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ABSTRACT

Prostate cancer (PC) is one of the most common solid tumors in men. However, 
the molecular mechanism of PC remains unclear. Numerous studies have demonstrated 
that long noncoding RNA (lncRNA) can act as microRNA (miRNA) sponge, one type of 
competing endogenous RNAs (ceRNAs), which offers a novel viewpoint to elucidate 
the mechanisms of PC. Here, we proposed an integrative systems biology approach to 
infer the gain and loss of ceRNAs in PC. First, we re-annotated exon microarray data 
to obtain lncRNA expression profiles of PC. Second, by integrating mRNA and miRNA 
expression, as well as miRNA targets, we constructed lncRNA-miRNA-mRNA ceRNA 
networks in cancer and normal samples. The lncRNAs in these two ceRNA networks 
tended to have a longer transcript length and cover more exons than the lncRNAs 
not involved in ceRNA networks. Next, we further extracted the gain and loss ceRNA 
networks in PC. We found that the gain ceRNAs in PC participated in cell cycle, and 
the loss ceRNAs in PC were associated with metabolism. We also identified potential 
prognostic ceRNA pairs such as MALAT1-EGR2 and MEG3-AQP3. Finally, we inferred a 
novel mechanism of known drugs, such as cisplatin, for the treatment of PC through 
gain and loss ceRNA networks. The potential drugs such as 1,2,6-tri-O-galloyl-beta-
D-glucopyranose (TGGP) could modulate lncRNA-mRNA competing relationships, 
which may uncover new strategy for treating PC. In summary, we systematically 
investigated the gain and loss of ceRNAs in PC, which may prove useful for identifying 
potential biomarkers and therapeutics for PC.

INTRODUCTION

Prostate cancer (PC) is the second most frequently 
diagnosed cancer and the six leading cause of cancer death 
in males worldwide [1]. Although a decrease in the death 
rate of patients with PC largely reflects improvements in 
early detection and treatment [2, 3], its etiology remains 
obscure.

In recent years, more and more studies have 
turned their attention to non-coding RNAs (ncRNAs). 
MicroRNAs (miRNAs) are small non-coding RNA 
molecules ~ 22 nucleotides in length, which are involved 
in RNA silencing and post-transcriptional regulation of 
gene expression [4]. MiRNAs play important roles in 
multiple biological processes, including cell development, 
metabolism, proliferation, differentiation and apoptosis 

[5, 6], and their expression has been associated with many 
diseases and can be altered by environmental factors,  
kinase and small molecule inhibitors [7, 8]. Many studies 
have found that mRNA can reduce miRNA bioavailability 
by inhibiting targeted mRNA expression, and acting as 
competing endogenous RNAs (ceRNAs) [9]. For example, 
PTEN could crosstalk with other RNAs by competing for 
binding to the shared miRNAs [10]. Recently, long non-
coding RNAs (lncRNAs), endogenous transcribed RNA 
molecules longer than 200 nucleotides in length and 
lacking protein-coding capacity, have been a hotspot in 
biomedical research [11]. LncRNAs play important roles 
in tumorigenesis and progression [12]. Wang et al. have 
found that the lncRNA LOC400891 promoted tumor 
progression and was associated with a poor prognosis in 
PC [13]. Moreover, lncRNA can also act as ceRNA for 
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competing miRNA [14]. Currently, increasing evidence 
has been provided that lncRNAs as ceRNAs are involved 
in disease onset and progression. For example, lncRNA 
H19-ZEB1 ceRNA pair has been demonstrated to regulate 
cell proliferation and migration in gastric cancer [15] and 
Yu et al also have found that GAS5 acted as a ceRNA 
of miR-222 can increase p27 expression level, and thus 
inhibit liver fibrosis progression [16]. Although previous 
reports have focused on the identification of lncRNAs in 
PC, the study of lncRNA as ceRNA in PC is still in its 
infancy.

In this study, we proposed an integrative systems 
biology approach to investigate the gain and loss of 
ceRNAs in PC. By analyzing the gain and loss ceRNA 
networks, we identified the survival-associated ceRNAs, 
which may be novel prognostic markers. Furthermore, 
we also found some drugs that targeted the miRNAs 

and influenced the ceRNAs, which may be candidate 
therapeutics for the treatment of PC.

RESULTS

Cancer and normal ceRNA networks

We proposed a pipeline to gradually identify 
significant lncRNA-miRNA-mRNA triples and assembled 
these triples into a ceRNA network, where nodes 
represented lncRNAs/mRNAs and edged represented their 
ceRNA relationships (Figure 1). We applied this approach 
to the PC dataset. Based on the probe reannotation, we 
obtained lncRNA expression data from exon microarray. 
Overall, we obtained 4077 lncRNAs, 17,009 mRNAs and 
374 miRNAs from GSE21032 dataset. A previous study 
had demonstrated that highly expressed lncRNAs more 

Figure 1: Work flow to construct ceRNA networks. The process involved three steps. First, we identified the highly expressed 
lncRNAs. Second, ceRNA pairs were identified in cancer and normal samples. Third, we assembled all significant ceRNA pairs to construct 
ceRNA networks.
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likely acted as miRNA sponges [17]. Thus, we selected 
the top 200 (top 5%) highly expressed lncRNAs in PC 
and normal samples (Supplementary Table S1). There 
were 116 miRNAs that satisfied the criteria (see Methods) 
of interaction with these highly expressed lncRNAs. 
We then used the difference of mutual information and 
conditional mutual information (CMI) ΔI to evaluate 
whether one lncRNA in certain triple acted as miRNA 
sponge. Moreover, permutation test was used to calculate 
the significance level for each triple [18]. The triple with 
the significance level of P value < 0.01 was used for 
constructing ceRNA network. At last, there were 13062 
triples in cancer ceRNA network and 9374 triples in 
normal ceRNA network (Supplementary Figure S1).

Properties of lncRNAs in ceRNA networks

We explored the transcript length and exon number 
of lncRNAs in the ceRNA networks (lncRNA-IN), and 
compared these properties with those of lncRNAs not 
involved in the two ceRNA networks (lncRNA-OUT). 
Transcripts for lncRNA-IN were 1.8-fold longer than 
lncRNA-OUT (average lengths: 1683 nt for lncRNA-IN 
versus 935 nt for lncRNA-OUT; P value= 2.0×10-4; Figure 
2A). Moreover, lncRNA-IN had more exons per transcript 
than lncRNA-OUT (4 versus 3; P value= 3.5×10-3; Figure 
2B). Wang et al. found similar characteristics for lncRNAs 
in their study [19]. These results suggested that long 
transcript and a larger numbers of exon may be involved 
in the function as miRNA sponges in biological processes.

Gain and loss of ceRNA in PC

To determine the gain and loss ceRNA networks, 
we used a Cytoscape plug-in ‘ExprEssence’ to further 

filter the two ceRNA networks and identify which ceRNA 
associations were gained in the cancer network or lost in 
the cancer network leading to the disease (see Methods). 
The cancer ceRNA network filtered as gain ceRNA 
network contained 383 mRNAs, 100 miRNAs and 62 
lncRNAs (Figure 3A, Supplementary Table S2). The 
normal ceRNA network filtered as loss ceRNA network 
contained 298 mRNAs, 84 miRNAs and 18 lncRNAs 
(Figure 3B, Supplementary Table S3). The ceRNA 
association gained or lost in the ceRNA network may 
predispose individuals to develop cancer.

Gene ontology (GO) functional enrichment 
analysis was performed to identify the significantly 
enriched biological processes in the gain and loss 
ceRNA networks using DAVID [20]. Because the 
functions of most lncRNAs were poorly defined, we 
only conducted the functional annotation analysis of 
mRNAs. The significantly enriched GO terms (P<0.05) 
were shown in Figure 4A. In the gain ceRNA network, 
the functions of these genes mostly consisted of mitosis 
and mitotic cell cycle as these processes were necessary 
to PC cell proliferation [21, 22]. Interestingly, we also 
found that positive regulation of cell migration was 
closely associated with PC metastasis [23]. Thus, the 
function of the gain ceRNA network played a crucial 
role in PC. For the loss ceRNA network, these genes 
were involved in glucose metabolism, response to 
oxygen levels and the regulation of ion transport 
(Figure 4B), all functions associated with metabolic 
processes [24-26]. Furthermore, we found that 12 PC-
specific tumor suppressor genes and lncRNAs in the 
loss ceRNA network (Supplementary Table S4), and the 
proportion of PC-specific tumor suppressor genes in 
the loss ceRNA network was significantly higher than 

Figure 2: The properties of lncRNAs in ceRNA networks. A. the boxplot depicted the length of lncRNAs in the ceRNA networks 
compared with lncRNAs not involved in the ceRNA networks. B. the boxplot depicted the number of lncRNA exons in the ceRNA networks 
compared with lncRNAs not involved in the ceRNA networks. P values were determined by the Mann-Whitney U test. The ‘lncRNA-IN’ 
represented lncRNAs in the ceRNA networks, and the ‘lncRNA-OUT’ represented lncRNAs that were not in the ceRNA networks.
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all PC-specific tumor suppressor genes in all human 
genes (hypergeometric P value = 0.0177). This result 
suggested that the loss ceRNA network might play a 
key role in suppressing the occurrence and development 
of PC.

Prognostic ceRNAs in PC

For each biological network, a crucial characteristic 
was its connectivity, which reflected how often a 
node interacted with other nodes. Hub nodes whose 

Figure 3: The gain and loss ceRNAs network. A. the gain ceRNAs network; B. the loss ceRNAs network. The orange nodes 
indicated mRNAs, and the blue nodes indicated lncRNAs. Some representative nodes were named.
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connectivity was extremely high were always very crucial 
nodes [27]. In the ceRNA network, we defined the nodes 
with a degree of connectivity greater than 15 as hub nodes. 
Thus, we sorted the connectivity of each node in the gain 
ceRNA network to identify important nodes. The lncRNA 
metastasis associated lung adenocarcinoma transcript 
1 (MALAT1) was the hub node in the gain network. 
MALAT1 was a known prostate cancer gene [28]. We 
found that MALAT1 acted as ceRNA in the gain ceRNA 
network, which regulated the expression of 104 mRNAs. 
Interestingly, MALAT1 acted as miRNA sponge to adsorb 
miRNAs and weakened the inhibition of early growth 

response 2 (EGR2) expression. They were bound by miR-
93, a known prostate cancer-related miRNA [29]. We also 
found that the expression of MALAT1-EGR2 ceRNA pair 
significantly correlated with the overall survival of patients 
(Figure 5A). Therefore, we suspected that the MALAT1-
EGR2 ceRNA pair could be a candidate therapeutic target 
of PC. Moreover, the mRNA G protein-coupled receptor 
19 (GPR19) strongly expressed in PC. We found that 
lncRNA MALAT1 also acted as miRNA sponge to weaken 
the inhibition of GPR19 expression, they were bound by 
miR-30d, and the miRNA was a prostate cancer-related 
miRNA [30]. The expression of MALAT1-GPR19 pair 

Figure 4: Significantly enriched GO terms in the gain and loss ceRNA networks. A. significantly enriched GO terms in the 
gain ceRNA network. B. significantly enriched GO terms in the loss ceRNA network. The nodes of two networks indicated GO terms, and 
the edges indicated two GO terms with shared genes.

Figure 5: ceRNA pairs were significantly correlated with the overall survival of PC patients in the gain and loss ceRNA 
networks. A. gain ceRNA pair. B. loss ceRNA pair.
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significantly correlated with the overall survival of PC 
patients (Supplementary Figure S2). All of the prognostic 
ceRNA pairs are summarized in Supplementary Table S5.

Furthermore, the lncRNA MEG3 interacted with 157 
neighbors: this node had the largest degree of connectivity 
in the loss ceRNA network, interacting with 115 different 
mRNAs and 50 different miRNAs. Recently, many studies 
had found that maternally expressed 3 (MEG3) inhibited non-
small cell lung cancer (NSCLC) cell proliferation and that 
MEG3 was associated with a poor prognosis and promoted 
cell proliferation in gastric cancer [31, 32]. MEG3 was down-
regulated in many diseases, such as NSCLC, gastric cancer 
and bladder cancer [33]. However, little was known of the 
lncRNA of PC. In our study, MEG3 was an important hub 
node in the loss ceRNA network. We extracted all interactions 
between MEG3 and mRNAs, and found that the MEG3-
mRNA ceRNA pairs had prognostic value. For example, 
MEG3-AQP3 was a ceRNA pair that could significantly 
distinguish the cancer samples with different overall survival 
times (Figure 5B). MEG3 acted as the miRNA sponge 
to adsorb miRNA and weaken the inhibition of AQP3 
expression. AQP3 had been found to facilitate the transport 
of nonionic small solutes such as urea and glycerol, and the 
expression level of AQP3 in prostate was significantly lower 
in the diabetic model groups [34]. All prognostic ceRNA 
pairs in the loss network were shown in Supplementary Table 
S6. These results suggested that the structure analysis of the 
gain and loss ceRNA networks was an efficient method for 
detecting prognostic biomarkers for PC.

Potential small molecule drugs for PC treatment

In the gain and loss ceRNA networks, the perturbation 
of miRNA expression could influence the expression level 
of many lncRNAs and mRNAs. The gain and loss ceRNA 
networks significantly contained PC-related miRNAs (P 
values were smaller than 2.2×10-16) verified by HMDD [35]. 
Moreover, previous studies had found that bioactive small 
molecules could regulate miRNA expression. For example, 
SM2miR provided a fairly comprehensive repository of the 
influences of small molecules on miRNA expression [36]. 
Thus, based on the gain and loss ceRNA networks and the 
information in SM2miR, we inferred that some potential 
drugs could be used for the treatment of PC patients. In 
the gain ceRNA network, these potential drugs could up-
regulate the miRNA expression and further down-regulate 
the expression of the corresponding mRNA/lncRNA and 
help in the treatment of PC, such as paclitaxel cyclopamine 
(up-regulated miR-200c), 17beta-estradiol (E2) (up-regulated 
miR-106a/200a/200c) and TGGP (up-regulated miR-205; 
Figure 6 and Supplementary Table S7). Recent studies 
had demonstrated that paclitaxel cyclopamine and E2 had 
been used for the treatment of PC: they not only slowed 
down tumor growth but also significantly improved the 
survival time in PC [37, 38]. In addition, TGGP inhibited 
cell proliferation and increased apoptosis in liver cancer 
cells [39]. Thus, we inferred that TGGP might be a novel 

potential drug for the treatment of PC. In the loss ceRNA 
network, these potential drugs could down-regulate the 
miRNA expression and up-regulate the expression of the 
corresponding mRNA/lncRNA for the treatment of PC, such 
as cisplatin (down-regulated miR-150), estrogen (down-
regulated miR-16) and budesonide (down-regulated miR-
27a). Cisplatin is a chemotherapy drug used for treating 
various types of solid tumors, such as prostate cancer, 
ovarian cancer and bladder cancer [40-42]. In this study, 
we identified the GSMT2-MEG3 ceRNA pair based upon 
competing miR-150. A previous study had demonstrated 
that cisplatin could up-regulate the expression of GSTM2, 
but the detail mechanism was uncertain. Based on the loss 
ceRNA network, we hypothesized that cisplatin dysregulated 
the miR-150 expression and further perturbed the expression 
of ceRNA (GSMT2 and MEG3). Furthermore, Luo et al. has 
shown that MEG3 can inhibit cell proliferation and induce 
apoptosis in PC [43].

DISCUSSION

In this study, we proposed a novel computational 
approach suitable to explore the potential role of lncRNAs as 
miRNA sponges for preserving homeostasis and preventing 
disease. We applied our method to identify two ceRNA 
networks in cancer and normal samples. We then removed the 
common lncRNA-mRNA pairs that appeared in both ceRNA 
networks and determined the gain and loss ceRNA networks. 
Furthermore, we found that some lncRNAs acting as miRNA 
sponges led to different physiological and pathological 
states in the two ceRNA networks. These lncRNAs could 
help provide biological insight in PC. The lncRNAs closely 
associated with PC may be potential therapeutic targets or 
molecular markers. Previous studies have shown that ceRNA 
expression level could be associated with patients’ survival. 
For example, lncRNA ROR, acted as a ceRNA of miR-145, 
could regulate NANOG expression level and was associated 
with poor survival of pancreatic cancer [44]. Moreover, 
the lncRNA HOTAIR, acted as a ceRNA of miR-331-3p, 
could regulate HER2 expression level and was associated 
with poor prognosis of gastric cancer [45]. We found that 
lncRNA MALAT1 in the gain ceRNA network was a hub 
node, and this lncRNA was a known PC-related lncRNA 
that could up-regulate EGR2 expression in PC patients, 
a key step in the pathogenesis of PC. We also identified 
an lncRNA MEG3 in the loss ceRNA network interacting 
with AQP3 and SYT1 to maintain homeostasis. MEG3 is 
highly expressed in healthy individuals, but its expression 
is lower in gastric cancer and NSCLC patients [46]. The 
expression of ceRNA pairs including these lncRNAs was 
significantly correlated with the overall survival of patients. 
More interestingly, we found that these patients showed a 
significant survival difference after 5 years, which might be 
due to the metastasis of PC. At last, we identified some drugs 
for treating PC by perturbing ceRNA pairs in gain and loss 
ceRNA networks. We further performed integrated analysis 
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on CCEL, GDSC and TANRIC data for validating our 
predictions. Based on these data, we explored the relationship 
between the expression level of lncRNA/mRNA in ceRNA 
pair and chemoresponse of drug. Finally, we identified three 
drugs whose chemoresponse associated with the expression 
level of ceRNA pair, including Cisplatin, Cyclopamine and 
Paclitaxel. The ceRNA targeted by miRNA and the miRNA 
expression could be altered by small molecules, thus these 
small molecules might be used for cancer treatments. Small 
molecule drugs had many advantages, such as increased 
likelihood to be absorbed, and oral administration. Small 
molecule targeted therapy was one of the new approaches for 
cancer treatment. In this study, we investigated the potential 
of small molecule drugs to regulate two ceRNA networks.

We are only beginning to understand the mechanism 
by which lncRNAs perform their regulatory functions 
in ceRNA networks. Although our study has provided 
biological insights into the gain and loss ceRNA networks 
in PC, additional experiments will be required to further 
validate our findings. In addition, this computational 
framework can be easily extended to other cancer types 
or diseases, if the samples are simultaneously measured 
the mRNA, lncRNA and miRNA expression levels. We 
believed that with the increasing volume of multi-omics 
data, the accuracy and stability of our approach would be 
improved.

MATERIALS AND METHODS

Data collection and processing

We downloaded the prostate cancer gene and 
miRNA expression profiles (GSE21032) [47] from the 
Gene Expression Omnibus (GEO). The samples in which 
the expression level of both genes and miRNAs were 
measured were retained for the following analysis; these 
included 111 disease samples and 28 normal samples. All 
of the expression profiles were log2 transformed.

We used Du et al. [48] to re-annotate the probes from 
exon microarray and obtained the lncRNAs and mRNAs 
with at least four probes uniquely mapped to them. As a 
result, 4077 lncRNA genes had at least four probes covering 
their annotated exons, and the probe sets were mapped to 
Ensembl GeneIDs based on the Ensembl database (Homo 
sapiens GRCh38, release 81). We obtained the potential 
targeted relationships among lncRNAs, genes and miRNAs 
from the miRcode database (miRcode 11) [49] which 
provided ‘whole transcriptome’ human microRNA target 
predictions based on the comprehensive GENCODE gene 
annotation. As a result, we obtained 17,170 mRNAs, 374 
miRNAs and 4,077 lncRNAs for this study. Additionally, 
we obtained 564 PC-specific tumor suppressor genes and 
lncRNAs from TSGene 2.0 database [50].

Figure 6: Potential small molecule drugs for PC treatment. The orange nodes indicated potential PC treatment drugs, and the red 
nodes indicated FDA-approved drugs for PC treatment. Red lines represented the drug up-regulated the expression of miRNAs, and the 
green lines represented the drug down-regulated the expression of miRNAs.
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Identification of highly expressed lncRNAs in PC

The high expression of oncogenes and low 
expression of tumor suppressor genes are important factors 
in cancer development. Recently, some studies have 
identified that lncRNAs can crosstalk with coding RNAs 
by competing for binding to shared microRNAs [51]. 
The high expression level of lncRNAs acting as miRNA 
sponges can weaken the inhibitory efficacy of miRNAs on 
gene expression [52]. To identify the lncRNAs with high 
level of expression, we computed the mean expression 
value of each lncRNA in cancer and normal samples and 
sorted the lncRNAs in descending order based on the 
mean expression value. Finally, we defined the top five 
percent lncRNAs as the highly expressed lncRNAs in 
cancer and normal samples.

Identification of significant lncRNA-miRNA-
mRNA triples

For a given pair of lncRNA-mRNA, A and B, there 
were NA miRNAs targeting A and NB miRNAs targeting B. 
Moreover, A and B were co-regulated by n miRNAs. If 

n
N N n

0.7
A B+ −

≥ , this lncRNA-mRNA pair may be a potential 
ceRNA. There were 15,795,960 triads of 

lncRNAs, mRNAs and miRNAs satisfying this criterion. 
We further filtered these triples based upon the high level 
of expression of lncRNAs in cancer and normal samples. 
If the lncRNA of a given triple was a highly expressed 
lncRNA, the triple was included in the study. At last, we 
used the mutual information and CMI to calculate the 
statistical significance of triples according to

I I miR mRNA lncRNA I miR mRNA [ ; | ] [ ; ]= −

where I[miR;mRNA] was the mutual information between 
miRNA and mRNA, I[miR;mRNA|lncRNA] was the 
mutual information between miRNA and mRNA under 
lncRNA condition. The higher ΔI value indicated that the 
lncRNA acted as a miRNA sponge with a higher efficacy 
on miRNA and gene interactions [18].

When the calculated three tags were consistent 
with the data of the sample, we obtained the real lncRNA 
mediating the ΔI values, permutated the samples of 
lncRNA tags 1000 times, and compared the real ΔI value 
with 1000 times random ΔI values to test the stability 
of the algorithm. We selected the mRNA, miRNA and 
lncRNA triples with P value <0.01 in the normal and 
cancer datasets by the ΔI method, and eventually found 
triples that complied with all of the above conditions in 
cancer and normal samples.

Determination of the cancer and normal ceRNA 
network

Finally, the lncRNA-mRNA interaction network was 
determined for cancer and normal samples by assembling 

all significant triples identified above. A node represented 
an lncRNA or mRNA, and two nodes were interconnected 
if they significantly competed for miRNAs. Each ceRNA 
represents an lncRNA-mRNA pair, and each ceRNA pair 
may compete for several different miRNAs.

Extraction of gain and loss ceRNA network

To determine the specific gain and loss relationship 
in cancer and normal networks, the combined interaction 
datasets were loaded into and visualized with the 
Cytoscape v2.8.3 [53]. Cytoscape was used to analyze 
the networks, and the ExprEssence plugin [54] was used 
to filter the interactions of the network. We condensed 
the network, highlighting those links across which the 
largest changes could be observed. By interactive use 
of ExprEssence, we only retained the 5% interactions 
that showed the largest differences in cancer and normal 
samples. Specifically, in the cancer network, we kept the 
edges in which the lncRNA and gene expression was 
higher in cancer than in normal samples; for the normal 
network, we just chose the opposite. We determined 
specific normal and cancer networks in which the 
lncRNA and mRNA interaction was specific in the 
cancer samples or in the normal samples. Nodes in the 
networks represented mRNAs and lncRNA, and the 
edges represented miRNAs mediating their interactions. 
lncRNAs acting as potential miRNA sponge were required 
to meet three conditions: i) lncRNA high expression, ii) 
sharing binding sites for miRNAs and iii) a statistically 
significant association.

Survival analysis

In this study, we constructed two ceRNA networks 
for PC samples and normal prostate samples, and 
identified many loss and gain relationships in these 
ceRNA networks. We next investigated whether the loss 
and gain could distinguish PC patients with a good or 
poor outcome. Thus, we first obtained one PC dataset 
(GSE21032) from GEO database: this dataset had 111 
patients with their mRNA and lncRNA expression and 
clinical information. Second, we used the K-means 
method (K=2) to cluster the 111 patients into two groups 
based on mRNA and lncRNA expression. Finally, the 
Kaplan–Meier curve and the log-rank test were used to 
evaluate the difference of overall survival time between 
the two patient groups.

ACKNOWLEDGMENTS AND FUNDING

This work was supported by the Foundation for The 
National Natural Science Foundation of China [61571169] 
and the Natural Science Foundation of Heilongjiang 
Province of China [QC2014C017], and the University 
Nursing Program for Young Scholars with Creative 
Talents in Heilongjiang Province [UNPYSCT-2015037].

D −

−



Oncotarget57236www.impactjournals.com/oncotarget

CONFLICTS OF INTEREST

The authors have declared that they have no 
competing interests.

Author contribution

WJ led the project and oversaw the analysis. DML and 
XXY designed and performed the research and wrote the 
manuscript. SYW, EYD and LMJ collected and assembled 
the data. JW, QY, FY and SHZ performed data analysis. All 
authors have read and approved the final manuscript.

REFERENCES

1. Siegel R, Naishadham D and Jemal A. Cancer statistics, 
2013. CA: a cancer journal for clinicians. 2013; 63:11-30.

2. Edwards BK, Ward E, Kohler BA, Eheman C, Zauber AG, 
Anderson RN, Jemal A, Schymura MJ, Lansdorp-Vogelaar 
I, Seeff LC, van Ballegooijen M, Goede SL and Ries LA. 
Annual report to the nation on the status of cancer, 1975-
2006, featuring colorectal cancer trends and impact of 
interventions (risk factors, screening, and treatment) to 
reduce future rates. Cancer. 2010; 116:544-573.

3. Etzioni R, Tsodikov A, Mariotto A, Szabo A, Falcon S, 
Wegelin J, DiTommaso D, Karnofski K, Gulati R, Penson 
DF and Feuer E. Quantifying the role of PSA screening in 
the US prostate cancer mortality decline. Cancer causes & 
control : CCC. 2008; 19:175-181.

4. Ambros V. The functions of animal microRNAs. Nature. 
2004; 431:350-355.

5. Hwang H and Mendell J. MicroRNAs in cell proliferation, 
cell death, and tumorigenesis. British journal of cancer. 
2006; 94:776-780.

6. Chen Y and Stallings RL. Differential patterns of 
microRNA expression in neuroblastoma are correlated with 
prognosis, differentiation, and apoptosis. Cancer research. 
2007; 67:976-983.

7. Li J, Wu Z, Cheng F, Li W, Liu G and Tang Y. 
Computational prediction of microRNA networks 
incorporating environmental toxicity and disease etiology. 
Scientific reports. 2014; 4.

8. Cheng F, Jia P, Wang Q and Zhao Z. Quantitative 
network mapping of the human kinome interactome 
reveals new clues for rational kinase inhibitor discovery 
and individualized cancer therapy. Oncotarget. 2014; 
5:3697-3710.

9. Tay Y, Rinn J and Pandolfi PP. The multilayered complexity 
of ceRNA crosstalk and competition. Nature. 2014; 
505:344-352.

10. Tay Y, Kats L, Salmena L, Weiss D, Tan SM, Ala U, 
Karreth F, Poliseno L, Provero P, Di Cunto F, Lieberman J, 
Rigoutsos I and Pandolfi PP. Coding-independent regulation 
of the tumor suppressor PTEN by competing endogenous 
mRNAs. Cell. 2011; 147:344-357.

11. Mercer TR, Dinger ME and Mattick JS. Long non-coding 
RNAs: insights into functions. Nature reviews Genetics. 
2009; 10:155-159.

12. Wilusz JE, Sunwoo H and Spector DL. Long noncoding 
RNAs: functional surprises from the RNA world. Genes & 
development. 2009; 23:1494-1504.

13. Wang J, Cheng G, Li X, Pan Y, Qin C, Yang H, Hua L 
and Wang Z. Overexpression of long non-coding RNA 
LOC400891 promotes tumor progression and poor 
prognosis in prostate cancer. Tumour biology : the journal 
of the International Society for Oncodevelopmental Biology 
and Medicine. 2016.

14. Salmena L, Poliseno L, Tay Y, Kats L and Pandolfi PP. 
A ceRNA hypothesis: the Rosetta Stone of a hidden RNA 
language? Cell. 2011; 146:353-358.

15. Zhou X, Ye F, Yin C, Zhuang Y, Yue G and Zhang G. 
The Interaction Between MiR-141 and lncRNA-H19 in 
Regulating Cell Proliferation and Migration in Gastric 
Cancer. Cellular physiology and biochemistry : international 
journal of experimental cellular physiology, biochemistry, 
and pharmacology. 2015; 36:1440-1452.

16. Yu F, Zheng J, Mao Y, Dong P, Lu Z, Li G, Guo C, Liu Z 
and Fan X. Long Non-coding RNA Growth Arrest-specific 
Transcript 5 (GAS5) Inhibits Liver Fibrogenesis through a 
Mechanism of Competing Endogenous RNA. The Journal 
of biological chemistry. 2015; 290:28286-28298.

17. Pasquinelli AE. MicroRNAs and their targets: recognition, 
regulation and an emerging reciprocal relationship. Nat Rev 
Genet. 2012; 13:271-282.

18. Wang K, Nemenman I, Banerjee N, Margolin AA and 
Califano A. (2006). Genome-wide discovery of modulators 
of transcriptional interactions in human B lymphocytes. 
Research in Computational Molecular Biology: Springer, 
pp. 348-362.

19. Wang P, Ning S, Zhang Y, Li R, Ye J, Zhao Z, Zhi H, Wang 
T, Guo Z and Li X. Identification of lncRNA-associated 
competing triplets reveals global patterns and prognostic 
markers for cancer. Nucleic acids research. 2015; 
43:3478-3489.

20. Huang da W, Sherman BT and Lempicki RA. Systematic 
and integrative analysis of large gene lists using DAVID 
bioinformatics resources. Nature protocols. 2009; 4:44-57.

21. Kaddour-Djebbar I, Choudhary V, Brooks C, Ghazaly 
T, Lakshmikanthan V, Dong Z and Kumar MV. Specific 
mitochondrial calcium overload induces mitochondrial 
fission in prostate cancer cells. International journal of 
oncology. 2010; 36:1437-1444.

22. Bruchovsky N, Lesser B, Van Doorn E and Craven S. 
Hormonal effects on cell proliferation in rat prostate. 
Vitamins and hormones. 1975; 33:61-102.

23. Bao L, Loda M, Janmey PA, Stewart R, Anand-Apte B and 
Zetter BR. Thymosin beta 15: a novel regulator of tumor 
cell motility upregulated in metastatic prostate cancer. 
Nature medicine. 1996; 2:1322-1328.



Oncotarget57237www.impactjournals.com/oncotarget

24. Kavanagh JP. Sodium, potassium, calcium, magnesium, 
zinc, citrate and chloride content of human prostatic and 
seminal fluid. Journal of reproduction and fertility. 1985; 
75:35-41.

25. Donald CD, Cooper CR, Harris-Hooker S, Emmett N, 
Scanlon M and Cooke DB, 3rd. Cytoskeletal organization 
and cell motility correlates with metastatic potential and 
state of differentiation in prostate cancer. Cellular and 
molecular biology. 2001; 47:1033-1038.

26. Liu Y, Zuckier LS and Ghesani NV. Dominant uptake of 
fatty acid over glucose by prostate cells: a potential new 
diagnostic and therapeutic approach. Anticancer research. 
2010; 30:369-374.

27. Zhang H, Zhang J, Zhou C, Small M and Wang B. Hub 
nodes inhibit the outbreak of epidemic under voluntary 
vaccination. New Journal of Physics. 2010; 12:023015.

28. Qi P and Du X. The long non-coding RNAs, a new cancer 
diagnostic and therapeutic gold mine. Modern pathology 
: an official journal of the United States and Canadian 
Academy of Pathology, Inc. 2013; 26:155-165.

29. Chen Q, Qin R, Fang Y and Li H. Berberine sensitizes 
human ovarian cancer cells to cisplatin through mir-93/
pten/akt signaling pathway. Cellular Physiology and 
Biochemistry. 2015; 36:956-965.

30. Xie L, Wang T, Yu S, Chen X, Wang L, Qian X, Yu L, Ding 
Y, Zhang C and Liu B. Cell-free miR-24 and miR-30d, 
potential diagnostic biomarkers in malignant effusions. 
Clinical biochemistry. 2011; 44:216-220.

31. Lu KH, Li W, Liu XH, Sun M, Zhang ML, Wu WQ, Xie 
WP and Hou YY. Long non-coding RNA MEG3 inhibits 
NSCLC cells proliferation and induces apoptosis by 
affecting p53 expression. BMC cancer. 2013; 13:461.

32. Sun M, Xia R, Jin F, Xu T, Liu Z, De W and Liu X. 
Downregulated long noncoding RNA MEG3 is associated 
with poor prognosis and promotes cell proliferation 
in gastric cancer. Tumour biology : the journal of the 
International Society for Oncodevelopmental Biology and 
Medicine. 2014; 35:1065-1073.

33. Ying L, Huang Y, Chen H, Wang Y, Xia L, Chen Y, Liu 
Y and Qiu F. Downregulated MEG3 activates autophagy 
and increases cell proliferation in bladder cancer. Molecular 
bioSystems. 2013; 9:407-411.

34. Pei L, Yang G, Jiang J, Jiang R, Deng Q, Chen B and 
Gan X. Expression of aquaporins in prostate and seminal 
vesicles of diabetic rats. The journal of sexual medicine. 
2013; 10:2975-2985.

35. Li Y, Qiu C, Tu J, Geng B, Yang J, Jiang T and Cui Q. 
HMDD v2.0: a database for experimentally supported 
human microRNA and disease associations. Nucleic acids 
research. 2014; 42:D1070-1074.

36. Liu X, Wang S, Meng F, Wang J, Zhang Y, Dai E, Yu X, Li 
X and Jiang W. SM2miR: a database of the experimentally 
validated small molecules’ effects on microRNA expression. 
Bioinformatics. 2013; 29:409-411.

37. Singh S, Chitkara D, Mehrazin R, Behrman SW, Wake RW 
and Mahato RI. Chemoresistance in prostate cancer cells is 
regulated by miRNAs and Hedgehog pathway. PloS one. 
2012; 7:e40021.

38. Corey E, Quinn JE, Emond MJ, Buhler KR, Brown LG 
and Vessella RL. Inhibition of androgen-independent 
growth of prostate cancer xenografts by 17beta-estradiol. 
Clinical cancer research : an official journal of the American 
Association for Cancer Research. 2002; 8:1003-1007.

39. Ai RT, Wu SY, Wen XY, Xu W, Lv L and Wu SG. [A new 
natural polyphenol BJA32531 inhibited the proliferation 
and regulated miRNA expression in human HepG2 
hepatocarcinoma cells]. Zhong yao cai = Zhongyaocai 
= Journal of Chinese medicinal materials. 2011; 
34:1734-1740.

40. Dhar S, Gu FX, Langer R, Farokhzad OC and Lippard 
SJ. Targeted delivery of cisplatin to prostate cancer cells 
by aptamer functionalized Pt (IV) prodrug-PLGA–PEG 
nanoparticles. Proceedings of the National Academy of 
Sciences. 2008; 105:17356-17361.

41. Armstrong DK, Bundy B, Wenzel L, Huang HQ, Baergen 
R, Lele S, Copeland LJ, Walker JL and Burger RA. 
Intraperitoneal cisplatin and paclitaxel in ovarian cancer. 
New England Journal of Medicine. 2006; 354:34-43.

42. Shipley WU, Prout GR, Einstein AB, Coombs LJ, Wajsman 
Z, Soloway MS, Englander L, Barton BA and Hafermann 
MD. Treatment of invasive bladder cancer by cisplatin 
and radiation in patients unsuited for surgery. Jama. 1987; 
258:931-935.

43. Luo G, Wang M, Wu X, Tao D, Xiao X, Wang L, Min 
F, Zeng F and Jiang G. Long Non-Coding RNA MEG3 
Inhibits Cell Proliferation and Induces Apoptosis in Prostate 
Cancer. Cellular physiology and biochemistry : international 
journal of experimental cellular physiology, biochemistry, 
and pharmacology. 2015; 37:2209-2220.

44. Gao S, Wang P, Hua Y, Xi H, Meng Z, Liu T, Chen 
Z and Liu L. ROR functions as a ceRNA to regulate 
Nanog expression by sponging miR-145 and predicts 
poor prognosis in pancreatic cancer. Oncotarget. 2016; 
7:1608-1618.

45. Liu XH, Sun M, Nie FQ, Ge YB, Zhang EB, Yin DD, Kong 
R, Xia R, Lu KH, Li JH, De W, Wang KM and Wang ZX. 
Lnc RNA HOTAIR functions as a competing endogenous 
RNA to regulate HER2 expression by sponging miR-331-3p 
in gastric cancer. Molecular cancer. 2014; 13:92.

46. Shi X, Sun M, Liu H, Yao Y, Kong R, Chen F and Song 
Y. A critical role for the long non-coding RNA GAS5 in 
proliferation and apoptosis in non-small-cell lung cancer. 
Molecular carcinogenesis. 2013.

47. Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao 
Y, Carver BS, Arora VK, Kaushik P, Cerami E, Reva B, 
Antipin Y, Mitsiades N, Landers T, Dolgalev I, Major JE, 
Wilson M, et al. Integrative genomic profiling of human 
prostate cancer. Cancer cell. 2010; 18:11-22.



Oncotarget57238www.impactjournals.com/oncotarget

48. Du Z, Fei T, Verhaak RG, Su Z, Zhang Y, Brown M, Chen Y 
and Liu XS. Integrative genomic analyses reveal clinically 
relevant long noncoding RNAs in human cancer. Nature 
structural & molecular biology. 2013; 20:908-913.

49. Jeggari A, Marks DS and Larsson E. miRcode: a map of 
putative microRNA target sites in the long non-coding 
transcriptome. Bioinformatics. 2012; 28:2062-2063.

50. Zhao M, Kim P, Mitra R, Zhao J and Zhao Z. TSGene 
2.0: an updated literature-based knowledgebase for tumor 
suppressor genes. Nucleic acids research. 2015:gkv1268.

51. Paci P, Colombo T and Farina L. Computational analysis 
identifies a sponge interaction network between long non-
coding RNAs and messenger RNAs in human breast cancer. 
BMC systems biology. 2014; 8:83.

52. Xia T, Liao Q, Jiang X, Shao Y, Xiao B, Xi Y and Guo J. 
Long noncoding RNA associated-competing endogenous 
RNAs in gastric cancer. Scientific reports. 2014; 4:6088.

53. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, 
Ramage D, Amin N, Schwikowski B and Ideker T. 
Cytoscape: a software environment for integrated models 
of biomolecular interaction networks. Genome research. 
2003; 13:2498-2504.

54. Warsow G, Greber B, Falk SS, Harder C, Siatkowski M, 
Schordan S, Som A, Endlich N, Scholer H, Repsilber D, 
Endlich K and Fuellen G. ExprEssence--revealing the 
essence of differential experimental data in the context of 
an interaction/regulation net-work. BMC systems biology. 
2010; 4:164.


