where IF is the set of lncRNAs with corresponding 
lncRNA functional similarity based on the model of 
LFSCM [49]. 

IRWRLDA

Based on the assumption that lncRNAs with similar 
functions tend to be associated with similar diseases [3, 48],  
the model of IRWRLDA was developed to predict 
potential disease-lncRNA associations (see Figure 1). 
So far, classical RWR has been successfully applied to 
computational biology researches [53, 54, 59–61, 63, 64]. 
However, considering the fact that traditional RWR set 
the initial probability vector only based on known related 
lncRNAs with this disease, so it cannot be applied to the 
diseases without any known associated lncRNAs. The 
essential difference between IRWRLDA and RWR mainly 
lies in the initial probability of lncRNAs. IRWRLDA 
consists of the following three steps: (1) decide the 
initial probability of all the lncRNAs, (2) implement 
random walk on the lncRNA similarity network based 
on integrated lncRNA similarity, and (3) obtain stable 
probability of random walk and rank candidate lncRNAs 
(see Figure 1).

For any given disease d, all the known associated 
lncRNAs were set to have the initial probability of 1. For 
the other lncRNAs, the maximums of two scores defined 
below, score1 and score2, were defined as their initial 
probabilities by considering lncRNA expression similarity 
and disease semantic similarity. Firstly, the expression 
similarity between this lncRNA and lncRNAs which 
have known associations with disease d was calculated. 
Taking lncRNA l as an example, the formula was defined 
as follows:

( )
( )

score1 l ( , )
i L d

max
l iES l l
∈

=    (7)
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where ( )L d  is composed of all the lncRNAs 
having known associations with the disease d.

Then, the disease semantic similarity between 
disease d and all the diseases which have been confirmed 
to be associated with lncRNA l was further calculated 
based on the following formula.

( )
( )

score2 l ( , )
j D l

max
d jSS d d

∈
=   (8)

where ( )D l  is composed of all the diseases having 
known associations with the lncRNA l.

Finally, the initial probability of lncRNA l was 
obtained.

( ) ( ) ( )0 l max(score1 l ,score2 l )p =  (9)

where 
0p  is the initial probability vector.

In the second step of IRWRLDA, random walk was 
implemented on the lncRNA similarity network by starting 
at each lncRNA with the initial probability and transiting 
from current nodes to neighbors in the network based on 
the weight of the edge (i.e. the integrated similarity 
between these two lncRNAs). IRWRLDA allows the 
restart of random walk in each step with probability r. The 
column-normalized lncRNA integrated similarity matrix 
was denoted as W. Furthermore, the probability vector was 
defined as tp , where the i-th element is the probability of 
finding the random walk at node i at step t. Therefore, 
random walk was implemented according to the following 
iteration equation. 

( )1 01 r W rt tp p p+ = − +  (10)

After some steps, stable probability p∞  could be 
obtained when the change between tp  and 1tp +  is less 
than a given cutoff based on 1L  norm. All the candidate 
lncRNAs were ranked according to p∞  and lncRNAs 
with high scores were expected to be potentially related 
with investigated disease d.  
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