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INTRODUCTION

Human genomic aberrations have been proved 
to be causal factors of many diseases. Among the most 
widely studied variations, gene fusions have been of 
great interest due to their important role in human cancer. 
It has been estimated that 20% of human cancer are 
caused by gene fusions [1]. There are strong evidence 
showing that gene fusions drive the initial step and the 
development of cancer, and thus are potential prognostic 
tools or therapeutic targets in anti-cancer treatment. 

A convincing example is fusion gene BCR-ABL, which 
can be translated to an abnormal fusion protein-tyrosine 
kinase and drive the development of chronic myelogenous 
leukemia (CML). And the drug Glivec which target 
BCR- ABL chimeric protein has been has been proved 
very successful in the treatment of CML [2, 3]. Nowadays, 
several fundamental databases can provide fusion events 
involved in cancer. To our best knowledge, the following 
databases TICdb [4], dbCrid [5], ChimerDB 2.0 [6], 
Mitelman [1], and ChiTaRS [7] contain fusion events of 
human cancers.
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AbsTRACT
While gene fusions have been increasingly detected by next-generation 

sequencing (NGS) technologies based methods in human cancers, these methods 
have limitations in identifying driver fusions. In addition, the existing methods to 
identify driver gene fusions ignored the specificity among different cancers or only 
considered their local rather than global topology features in networks. Here, we 
proposed a novel network-based method, called RWCFusion, to identify phenotype-
specific cancer driver gene fusions. To evaluate its performance, we used leave-one-
out cross-validation in 35 cancers and achieved a high AUC value 0.925 for overall 
cancers and an average 0.929 for signal cancer. Furthermore, we classified 35 cancers 
into two classes: haematological and solid, of which the haematological got a highly 
AUC which is up to 0.968. Finally, we applied RWCFusion to breast cancer and found 
that top 13 gene fusions, such as BCAS3-BCAS4, NOTCH-NUP214, MED13-BCAS3 
and CARM-SMARCA4, have been previously proved to be drivers for breast cancer. 
Additionally, 8 among the top 10 of the remaining candidate gene fusions, such as 
SULF2-ZNF217, MED1-ACSF2, and ACACA-STAC2, were inferred to be potential driver 
gene fusions of breast cancer by us.
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The advances in next-generation sequencing (NGS) 
technologies help to detect gene fusions. Several tools 
based on next-generation sequencing such as Tophat-
Fusion [8] and deFuse [9] are able to effectively identify 
novel fusion transcripts through aligning pair-end RNA-
seq reads. These methods accelerated the discovery 
of tens to hundreds of gene fusions in various cancers, 
including solid tumors and hematological disorders [10]. 
However, recent studies demonstrated that minority of the 
gene fusions detected by next-generation based tools are 
important driver fusions for cancer development and most 
were just nonspecific passengers [1]. In a word, these next-
generation sequencing based methods help to detect gene 
fusions in cancer tissues, but they failed to identify driver 
gene fusions.

Thus, developing a method to identify driver gene 
fusions was urgent. Until now, only a few attempts have 
been done to do this. One well established approach named 
Consig to distinguish driver from passenger gene fusions 
was proposed by Wang et al. It nominates driver fusions 
by the direct association of partner genes with identified 
fusion concept signatures, generated through enrichment 
of established fusions from the Mitelman database against 
all concepts compiled from molecular interactions, 
functional annotations and pathways [11]. This method 
ignored the specificity of phenotype when deducing fusion 
concept signatures. In addition, it is a single gene-based 
approach, only accounting for the impact of a single gene 
fusion. Protein-protein interaction network is a valuable 
resource for prioritization candidate gene fusions, because 
genes related to a specific or similar disease phenotype 
tend to be located in a specific neighborhood [12]. 
A computational approach named fusion centrality toward 
prioritization of candidate gene fusions that study network 
properties have been developed by Wu et al. The authors 
hypothesized that the partner genes of the driver fusions 
were prone to present as hubs in a network [13]. Although 
providing a useful tool to identify driver gene fusions, this 
approach also failed to account for the specificity among 
different cancers when using protein-protein interaction 
network. This means that for different cancers, a certain 
gene fusion candidate would get a same score by fusion 
centrality. What’s more, because it only considered 
the impact of direct neighbors, it only explain the local 
topological property of network, ignoring global features.

In this work, we proposed a phenotype specific 
computational method called RWCFusion based gene 
interaction network to identify the driver gene fusions. 
First, we constructed a weighted gene interaction network 
from protein-protein interaction (PPI) network in STRING 
database [14] and mapped the high-risk cancer gene 
fusions into the network. Then, we developed a novel 
fusion pair random walk scoring method in the global 
network to identify phenotype-specific driver gene fusions 
with high-risk fusion genes acting as seed nodes. This 
strategy could exploit the global topology information of 

the network and identify phenotype-specific driver gene 
fusions according to the similarity between candidate 
fusions and seeds in the network. We evaluated the 
performance of RWCFusion on 483 candidate gene fusions 
corresponding to 35 cancer phenotypes by leave-one-out 
cross-validation and it achieved a high overall AUC value 
of 0.925 and an average of 0.929, which was much higher 
than other existing methods. Furthermore, we divided the 
35 cancers into haematological and solid classes. Results 
showed they both had a good performance, especially the 
haematological, which got an AUC value of 0.968. Finally, 
we applied RWCFusion to breast cancer data to identify 
driver fusion genes. There were 13 fusion pairs in the top 
having been proved to be high-risk for breast cancer, for 
example, BCAS3-BCAS4, NOTCH-NUP214, MED13-
BCAS3 and CARM-SMARCA4. Additionally, 8 among 
the top 10 of the remaining candidate gene fusions, such 
as SULF2-ZNF217, MED1-ACSF2, and ACACA-STAC2, 
were inferred to be potential driver gene fusions of breast 
cancer.

REsULTs

Performance of the RWCFusion

To evaluate and execute RWCFusion, we need a 
basic gene interaction network and seed gene fusions at 
first. The gene interaction network we constructed in this 
article contains 16785 genes and 1515370 edges. And the 
seed gene fusions contains 483 high risk gene fusions 
altogether, corresponding to 35 phenotypes.

To evaluate the performance of RWCFusion, we 
used leave-one-out cross-validation for every high-
risk gene fusion and plotted ROC for each of the 35 
cancers, haematological, solid cancer and overall cancers 
separately. The ratio of all high risk gene fusions (positive) 
to total virtual background fusion pairs (virtually negative) 
is 3.4e-06 while the ratio of all involved high risk partners 
to all genes in the network is 3.0 e-02. Taking this into 
account, we balanced the test set with 1 positive gene 
fusion and 99 negative gene fusion in each test case of 
leave-one-out cross-validation [15].

Using RWCFusion, we got a high overall AUC 
value of 0.925 (Figure 1A), and a better one of 0.968 for 
haematological cancer (Figure 1B). For the other class 
solid, the AUC value is 0.867 (Figure 1C). And for 35 single 
cancer phenotype, 28 of them, such as haematological 
cancer CHRONIC MYELOID, MYELODYSPLASTIC 
SYNDROME and solid cancer THYROID CARCINOMA, 
LEIOMYOMA, got an AUC value higher than or equal to 
0.913 (Table 1). The mean AUC value for 35 cancers is 
0.929. As is shown, haematological cancer got a high AUC 
value than solid cancer. We all know that genes in blood 
are easier to be detected than in solid tissues, which might 
indicate that Tophat-Fusion would got a better accuracy 
with haematological cancer RNA-seq data than solid 
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Table 1: AUC performance of RWCFusion and existed method fusion centrality for single 35 single, 
haematological, solid and overall phenotype
OMIM ID Disease name/class AUC value

RWCFusion Centrality RWCFusion-
Centrality

159595 MYELOPROLIFERATIVE SYNDROME,TRANSIENT 0.997 0.970 0.027
613024 FOLLICULAR LYMPHOMA, SUSCEPTIBILITY TO, 1; FL1 0.997 0.969 0.028
613065 LEUKEMIA, ACUTE LYMPHOBLASTIC; ALL 0.949 0.873 0.076
113970 BURKITT LYMPHOMA; BL 0.997 0.997 0
114480 BREAST CANCER 0.784 0.700 0.084
131440 MYELOPROLIFERATIVE DISORDER, CHRONIC, WITH 

EOSINOPHILIA
0.997 0.975 0.022

137800 GLIOMA SUSCEPTIBILITY 1; GLM1 0.759 0.763 –0.004
144700 RENAL CELL CARCINOMA, NONPAPILLARY; RCC 0.978 0.746 0.232
150699 LEIOMYOMA, UTERINE; UL 0.996 0.690 0.306
151400 LEUKEMIA,CHRONIC LYMPHOCYTIC; CLL 0.995 0.992 0.003
155601 MELANOMA,CUTANEOUS MALIGNANT, 

SUSCEPTIBILITY TO, 2; CMM2
0.703 0.883 –0.18

167000 OVARIAN CANCER 0.624 0.598 0.026
176807 PROSTATE CANCER 0.914 0.794 0.12
181030 SALIVARY GLAND ADENOMA, PLEOMORPHIC 0.993 0.838 0.155
188550 THYROID CARCINOMA, PAPILLARY 0.995 0.954 0.041
211980 LUNG CANCER 0.914 0.843 0.071
215300 CHONDROSARCOMA 0.964 0.781 0.183
236000 LYMPHOMA, HODGKIN 0.657 0.667 –0.01
259500 OSTEOGENIC SARCOMA 0.73 0.707 0.023
268210 RHABDOMYOSARCOMA 1; RMS1 0.997 0.959 0.038
268220 RHABDOMYOSARCOMA 2;RMS2 1 0.968 0.032
300854 RENAL CELL CARCINOMA, Xp11-ASSOCIATED; RCCX1 1 0.731 0.269
601626 LEUKEMIA, ACUTE MYELOID; AML 0.98 0.903 0.077
605027 LYMPHOMA, NON-HODGKIN, FAMILIAL 0.999 0.923 0.076
607685 HYPEREOSINOPHILIC SYNDROME, IDIOPATHIC; HES 0.999 0.971 0.028
607785 JUVENILE MYELOMONOCYTIC LEUKEMIA; JMML 0.994 0.981 0.013
608232 LEUKEMIA, CHRONIC MYELOID; CML 0.971 0.933 0.038
612160 HISTIOCYTOMA, ANGIOMATOID FIBROUS 1 0.995 0.005
612219 EWING SARCOMA; ES 1 0.900 0.1
612237 CHONDROSARCOMA, EXTRASKELETAL MYXOID 1 0.768 0.232
612376 ACUTE PROMYELOCYTIC LEUKEMIA; APL 0.996 0.954 0.042
613488 MYXOID LIPOSARCOMA 0.936 0.858 0.078
614286 MYELODYSPLASTIC SYNDROME; MDS 0.979 0.893 0.086
254700 MYELOPROLIFERATIVE DISEASE, AUTOSOMAL 

RECESSIVE
0.735 0.929 –0.194

300813 SARCOMA, SYNOVIAL 0.996 0.427 0.569
Solid 0.968 0.903 0.065
Haematological 0.867 0.77 0.097
Overall 0.925 0.845 0.080
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Figure 1: The performance of RWCFusion evaluated by leave-one-out cross validation. (A, b and C) showed the AUC 
results for overall cancers, haematological and solid classes respectively based on leave-one-out cross validation. (D, E and F) showed the 
number of priviously known high-risk gene fusions identified by RWCFusion.
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when obtaining candidate gene fusions. And this might 
affect the performance of RWCfusion to identify drivers 
in candidate gene fusions in cancers. Altogether, the AUC 
results showed that RWCFusion performed all well for 
overall cancers, haematological and solid caner classes, 
and single cancer.

After plotting ROC curve for overall cancers, we 
selected a best cutoff according to positive likelihood 
ratio (PLR), that is, the ratio of true positive ratio to 
false positive ratio. To get the best cutoff, the maximum 
PLR was calculated. And the cutoff correspond to the 
maximum PLR is taken as the best cutoff [16]. When using 
this best cutoff (0.0002125) to the test gene fusion set of 
35 cancers, we identified 269(over 50%) out of the 483 
previously known high-risk cancer gene fusions Figure 1D, 
Supplementary Table S1, including 189 out of 287 for 
haematological Figure 1D and 1E, Supplementary Table S1 
such as HMGA2-COX6C, HMGA2-CCNB1IP1 of uterine 
cancer and 80 out of 196 for solid Figure 1D and 1F, 
Supplementaray Table S1 such as NUP98-TOP1, NSD1-
NUP98 of MDS. This indicated that RWCFusion scores 
could be applied to classify a certain gene fusion into risk 
or non-risk gene fusion of disease with appropriate cutoff.

To further explore the reliability of RWCFusion, we 
examined the distribution of scores in all test gene fusions in 
leave-one-out cross-validation, including 483 high-risk gene 
fusions of cancers and 47817 (483 × 99) virtual gene fusions 
obtained from gene interaction network. After executing 
leave-one-out cross-validation for all cancers, we found 
81% of the 483 high-risk gene fusions ranked in the top 
10% of all test gene fusions. We also analyzed the top 20% 
of the test set and found 425 out of the 483 high-risk gene 
fusions were located in the top 20%, and the ratio is 88%. 
What’s more, 91% high-risk gene fusions ranked in the top 
30% while 96% ranked in the top 50%. From this we could 
see that most high-risk cancer gene fusions would get high 
scores with RWCFusion and ranked top in the test set.

Investigating the robustness of RWCFusion

We investigated the robustness of RWCFusion 
from two aspects: removing edges in the gene interaction 
network; setting different value of the restart probability β.  
For overall cancers, we calculated the AUC value after 
removing 10% to 50% edges of the gene interaction 
network separately. The result showed that RWCFusion 
had strong resistance against the incompleteness of 
the network: the AUC value only declined 0.008 when 
removing 10% to 50% edges (Supplementary Table S2).

To investigate the influence of restart probability  
β value, we set it to 0.1, 0.3, 0.5, 0.7 and 0.9 respectively 
and then calculated the AUC value for overall cancers. 
The result showed that the overall performance of 
RWCFusion were stable under the perturbation of β and it 
made no significant difference no matter what we set it to 
(Supplementary Table S3). And in this work, we set it to 
0.7 (Supplementary Table S3).

To sum up, RWCFusion had robustness against the 
resistance incompleteness of the network and the restart 
probability β.

Performance comparison of RWCFusion with 
existing method fusion centrality

To compare the performance of two methods, we used 
leave-one-out cross-validation to the 483 high-risk gene 
fusions corresponding to 35 cancers and calculated the AUC 
value for overall, two class cancers and 35 single cancers. We 
found the performance of RWCFusion was better than fusion 
centrality in overall cancers, two cancer classes and most 
single cancers. The overall AUC value of RWCFusion was 
0.925, higher than that of fusion centrality method: 0.845 
Figure 2A. And the AUC of haematological cancers was 
0.968 for RWCFusion, higher than 0.903 for fusion centrality 
Figure 2B. As to solid cancers, it was 0.867 for RWCFusion, 
higher than 0.770 for fusion centrality (Figure 2C). Results 
also showed that RWCFusion got higher AUC value than 
fusion centrality in 30 out of 35 cancers Table 1, Figure 2D. 
One cancer got equal AUC value between the two methods 
and only four cancers got AUC value lower for RWCFusion 
than fusion centrality (Table 1).

RWCFusion is phenotype-specific compared to 
fusion centrality in distinguishing driver and passenger 
gene fusions because high-risk gene fusions, acting as 
seed nodes, of each phenotype are different. However, 
fusion centrality fail to be phenotype-specific, which 
will lead to a common candidate gene fusion of different 
cancers getting a same score, ignoring the difference 
between cancers. When using leave-one-out cross-
validation to the 483 high-risk gene fusions corresponding 
to 35 cancers, we found 16 gene fusions were shared by 
two different cancers. The scores of them among shared 
cancers in fusion centrality were the same but varied in 
RWCFusion (Table 2).This result showed that RWCFusion 
is phenotype-specific, namely if a candidate gene fusion 
is detected in several different cancers at the same time, 
the RWCFusion scores of it for different cancers are 
also different because high-risk disease gene fusions of 
different cancers are different. This means RWCFusion 
can distinguish the importance of a certain gene fusion in 
different cancers.

Case study: identify driver gene fusions in breast 
cancer

After testing the performance of RWCfusion, we 
applied it to breast cancer to do case study. We used Tophat-
Fusion to get candidate gene fusions from pair-end RNA-
seq data of breast cancer samples. We combined the gene 
fusions of different breast cancer samples, discarding the 
fusion pairs appeared in normal sample. We totally got 52 
non-redundant gene fusions from six breast cancer samples 
and only one gene fusion NOL8P1-NOL8, which was not 
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Table 2: The comparison between RWCFusion and existed method fusion centrality when scoring 
a common candidate gene fusion which is fused in several different cancers simultaneously

gene1 gene2 OMIMID Disease name Cen-score Our score

FGFR1OP FGFR1
159595 MYELOPROLIFERATIVE SYNDROME,TRANSIENT 0.028 0.0019
601626 LEUKEMIA, ACUTE MYELOID; AML 0.028 0.00017

FGFR1OP2  FGFR1
601626 LEUKEMIA, ACUTE MYELOID; AML 0.024 0.00012
159595 MYELOPROLIFERATIVE SYNDROME,TRANSIENT 0.024 0.00098

NUP98 TOP1
601626 LEUKEMIA, ACUTE MYELOID; AML 0.027 0.00046
159595 MYELOPROLIFERATIVE SYNDROME,TRANSIENT 0.027 0.00028

PAPOLA AK7
114480 BREAST CANCER 0.0087 0.000010
176807 PROSTATE CANCER 0.0087 0.000019

MYO9B FCHO1
176807 PROSTATE CANCER 0.0042 0.000003
114480 BREAST CANCER 0.0042 0.000016

PAX3 NCOA1
268210 RHABDOMYOSARCOMA 1; RMS1 0.022 0.00044
268220 RHABDOMYOSARCOMA 2; RMS2 0.022 0.000027

MLL CREBBP
601626 LEUKEMIA, ACUTE MYELOID; AML 0.036 0.00027
114480 BREAST CANCER 0.036 0.00010

PAX3 FOXO1
268210 RHABDOMYOSARCOMA 1; RMS1 0.031 0.00050
268220 RHABDOMYOSARCOMA 2; RMS2 0.031 0.00069

BCR ABL1
601626 LEUKEMIA, ACUTE MYELOID; AML 0.040 0.00037
608232 LEUKEMIA, CHRONIC MYELOID; CML 0.040 0.00128

BCR JAK2
131440 MYELOPROLIFERATIVE DISORDER, CHRONIC, 

WITH EOSINOPHILIA 0.049 0.00057

601626 LEUKEMIA, ACUTE MYELOID; AML 0.049 0.00033

CBFB MYH11
601626 LEUKEMIA, ACUTE MYELOID; AML 0.015 0.00024
608232 LEUKEMIA, CHRONIC MYELOID; CML 0.015 0.00025

FIP1L1 PDGFRA
607685 HYPEREOSINOPHILIC SYNDROME, IDIOPATHIC; 

HES 0.021 0.00072

601626 LEUKEMIA, ACUTE MYELOID; AML 0.021 0.00014

CCDC6 PDGFRB
607785 JUVENILE MYELOMONOCYTIC LEUKEMIA; 

JMML 0.025 0.00044

608232 LEUKEMIA, CHRONIC MYELOID; CML 0.025 0.00020

NDE1 PDGFRB
608232 LEUKEMIA, CHRONIC MYELOID; CML 0.030 0.00021

607785 JUVENILE MYELOMONOCYTIC LEUKEMIA; 
JMML 0.030 0.00042

PAX7 FOXO1 268210 RHABDOMYOSARCOMA 1; RMS1 0.026 0.00042
FOXO1 PAX7 268220 RHABDOMYOSARCOMA 2; RMS2 0.026 0.00064

PDGFRB NIN 607685 HYPEREOSINOPHILIC SYNDROME, IDIOPATHIC; 
HES 0.025 0.00034

NIN PDGFRB 131440 MYELOPROLIFERATIVE DISORDER, CHRONIC, 
WITH EOSINOPHILIA 0.025 0.00075

Cen-score are scores of gene fusions by scoring method fusion centrality.
Our score are scores of gene fusions by our method RWCFusion.
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in breast cancer samples, in normal sample. So we initially 
found 52 candidate gene fusions of breast cancer through 
Tophat-Fusion. As for high risk gene fusions, we got 59 
of breast cancer from the total 483 high risk gene fusions.

We mapped the partner genes of the 52 gene fusions 
of breast cancer obtained from Tophat-Fusion into the 
gene interaction network. 31 of them were successfully 
mapped and considered as final candidate gene fusions 
of breast cancer. Then we used RWCFusion to score and 
rank these candidate gene fusions according to their global 
functional similarity with the high-risk breast cancer gene 
fusions in the weighted PPI network.

Using RWCFusion, we identified 13 previously 
known high-risk breast cancer gene fusions, ranking in the 
top 13 with high scores among the 31 mapped candidates 
(Table 3). For example, the fusion BCAS3-BCAS4 
(breast carcinoma amplified sequence 3/4), whose partner 
gene BCAS3 and BCAS4 were both widely known as 
overexpression sequence and fusion in breast cancer [17], 
detected in MCF-7 cell line was nominated as top one 
fusion driver by RWCFusion. Notably, apart from the top 
13, which have been proved to be high-risk breast cancer 
gene fusions according to ChiTaRS, we analyzed top 10 
of the remaining candidate gene fusions of breast cancer 

Figure 2: Performance compare between RWCFusion and existing method: fusion centrality. (A–C) showed the AUC 
compare for overall cancers, haematological and solid classes respectively. (D) showed the top 10 AUC gap of single cancer.



Oncotarget61061www.impactjournals.com/oncotarget

whose biological roles had not been reported according to 
ChiTaRS, a database of fusion events in human cancers. To 
explore these 10 gene fusions, we searched literatures for 
each of them. And we found that 8 of them have potential 
possibility to be driver gene fusions of breast cancer 
(Table 4, Figure 3), the details are as following. In Table 4, 
the top 4 gene fusions each contains a partner gene which 
is also involved in a high-risk gene fusion of breast cancer, 
which may suggest that these 4 gene fusion may also play 
an important role in the occurrence and development 
of breast cancer. To examine the effects of a possible 
function of the partner genes of these 4 gene fusion in 
the breast cancer, we manually searched literatures and 
the result showed that: 1. SULF2 may act as a breast 
cancer suppressor, and knock-down of SULF2 in cell 
lines causes tumorigenic phenotypes, including increased 
proliferation, enhanced survival, and increased anchorage-
independent growth [18]. 2. MED1 plays an important 
role in mediating resistance to the pure anti-estrogen 
fulvestrant both in vitro and in vivo and knockdown of 
MED1 potentiated tumor growth inhibition by fulvestrant 
[19]. 3. ACACA is a target gene of BRCA1, preventing 
its dephosphorylation through BRCA1 protein banding 
to it, while BRCA1 is widely known as a breast cancer 
susceptibility gene [20]. 4. STARD3 overexpression 
results in increased cholesterol biosynthesis and Src kinase 
activity in breast cancer cells and suggest that elevated 
StARD3 expression may contribute to breast cancer 
aggressiveness by increasing membrane cholesterol and 
enhancing oncogenic signaling [21]. Taken together, 
these top four gene fusions, containing one partner gene 
involved in the high-risk gene fusions of breast, have a 
partner gene playing as a suppressor or elevated role in the 
occurrence and development of breast cancer.

Apart from the top 4 gene fusions in Table 4, the 
other all gene fusions in this table contain no partner 
genes involved in any high-risk gene fusions of breast 
cancer. To investigate the potential function the remaining 
6 gene fusions, we manually searched literatures for each 
of them. The results showed that 4 of them contained a 
partner gene that play an important role in the occurrence 
and development of breast cancer. 1. USP32 was found 
to be overexpressed more than twofold in 9 of 18 breast 
cancer cell lines compared to normal breast tissue, and 
upregulation of USP32 in mammary epithelial cells may 
be important in pathogenesis of breast cancer and/or 
serve as a useful biomarker in breast cancer cells [22]. 
2. Few studies have addressed the question of the impact 
of THRA copy number variation in breast cancer, but it 
is reported to be amplified with HER2 in 50 to 80% of 
HER2-amplified breast cancers [23]. 3. TOB1 is regulated 
by EGF-Dependent HER2 and EGFR signaling and TOB1 
protein expression and phosphorylation is associated with 
EGF-dependent erbB signaling and proliferation in breast 
cancer [24]. 4. SUMF1 is located in aUPD regions, which 
is a common and non-random molecular feature of breast 
cancer [25].

As Table 4 showed that the 8 gene fusions whose 
partner gene is associated with breast cancer are all 
involved in chromosome 17q. It has been reported that 
loss of heterozygosity on 17q region has been found in 
breast cancer [26]. This is consistent with the fact that 8 
potential driver gene fusions of breast cancer we found are 
all involved in chromosome 17q. Taken together, we found 
13 previously known high-risk gene fusions of breast cancer 
such as BCAS3-BCAS4, NOTCH- NUP214, MED13- 
BCAS3 and CARM-SMARCA4, and 8 potential drivers 
such as SULF2-ZNF217, MED1-ACSF2 (Table 3, Table 4).

Table 3: The previously known high-risk gene fusions of breast cancer identified by RWCFusion
left gene right gene score
BCAS3 BCAS4 0.006677

NOTCH1 NUP214 0.006672
MED13 BCAS3 0.006652
CARM1 SMARCA4 0.006652

RPS6KB1 SNF8 0.006636
VMP1 RPS6KB1 0.006635

ARFGEF2 SULF2 0.006611
GLB1 CMTM7 0.006606
MED1 STXBP4 0.006604
VAPB IKZF3 0.006588
PKIA RARA 0.006582

MYO9B RAB22A 0.006577
CYTH1 EIF3H 0.006574
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Figure 3: The fusion sites of the top 2 potential driver gene fusions of breast cancer identified by RWFusion. (A, C)
showed the chromosome location the fusion happened. (b, D) showed the reads that covered the breakpoints.
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DIsCUssION

Gene fusions, one of human genomic aberrations, 
are believed to be causal factors of a variety of diseases. 
Identification of driver fusion genes associated specific 
cancer is still a challenge. It is believed that genes related 
to a specific or similar disease phenotype tend to be 
located in a specific neighborhood [12]. In this work, we 
proposed a network based method named RWCFusion 
to identify phenotype-specific cancer driver fusions. Our 
method assigns a score which reflects the global similarity 
of candidate gene fusion to known high risk fusions of 
a cancer to each candidate. In the beginning, the scores 
are 1 for seed high risk partner genes and 0 for candidate 
partners. They would be reassigned during the iteration 
in the process of RWCFusion. Two important elements 
determined the final score assigned to the candidate gene 
fusions: the weight involved distance to seed nodes and 
the number of seed nodes near the candidates. Scores 
of fusion pairs is the integrated results of their partner 
genes. A candidate gene fusion pair with a high score 
is close to the known high risk gene fusions of disease 
at a global scale. So it is more likely to be a driver gene 
fusion of tumor progression. The largest advantage of our 
method is that it can fully exploit interaction information 
of the network during the iteration at a global scale. 
This indicates RWCFusion can miner more information 
contained in the network than local network based method.

Many exploration had been made in the field of 
gene fusion research. For example, some previous studies 
often evaluated the oncogenic role of gene fusions by their 
recurrence, but limited success has been made [11]. Recent 

findings showed that many fusions important for development 
of cancer are non-recurrent, and some recurrent fusion genes 
founded from cancer cells also present in normal cells [27]. 
Apart from exploring the recurrence of gene fusion, there are 
also some other attempts have been made to characterize gene 
fusion. For example, fusion centrality method [13] similar to 
ours was proposed to distinguish ‘driver’ from ‘passenger’ 
gene fusions. We compared our method RWCFusion with 
fusion centrality, the results showed RWCFusion performed 
better than fusion centrality.

RWCFusion can be improved in the following 
directions. Firstly, it depends on the topology of the gene 
interaction network, so the low-quality and incompleteness 
of relation information may limit its performance. The 
performance could be further improved after more accurate 
and complete reconstructions of the network being made. 
Secondly, the quality and number of high-risk cancer 
gene fusions from the database might have influence on 
the performance. The continuing endeavor for accurate 
and quantified high-risk fusion information would further 
enhance our method. We hope that it will facilitate the 
research of mechanism of cancer development, potential 
prognostic and therapeutic targets in anti-cancer treatment.

MATERIALs AND METHODs

Gene interaction network

To get gene interaction network, we first 
downloaded the human protein interaction data (9606.
protein.links.detailed.v9.0.txt.gz) from STRING (http://
string-db.org/) database [14] and converted it into gene 

Table 4: The top 10 of remaining gene fusions of breast cancer ranked by RWCFusion apart from 
the previously known high-risk gene fusions in Table 3

left
gene

left
chr

left
coordinates

right
gene

right
chr

right
coordinates

RWCFusion
score

SULF2* 20q13.12-q13.13 46415148 ZNF217 20q13
52210294

0.00333
52210645

MED1* 17q12 37595417 ACSF2 17q21 48548388 0.00332
ACACA* 17q12 35479452 STAC2 17q12 37374425 0.00329
STARD3* 17q12 37793483 DOK5 20q13 53259996 0.00329
USP32# 17q23 58342772 PPM1D 17q23 58679978 0.0000642

THRA# 17q21 38243105 SKAP1 17q21
46371087

0.000056746371708
46384692

PPP1R12A 12q21 80211173 SEPT10 2q13 110343414 0.0000322
AHCTF1 1q44 247094879 NAAA 4q21 76846963 0.0000241
TOB1# 17q21 48943418 SYNRG 17q12 35880750 0.0000238

SUMF1# 3p26 4418013 LRRFIP2 3p22 37170639 0.0000161
*Partner genes that involved in a previously known high-risk gene fusion of breast cancer according to CHiTaRs at the same time.
#Partner genes that play important roles in the occurrence and development of breast cancer according to literatures evidence.
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interaction network. STRING (The Search Tool for the 
Retrieval of Interacting Genes, v9.0) acting as a “one-
stop shop”, provides integrated information of distinct 
types and sources of protein–protein association [14]. 
Several other resources that are currently being actively 
maintained are similar to STRING, such as: VisANT 
[28], GeneMANIA [29], N-Browse [30], I2D [31], APID 
[32] and ConsensusPathDB [33]. However, STRING is 
one of the very few sites to hold experimental, predicted 
and transferred interactions, together with interactions 
obtained through text mining. What’s more, the links are 
weighted in the database, which will help to identify the 
most important nodes of interest in the network.

The PPI in STRING database are weighted with 
eight feature scores ranging from 0 to 1000, including 
neighborhood, fusion, co-occurence, co-expression, 
experimental database, text-mining and combined score 
which is the comprehensive score generated by STRING 
[14]. Here we choose “combined score” as the final weight, 
and the higher the score is, the closer the relationship of the 
two proteins is. After getting the weighted PPI network, we 
converted it into corresponding gene interaction network. 
Specially, two genes were linked if the proteins they encode 
interact with each other in STRING database. If two genes 
are corresponding to several different proteins respectively, 
the weight of this gene interaction pair is the mean value 
of the weights of their related protein interactions. And if 
two proteins are encoded by the same gene, it would be 
linked to itself after converting protein to gene. This kind of 
relationship would next be discarded in the gene interaction 
network. Finally the weight of edges in the network were 
normalized to 0–1 through dividing the weight in the 
protein interaction network by 1000.

Obtain high-risk gene fusions of cancers

We downloaded gene fusions of cancers from ChiTaRS 
database (http://chitars-old.bioinfo.cnio.es/), which contains 
human cancer breakpoints. The breakpoints in ChiTaRS 
were extracted from the TICdb [4], dbCrid [5], ChimerDB 
2.0 [6] and Mitelman [1] databases. ChiTaRS database stores 
totally 1892 human cancer breakpoints, which were screened 
out manually through inspecting more than 7000 articles 
[7]. We obtained all human cancer breakpoints and their 
corresponding phenotypes from ChiTaRS database Figure 4B.  
Furthermore, we use OMIM database to normalize disease 
names and removed duplicated fusion genes within a certain 
phenotype, as different breakpoints may lie in same genes. 
Afterwards, we discarded those fusions with one or both of its 
partner genes not appearing in the gene interaction network. 
Finally, we screened out the phenotypes that had at least two 
gene fusions. (See Supplemental Information)

Given the fact that human cancer fusion events in 
ChiTaRS database were confirmed [7] as described before, 
we defined fusion pairs recorded in ChiTaRS database as 
“high-risk” human cancers gene fusions.

RNA-seq data

We analyzed the RNA-seq data from breast cancer, 
which contained seven samples related to 4 breast cancer 
and 1 normal cell lines. And the accession number of the 
breast cancer pair-end RNA-seq data is SRP003186 in 
SRA database. The samples in the data are one normal 
sample and 6 breast cancer sample related to 4 cell lines, 
including SK-BR-3, BT-474, MCF-7 and KPL-4. There 
were two biological replicates for BT-474 and SK-BR-3 
each, of which the length of library fragments is 100 bp 
and 200 bp respectively.

Obtain candidate gene fusions

Before identifying drivers from candidate gene 
fusions, the key step is actually to obtain candidate gene 
fusions. Tophat-Fusion is an algorithm developed to 
predict gene fusions by searching transcripts spanning 
gene fusion site and predict gene fusions by aligning pair-
end RNA-seq reads without relying on existing annotation 
to genome [8]. Here we accessed Tophat-Fusion through 
Tophat-2.0.6, and the annotation file of the human genome 
is UCSC genome browser, hg19. We used TopHat-Fusion 
to obtain gene fusions from RNA-seq Figure 4A. Fusions 
that detected only in cancer samples compared to normal 
samples are defined as candidate fusions.

The RWCfusion method

We developed RWCFusion method to identify 
cancer driver gene fusions in different cancers from 
candidates according to their global functional similarity 
with high-risk cancer gene fusions in the gene interaction 
network (Figure 4A–4D).

A gene fusion is hybridized by two previously separate 
genes, the effect on disease of a fusion can be inferred by its 
partners [11, 13]. First, we divided the high-risk and candidate 
driver gene fusion pairs of disease into single genes. If one 
or both partner genes in the of the high-risk and candidate 
cancer gene fusion pairs were not in the gene interaction 
network, the fusion pair would be discarded later on.

Second, we mapped single genes of divided high-risk  
and candidate disease driver gene fusions into the gene 
interaction network, and took partner genes of high-risk 
disease gene fusions as seed nodes and then employed 
a random walk with restart (RWR) [34] to score all the 
nodes in the network according to their global functional 
similarity with the seed nodes. After scoring all nodes in 
the network, we extracted the partner genes of divided 
candidate disease gene fusions and their scores in p∞. RWR 
simulates as an iterative walker transiting from current 
node to a randomly selected neighbor starting at a given 
seed node s, with an additional allow the restart of the 
walk in each step at node s with probability β. Formally, 
the random walk with restart is defined as:
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Figure 4: The flow diagram of RWCFusion. (A) candidate gene fusions. (b) high-risk gene fusions. (C) and (D). the process of coring 
by RWCfusion. The nodes with rectangle shape represent partner genes of candidate gene fusions predicted by TopHat-Fusion, and the color 
of them reflect their scores by RWR: gray represent initial scores 0 and different level of red color reflects scores after RWR, the deeper the red 
color is, the higher RWR score it has. The nodes with circle shape represent partner genes of previously known high-risk gene fusions. The red 
color represent their initial score 1 before RWR. The straight line between two nodes (B, D) indicate that they are known or predicted to be fused.
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1 0(1 ) tt
Tp W p pb b+ = − +  (1)

Where W represented the normalized adjacent 
matrix of the gene interaction network and Wij is the 
weight between gene i (gi) and gene j (gj). Here p0 is the 
initial probability vector and pt is a vector in which the 
i– th element holds the probability of random walker being 
at node i at step t. Here, the i–th element in p0 is 1 if gi is 
seed node and 0 if it is non-seed. Parameter β is the restart 
probability ranging from 0 to 1. At each step, the random 
walker can return to seed nodes with probability β. The 
probability will reach a steady state p∞ by performing the 
iteration until the variation between pt+1 and pt (measured 
by L1 norm) is less than 10–10.

Third, we integrated the scores of the left partner 
genes (gl) and the right partner genes (gr) of the candidate 
gene fusions that were divided before to get the sores of 
the gene fusion. The scores of the candidate gene fusions  
gl – gr were defined as:

( ) ( )
2

rl
l r

g p g p
S

∞ ∞

−
+

=  (2)

Where Sl–r was the final score of the gene fusion 
between gl and gr. gl (p

∞) is the final score of gl in RWR, 
whereas gr (p

∞) is that of gr. Candidate gene fusions were 
ranked according to Sl–r.The gene fusion with higher score 
would be more possible to be driver gene fusion of the disease.

Performance measurement

To evaluate the performance of RWCFusion, we 
used leave-one-out cross-validation for every high-risk 
gene fusion. For every phenotype, each of the high risk 
gene fusion would be taken as held-out fusion in each 
test case. For each test case, the remaining high risk gene 
fusions were used as seed gene fusions. Then we generate 
virtual candidate fusion genes by randomly selecting gene 
pairs from the gene network. These randomly generated 
virtual fusion genes were considered as negative set of 
test, while the held out one was positive set of test in each 
test case. We calculated RWCFusion scores for every gene 
fusion in the test set in the each test case.

The receiver operator characteristic (ROC) curve 
could be plotted and the area under this curve (AUC) 
could be calculated according to above results. The ROC 
curve plots the true-positive rate (TPR) versus the false-
positive rate (FPR). The held out one gene fusion in each 
test case was considered as positive test set, while the 
randomly selected fusions were considered as negative 
test set. Taking the RWCFusion scores of all candidates in 
each test case of a phenotype together, we could plot ROC 
curve and calculate AUC for every phenotype respectively. 
And by taking the RWCFusion scores of all candidates 
in each test case of all phenotypes together, we could 
calculate the overall performance of RWCFusion. As we 
all know, cancers are clinically classified into two classes 

namely haematological and solid. So we also evaluated 
the performance of our method for this two classes 
respectively in the same way.

Fusion centrality

Fusion centrality is a network analysis method to 
prioritize gene fusions and the author believe that a fusion 
is more likely to be an oncogenic driver if its two partner 
genes act like hubs in a network [13]. A new node in a 
network, representing the two partner genes, inherits all 
the linkages of its partner genes. The centrality of the new 
node represents the importance of a fusion in a network. 
Centrality of a fusion is defined as its total linkages, 
namely, degree. We will compare our method RWCFusion 
with fusion centrality in this work.
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