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ABSTRACT

Gastric cancer (GC) is one of the most malignant tumors with a poor prognosis. 
Alterations in metabolic pathways are inextricably linked to GC progression. However, 
the underlying molecular mechanisms remain elusive. We performed NMR-based 
metabolomic analysis of sera derived from a rat model of gastric carcinogenesis, 
revealed significantly altered metabolic pathways correlated with the progression 
of gastric carcinogenesis. Rats were histologically classified into four pathological 
groups (gastritis, GS; low-grade gastric dysplasia, LGD; high-grade gastric dysplasia, 
HGD; GC) and the normal control group (CON). The metabolic profiles of the five 
groups were clearly distinguished from each other. Furthermore, significant inter-
metabolite correlations were extracted and used to reconstruct perturbed metabolic 
networks associated with the four pathological stages compared with the normal 
stage. Then, significantly altered metabolic pathways were identified by pathway 
analysis. Our results showed that oxidative stress-related metabolic pathways, choline 
phosphorylation and fatty acid degradation were continually disturbed during gastric 
carcinogenesis. Moreover, amino acid metabolism was perturbed dramatically in 
gastric dysplasia and GC. The GC stage showed more changed metabolite levels and 
more altered metabolic pathways. Two activated pathways (glycolysis; glycine, serine 
and threonine metabolism) substantially contributed to the metabolic alterations in 
GC. These results lay the basis for addressing the molecular mechanisms underlying 
gastric carcinogenesis and extend our understanding of GC progression.

INTRODUCTION

Gastric cancer (GC), one of the most prevalent 
and deadly forms of cancers worldwide, is common 
in East Asia, especially in Japan and China [1]. Gastric 
carcinogenesis is a multistep process, in which gastric 
mucosa undergoes a series of changes resulting in gastritis, 
atrophy, intestinal metaplasia, and atypical hyperplasia, 
before developing into GC [2]. Gastric carcinogenesis is 
also a multifactorial process, specially correlated with the 

interaction between the host factors, H. pylori infection 
and environmental factors such as diet [3]. Repeated 
infection and inflammations have been regarded as 
primary causes of gastric carcinogenesis [4].

Gastric tumors differ from their normal counterparts 
in many ways, including the increased cell proliferation, 
cell differentiation and turnover of nutrients, which 
might result from aberrant metabolisms in gastric 
mucosa cells. As a potent analysis method, metabolic 
profiling is extensively used to address the alterations in 

                   Research Paper



Oncotarget60054www.impactjournals.com/oncotarget

both metabolic profiles and metabolite levels associated 
with gastric carcinogenesis. It is also used to exploit the 
early diagnostic approach for GC [5-7]. Miyagi et al. 
analyzed markedly altered metabolite levels in plasma 
derived from GC patients with high performance liquid 
chromatography-mass spectra (HPLC-MS) [5]. Ikeda et 
al. performed metabolic profiling on sera derived from 
GC patients with gas chromatography-mass spectrometry 
(GC-MS), and found that both 3-hydropropionic acid and 
pyruvate made significant contributions to discriminate 
the metabolic profile of GC patients from that of healthy 
subjects [6]. These works showed that the levels of 
some metabolites were changed in both gastric tumors 
and infected organisms. Furthermore, Yu et al. analyzed 
metabolic alterations in the GC and precancerous stages 
(chronic superficial gastritis, chronic atrophic gastritis, 
intestinal metaplasia and gastric dysplasia) with GC-MS 
[7]. They found that the metabolic phenotype of chronic 
superficial gastritis was distinctly distinguished from 
that of GC, while intestinal metaplasia shared similar 
metabolic phenotype with GC.

As expected, understanding how and why metabolic 
changes would be greatly helpful for clarifying molecular 
mechanisms underlying gastric carcinogenesis. Changes 
of the activities and/or expression levels of a few crucial 
metabolic enzymes could propagate considerable 
perturbations into entire cellular functions [8]. Therefore, 
establishment of perturbed metabolic networks, which link 
altered metabolites to their associated regulatory enzymes, 
could enable detail depiction of the metabolic mechanisms 
underlying gastric carcinogenesis. In the recent years, 
metabolomic data [9], or integrated with genomic data 
[10, 11] or transcriptomic data [12], have been used to 
reconstruct metabolic networks. Based on the concept 
of correlation spectroscopy, Cloarec et al. developed 
Statistical Total Correlation Spectroscopy (STOCSY) to 
display the correlations among the intensities of various 
peaks across the whole sample [13]. STOCSY can offer 
significant inter-metabolite correlations and metabolic 
variations in a metabolic network through highlighting 
simultaneous concentration alterations of metabolites 
associated with metabolic pathways [9]. However, the 
biological interpretation of a STOCSY spectrum is 
complex and not always straightforward. By combining 
the statistical recoupling of variables (SRV) arithmetic 
[14] with STOCSY, Blaise et al. further developed 
Recoupled-STOCSY (R-STOCSY) to greatly reduce 
the dimensionality inherited from the high-resolution 
bucketing [9]. R-STOCSY allows for identification of 
meaningful correlations only between distant clusters 
(metabolic signals). Furthermore, R-STOCSY is 
validated through measuring the distances between 
correlated metabolites within the whole metabolic 
network. Expectedly, the average shortest path length 
is significantly shorter for the detected correlations in 
comparison with metabolite couples randomly selected 

from within the entire Kyoto Encyclopedia of Genes and 
Genomes (KEGG) metabolic network [9]. However, the 
unsupervised R-STOCSY is useful only if the targeted 
perturbation is the dominant factor [15]. By associating 
orthogonal filters [16], with R-STOCSY, Blaise et al. 
developed orthogonal filtered R-STOCSY (OR-STOCSY) 
to remove undesirable systemic variation within the data, 
and identify the inter-metabolite correlations pertinent to 
minor effects in complex data sets [15]. The supervised 
OR-STOCSY approach yields correlated metabolites 
related to perturbations of biology interest, and also 
enables establishment of perturbed metabolic networks 
without any a prior knowledge [15].

In the present work, we established a rat model of 
gastric carcinogenesis induced by N-methyl-N'-nitro-
N-nitrosoguanidine (MNNG) and high salt diet, and 
histologically classified the rats into four pathological 
groups (gastritis, GS; low-grade gastric dysplasia, LGD; 
high-grade gastric dysplasia, HGD; GC) and the normal 
control group (CON). With the procedure shown in 
Supplementary Figure S1, we performed NMR-based 
metabolomic analysis of the sera derived from the four 
pathologic groups of rats (MODEL rats) and CON rats to 
systematically address the metabolic profiles of the five 
groups, and also conducted the OR-STOCSY analysis to 
identify inter-metabolite correlations and extract correlated 
metabolites, then reconstructed perturbed metabolic 
networks associated with the four pathological stages in 
comparison with the normal stage through calculating the 
shortest path lengths among the correlated metabolites 
[17]. Thereafter, we identified significantly altered 
metabolic pathways according to pathway impact values 
from the pathway topology analysis [18]. Our results 
may lay the substantial basis for clarifying the molecular 
mechanisms underlying gastric carcinogenesis.

RESULTS

The rat model of gastric carcinogenesis

Totally, 128 rats were used for metabolic profiling, 
including 52 MODEL rats and 32 CON rats, while 44 
MODEL rats were lost due to accidental death. None of 
the CON rats was death in accident. The MODEL rats had 
lesions only on the bottom of stomach, which were similar 
to those reported in the references [19-21]. All gastric 
tissues were embedded in paraffin and sequentially cut for 
histologic examination. Each tissue section was scored by 
at two clinical pathologists independently blinded to the 
histologic examination. According to the updated Sydney 
system [22] and the Padova International Classification 
[23], we classified the MODEL rats into four pathologic 
groups: GS, LGD, HGD and GC (Table 1). The typical 
images of pathologic histology of gastric tissues are 
shown in Figure 1. The gastric mucosa of CON rat was 
normal without atypia (Figure 1A), while that of GS rats 
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Figure 1: Representative histology images from gastric biopsies for normal rats (CON) and rats in four typical 
pathological stages (MODEL). The tissue sections were stained with hematoxylin-eosin and observed under the 40×microscope (left 
column) and the 100×microscope (right column). A. CON; B. GS; C. LGD; D. HGD; E. GC.

Table 1: Experimental design for establishing the rat model of gastric carcinogenesis

Group Number of the rats Age/week

control rats (CON) 32 10-40

model rats (MODEL) 52

GS 11 10-15

LGD 15 16-35

HGD 15 16-42

GC 11 36-51

Four typical pathological stages (GS, LGD, HGD, GC) were identified based on histopathologic examinations and the 
updated Sydney system, the Padova International Classification.
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showed the infiltration of inflammatory cells (Figure 1B). 
Compared with normal glands, the dysplastic glands in 
the LGD rats were lined by crowded elongated cells with 
large, hyperchromatic nuclei (Figure 1C). In HGD rats, the 
nuclei of dysplastic glands were more plump and larger 
than those in LGD rats, the tubular structures of dysplastic 
glands exhibited branching and folding (Figure 1D). In 
GC rats, the gastric glands were hardly observed in the 
gastric mucosa, the cells of glands invaded the gastric 
wall, infiltrated the muscularis mucosae and submucosa 
(Figure 1E).

Resonance assignments of metabolites and 
metabolic correlations

Typica1 1D 1H Carr-Purcell-Meiboom-Gill (CPMG) 
spectra of the sera from CON and MODEL rats are shown 

in Supplementary Figure S2. Contours in the pseudo-2D 
R-STOCSY spectrum (Figure 2) represent significant 
metabolic correlations between the SRV clusters derived 
from NMR spectral data (intra-metabolite correlations, 
Supplementary Table S1; inter-metabolite correlations, 
Supplementary Table S2). The intra-metabolite 
correlations could aid in assignments of metabolite 
resonances, while the inter-metabolite correlations 
enabled identification of significant metabolites involved 
in the same metabolic pathway whose concentrations 
are interdependent or under some common regulatory 
mechanisms. Notably, the R-STOCSY analysis could 
potentially identify metabolic correlations even for weak 
NMR signals which are usually missed in a traditional 
analysis of NMR spectra [9].

We assigned metabolite resonances appearing in 1D 
1H CPMG spectra based on a combination of literatures 

Figure 2: Pseudo-2D R-STOCSY spectrum based on the SRV clusters derived from the NMR data set of MODEL 
and CON rats. Totally, 92 significant metabolic correlations between the clusters were identified with a correlation threshold of 0.9 
(Supplementary Table S1 for intra-metabolite correlations, Supplementary Table S2 for inter-metabolite correlations). The degree of 
metabolic correlation is color-coded (positive correlation in red, negative correlation in blue).
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[24, 25], Human Metabolome Database (HMDB, www.
hmdb.ca/), 2D 1H-1H Total Correlated Spectroscopy 
(TOCSY) spectra (Supplementary Figure S3) and pseudo-
2D R-STOCSY spectrum (Figure 2). The spin systems of 
the assigned metabolites were confirmed by 1H-1H TOCSY 
spectra. The NMR spectra were mostly dominated by the 
signals from amino acids and carboxylic acids. We also 
assigned the intra-metabolite correlations appearing in the 
R-STOCSY spectrum (Supplementary Table S1).

Metabolic profiling of the rat model

Principal component analysis (PCA)

To obtain a comprehensive comparison of metabolic 
profiles among the five groups of rats, PCA was performed 
on the data of SRV clusters. PCA scores plots with the 
first three principal components (PC1, PC2 and PC3) 
are shown in Figure 3. The metabolic profile of GC 
displays a clear separation from those of the other groups 
(CON, GS, LGD and HGD) which are not distinctly 
distinguishable from one another with partial overlap 
(Figure 3A). Furthermore, we also conducted pairwise 
PCA for the five groups (Figure 3B, 3C, 3D, 3E), aiming 
to assess the changes of metabolic profiles associated with 
the four pathological stages. We observed a tendency of 
GS rats being discriminated from CON rats, although 
some samples could not be clearly separated (Figure 3B). 
A similar result was obtained from the comparison of 
metabolic profiles between LGD and GS rats (Figure 3C). 
The metabolic profile of HGD rats is clearly distinguished 

from that of LGD rats (Figure 3D). Interestingly, GC rats 
show a distinctly different metabolic profile from HGD 
rats without any overlap (Figure 3E).

Notably, alterations in the diet used to establish this 
model potentially contributed to the metabolic changes 
in gastric carcinogenesis. To evaluate the unexpected 
influential effect of the diet, we re-performed PCA by 
adding serum samples derived from four experimental 
rats. They were fed with the same diet as the Model rats. 
We checked the pathological states of the rats every one 
week. The four rats were not diagnosed to be on either the 
GS state or other pathological states. The PCA scores plot 
(Supplementary Figure S4) demonstrates that metabolic 
profiles of the four added samples are not distinctly 
distinguished from those of the CON samples. Therefore, 
it could be expected that the metabolic changes of the 
MODEL rats mostly came from GC development rather 
than the diet influence.
Partial least squares to latent structure with 
discriminant analysis (PLS-DA)

The pairwise PLS-DA models and their 
corresponding response permutation tests (RPTs) were 
used to explore the differences of metabolic profiles 
among the five groups. The PLS-DA scores plots show 
clear separation of GS rats from CON rats, LGD rats from 
GS rats, HGD rats from LGD rats, GC rats from HGD 
rats (Supplementary Figure S5). The validation plots of the 
corresponding RPTs confirm that these classifications are 
reliable (Supplementary Figure S6). In addition, the PLS-
DA scores plots (Supplementary Figure S7) illustrate that 

Figure 3: PCA scores plots of SRV clusters derived from NMR spectra of the sera. A. MODEL rats vs. CON rats; B. GS rats 
vs. CON rats; C. LGD rats vs. GS rats; D. HGD rats vs. LGD rats; E. GC rats vs. HGD rats.
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almost all the GS, LGD, HGD and GC rats are separated 
clearly from CON rats, with only one GS rat and two LGD 
rats are misclassified in the scores plots (Supplementary 
Figure S7A, S7B). In general, the metabolic profiles 
of MODEL rats are distinguishable from that of CON 
rats. The validation plots of the corresponding RPTs 
indicate that these classifications are not over-fitting 
(Supplementary Figure S8).
Orthogonal projection on latent structure with 
discriminant analysis (OPLS-DA)

The OPLS-DA analysis was conducted to highlight 
the metabolic alterations of MODEL rats compared with 
CON rats. The application of the orthogonal filter in 
OPLS-DA has the tremendous advantage to target and 
isolate the metabolic variations corresponding to a specific 
factor (such as pathological effect), even if the amplitude 
affected by the pathological status is small. The OPLS-

DA scores plots are shown in Figure 4 with one predictive 
principal component (tp1) and one orthogonal component 
(to1). The linear classifier boundaries exhibit the clear 
separation of GS, LGD, HGD, GC rats from CON rats 
(Figure 4).

The corresponding OPLS-DA loading plots were 
used to identify differential metabolites significantly 
responsible for the class separation, based on the first 
predictive principal component (Figure 5). Detailed 
information of the differential metabolites is shown in 
Supplementary Tables S3-S6. Totally, 13, 14, 17 and 
20 differential metabolites were identified from the 
OPLS-DA analyses of GS rats vs. CON rats (Figure 5A, 
Supplementary Table S3, 5 increased, 8 decreased), LGD 
rats vs. CON rats (Figure 5B, Supplementary Table S4, 10 
increased, 4 decreased), HGD rats vs. CON rats (Figure 
5C, Supplementary Table S5, 10 increased, 7 decreased), 

Figure 4: OPLS-DA scores plots of SRV clusters data derived from NMR spectra of the sera showing clear separation 
of GS rats. A. LGD rats B. HGD rats C. GC rats D. from CON rats.
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GC rats vs. CON rats (Figure 5D, Supplementary Table 
S6, 14 increased, 6 decreased), respectively.

Summarily, the PCA, PLS-DA and OPLS-DA scores 
plots demonstrate that the metabolic profiles are clearly 
discriminated among the five groups of rats. The OPLS-
DA loading plots illustrate that specific sets of differential 
metabolites are related to different pathological stages. 
These results indicate the significant pathological effects 
on the metabolic phenotypes of the sera, which lay the 
base for the following OR-STOCSY analysis.

Changed metabolite levels in the four 
pathological stages

To quantitatively assess the changes in metabolite 
levels, we calculated relative integrals of the assigned 
metabolites based on the 1D 1H CPMG spectra of the 
sera derived from CON and MODEL rats. The means 
and standard errors of relative integrals are shown in 
Table 2. We then performed multiple comparisons of 
metabolite levels for the five groups of rats by one-
way analysis of variance (ANOVA) followed by the 
Tukey's multiple comparisons test (Table 2). The results 
were almost consistent with those from OPLS-DA 
(Figure 5, Supplementary Tables S3-S6). Only two 
inconsistencies were found, both regarding the metabolite 

level comparison of GC rats with CON rats (Figure 5D, 
Supplementary Table S6, Table 2):, succinate exhibited 
a significantly increased level identified from OPLS-
DA with an insignificantly increased level indicated by 
ANOVA; asparagine displayed a relative stable level 
identified from OPLS-DA with a significantly increased 
level indicated by ANOVA. These results revealed that 
different pathological stages were related to different 
changes in metabolite levels. These significantly 
altered metabolites were mostly involved in four 
crucial metabolisms: amino acid metabolism, fatty acid 
metabolism, carbohydrate metabolism and nucleic acid 
metabolism (Table 2). Note that several metabolites were 
not involved in the four metabolisms, which are shown as 
the “other metabolites” in Table 2.

Furthermore, a heatmap plot was produced to clearly 
display the metabolites level differences among the five 
groups (Supplementary Figure S9). According to the 
standardization protocol of metabolite levels, the relative 
integral of each metabolite was centered to have a mean of 
zero and scaled to have a standard deviation of one.
Amino acid metabolism

Both arginine and glutamine were significantly 
decreased in MODEL rats; seine, tyrosine, and 
phenylalanine were markedly increased in LGD, HGD, 

Figure 5: OPLS-DA loading plots used to identify differential metabolites significantly responsible for distinguishing 
different pathological groups. A. GS rats vs. CON rats; B. LGD rats vs. CON rats; C. HGD rats vs. CON rats; D. GC rats vs CON rats. 
The red color indicates that the variables are very significant (|r| > 0.389 in A and D or |r| > 0.372 in B and C; VIP > 1); orange indicates 
that the variables are significant (0.301 <|r| < 0.389 in A and D or 0.288 <|r| < 0.372 in B and C; VIP > 1); blue indicates that the variables 
are insignificant (NS).
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Table 2: Comparison of metabolite levels in the five groups of the rats based on relative integrals calculated from the 
1H NMR spectra of the sera

Tukey's multiple comparisons test Mean ± Standard error One-way 
ANOVA

GS 
vs.

LGD 
vs.

HGD 
vs.

GC 
vs.

LGD 
vs.

HGD 
vs.

GC 
vs.

CON GS LGD HGD GC F P

CON CON CON CON GS LGD HGD

AMINO ACID METABOLISM

arginine ** *** *** *** * NS NS 0.484 ±  
0.038

0.372 ± 
0.041

0.290 ± 
0.066

0.266 ± 
0.048

0.290 ± 
0.085 15.09 3.74e-9

glutamine * ** *** * NS NS NS 0.406 ±  
0.020

0.347± 
0.039

0.336 ± 
0.036

0.312 ± 
0.025

0.345 ± 
0.045 3.84 0.031

serine NS * ** ** NS NS NS 0.072 ±  
0.003

0.074± 
0.004

0.081 ± 
0.005

0.083 ± 
0.005

0.09 ±  
0.005 8.84 6.28e-6

tyrosine NS ** * *** NS NS NS 0.024 ±  
0.002

0.029 ± 
0.005

0.031 ± 
0.004

0.031 ± 
0.005

0.032 
±0.002 4.26 0.004

phenylalanine NS ** ** *** ** * *** 0.017 ±  
0.005

0.021 ± 
0.011

0.032 ± 
0.009

0.026 ± 
0.009

0.056 ± 
0.007 11.30 2.90e-7

glycine NS NS * ** NS NS NS 0.284 ±  
0.012

0.280 ± 
0.032

0.310 ± 
0.028

0.320 ± 
0.028

0.364 ± 
0.037 4.65 0.002

lysine NS NS * *** NS NS *** 0.269 ±  
0.014

0.282 ± 
0.036

0.301 ± 
0.035

0.305 ± 
0.030

0.499 ± 
0.086 17.38 3.38e-10

threonine * NS NS *** NS NS *** 0.214 ±  
0.009

0.195 ± 
0.018

0.202 ± 
0.011

0.201 ± 
0.019

0.283 ± 
0.024 13.19 3.14e-8

alanine * NS * NS NS NS * 0.302 ±  
0.017

0.267 ± 
0.029

0.286 ± 
0.038

0.240 ± 
0.043

0.304 ± 
0.052 3.70 0.008

asparagine NS NS NS ** NS NS * 0.056 ± 
0.005

0.059 ± 
0.008

0.064 ± 
0.007

0.059 ± 
0.006

0.079 ± 
0.018 4.19 0.004

histidine NS NS ** NS NS NS NS 0.024 ±  
0.002

0.026 ± 
0.003

0.027 ± 
0.003

0.029 ± 
0.003

0.027 ± 
0.004 3.84 0.037

leucine NS NS NS NS NS NS NS 0.235 ±  
0.008

0.222 ± 
0.023

0.228 ± 
0.014

0.221 ± 
0.013

0.216 ± 
0.030 0.93 0.451

isoleucine NS NS NS NS NS NS NS 0.100 ±  
0.006

0.097 ± 
0.013

0.105 ± 
0.007

0.096 ± 
0.007

0.098 ± 
0.023 0.65 0.630

valine NS NS NS NS NS NS NS 0.170 ±  
0.011

0.167 ± 
0.023

0.177 ± 
0.011

0.169 ± 
0.012

0.139 ± 
0.033 0.71 0.536

isobutyrate NS NS NS NS NS NS NS 0.011 ± 
0.009

0.010 ± 
0.002

0.012 ± 
0.001

0.011 ± 
0.002

0.012 ± 
0.002 1.86 0.126

glutamate NS NS NS NS NS NS NS 0.279 ±  
0.018

0.270 ± 
0.019

0.275 ± 
0.021

0.302 ± 
0.033

0.274 ± 
0.033 0.84 0.501

aspartate NS NS NS NS NS NS NS 0.325 ±  
0.015

0.315 ± 
0.030

0.348 ± 
0.029

0.342 ± 
0.013

0.317 ± 
0.037 1.15 0.339

FATTY ACID METABOLISM

LDL/VLDL ** *** *** *** * * ** 6.711 ±  
0.318

5.984 ± 
0.412

5.550 ± 
0.712

4.922 ± 
0.523

4.156 ± 
1.059 12.52 6.80e-8

PUFA **** *** *** *** NS * * 2.561 ±  
0.114

1.766 ± 
0.185

1.741 ± 
0.294

1.371 ± 
0.172

1.764 ± 
0.563 21.42 6.62e-12

3-hydroxybutyrate * NS NS ** * NS ** 0.321 ±  
0.055

0.225 ± 
0.089

0.378 ± 
0.125

0.285 ± 
0.144

0.601 ± 
0.156 6.08 0.021

glycerol NS * NS *** NS NS *** 0.556 ±  
0.018

0.562 ± 
0.053

0.599 ± 
0.023

0.584 ± 
0.031

0.729 ± 
0.091 9.49 2.72e-6

(Continued)
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GC rats; glycine and lysine showed higher levels in HGD 
and GC rats; threonine was decreased in GS rats, and 
increased dramatically in GC rats; alanine was decreased 
in GS and HGD rats; histidine was increased in HGD 
rats; asparagine was significantly enhanced in GC rats. 
Notably, branch chain amino acids (leucine, isoleucine and 
valine), isobutyrate, glutamate and aspartate did not show 
distinctly changed levels in MODEL rats.
Fatty acid metabolism

Both LDL/VLDL and polyunsaturated fatty 
acid (PUFA) were dramatically decreased in MODEL 

rats; 3-hydroxybutyrate exhibited fluctuated levels in 
MODEL rats, with a decreased level in GS rats and a 
significantly increased level in GC rats; glycerol was 
increased in LGD and GC rats, exhibiting the highest 
level in GC rats; acetate was slightly increased in LGD 
rats.
Carbohydrate metabolism

Lactate was markedly increased in LGD, HGD, GC 
rats; glucose displayed fluctuated levels in MODEL rats, 
with an increased level in GS rats and decreased levels in 
HGD and GC rats; three primary metabolites (succinate, 

Tukey's multiple comparisons test Mean ± Standard error One-way 
ANOVA

GS 
vs.

LGD 
vs.

HGD 
vs.

GC 
vs.

LGD 
vs.

HGD 
vs.

GC 
vs.

CON GS LGD HGD GC F P

CON CON CON CON GS LGD HGD

acetate NS * NS NS NS NS NS 0.126 ±  
0.008

0.134 ± 
0.012

0.147 ± 
0.013

0.134 ± 
0.009

0.136 ± 
0.038 3.36 0.026

CARBOHYDRATE METABOLISM

lactate NS *** *** *** *** ** *** 3.641 ±  
0.171

3.939 ± 
0.312

4.406 ±  
0.389

4.874 ± 
0.273

6.107 ± 
0.566 48.44 2.70e-20

glucose * NS * * * * NS 1.619 ±  
0.117

1.837 ± 
0.098

1.555 ±  
0.201

1.285 ± 
0.166

1.249 ± 
0.247 5.98 3.01e-4

succinate NS NS NS NS NS NS NS 0.019 ±  
0.003

0.015 ± 
0.004

0.023 ±  
0.005

0.020 ± 
0.006

0.028 ± 
0.006 1.97 0.108

citrate NS NS NS NS NS NS NS 0.107 ±  
0.007

0.099 ±  
0.015

0.116 ±  
0.015

0.115 ± 
0.008

0.088 ± 
0.020 2.20 0.077

fumarate NS NS NS NS NS NS NS 0.0013± 
0.0007

0.0006± 
0.0005

0.0006± 
0.0004

0.0009± 
0.0005

0.0007± 
0.0005 1.25 0.413

NUCLEIC ACID METABOLISM

xanthine NS *** NS *** NS NS * 0.076 ±  
0.007

0.081 ± 
0.011

0.093 ±  
0.007

0.086 ± 
0.008

0.118 ± 
0.020 7.13 6.13e-5

OTHER METABOLITES

formate *** *** *** *** NS NS ** 0.009 ±  
0.001

0.013 ± 
0.003

0.013 ±  
0.002

0.015 ± 
0.002

0.022 ± 
0.004 15.73 1.89e-9

PC *** *** *** NS NS * *** 0.045 ± 
0.004

0.06 ±  
0.004

0.058 ±  
0.007

0.069 ± 
0.007

0.046 ± 
0.007 12.58 6.32e-8

α-acid glycoprotein NS * * *** * NS *** 2.234 ±  
0.075

2.228 ± 
0.209

2.638 ±  
0.133

2.615 ± 
0.182

3.193 ± 
0.597 8.62 8.37e-6

taurine ** NS * * NS * NS 0.218 ± 
0.013

0.253 ± 
0.011

0.225 ±  
0.030

0.182 ± 
0.024

0.170 ± 
0.037 5.90 3.38e-4

GPC ** NS NS *** NS NS *** 0.064 ±  
0.002

0.075 ± 
0.005

0.068 ±  
0.006

0.071 ± 
0.007

0.085 ± 
0.006 8.24 1.37e-5

choline * NS NS NS NS NS NS 0.021 ±  
0.001

0.017 ± 
0.002

0.019 ±  
0.002

0.018 ± 
0.002

0.022 ± 
0.004 2.29 0.048

creatine NS NS NS NS NS NS NS 0.205 ±  
0.022

0.161 ± 
0.037

0.194 ±  
0.031

0.171 ± 
0.037

0.213 ± 
0.017 3.20 0.067

Note: Symbols ***, **, *, NS mean differences between A and B were highly significant (p<0.001), very significant (p<0.01), significant (p<0.05), 
insignificant (p>0.05), respectively. Red and blue colors denote that the difference is positive (i.e. A was increased compared to B) and negative, 
respectively.
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citrate and fumarate) involved in TCA cycle did not show 
distinctly changed levels in MODEL rats.
Nucleic acid metabolism

Compared with that in CON rats, xanthine showed 
high levels in LGD and GC rats, approaching the highest 
level in GC rats.
Other metabolites

Formate was markedly enhanced in MODEL rats; 
phosphocholine (PC) was remarkably increased in GS, 
LGD, HDG rats; α-acid glycoprotein was increased 
in LGD, HGD and GC rats, displaying the highest 
level in GC rats; taurine exhibited fluctuated levels 
in MODEL rats, with a dramatically increased level 
in GS rats and decreased levels in HGD and GC rats; 
Glycerophosphocholine (GPC) was greatly increased in 
GS and GC rats with the highest level in GC rats, which 
did not show distinctly changed levels in LGD, HGD and 
GC rats; choline was slightly decreased in GS rats with 
relative stable levels in LGD, HGD, GC rats; creatine did 
not exhibit significantly altered levels in MODEL rats.

Perturbed metabolic networks and significantly 
altered metabolic pathways during gastric 
carcinogenesis

To exploit the molecular mechanisms underlying 
gastric carcinogenesis, we performed the OR-STOCSY 
analysis to identify significant inter-metabolite correlations 
with a correlation threshold of 0.9, and reconstructed 
perturbed metabolic networks associated with the four 
pathological stages in comparison with the normal stage. 
Totally, 31, 20, 39, 52 inter-metabolite correlations were 
extracted from the OR-STOCSY analyses of GS vs. 
CON (Figure 6A; Supplementary Table S7), LGD vs. 
CON (Figure 6B; Supplementary Table S8), HGD vs. 
CON (Figure 6C; Supplementary Table S9), GC vs. CON 
(Figure 6D; Supplementary Table S10), respectively. 
From these inter-metabolite correlations, 18, 20, 20, 27 
metabolites were identified for GS, LGD, HGD and GC 
stages, respectively.

Through calculating the shortest path lengths 
among the correlated metabolites [17], we extracted 
metabolites, enzymes (Supplementary Tables S11-S14) 
and metabolite-enzyme relations from the homebuilt 
biograph object file (described in the Methods section) to 
reconstruct the perturbed metabolic networks associated 
with the four pathological stages (Figure 7A-7D). The 
one-way ANOVA analysis described above together with 
OPLS-DA, indicated the changes of the metabolite levels 
in MODEL rats compared to those in CON rats (Tables 
2, Supplementary S3-S6). The significantly increased, 
significantly decreased and insignificantly changed 
metabolites are displayed as red, blue and black filled 
squares (Figure 7A-7D). NMR-invisible metabolites 
are shown as unfilled squares. From the reconstructed 

metabolic networks, we identified significantly altered 
metabolic pathways according to pathway impact values 
from the pathway topology analysis with a threshold 
of 0.3 [18]. Compared with the CON stage, 4, 5, 8, 10 
significantly altered metabolic pathways were identified 
for GS, LGD, HGD and GC stages, respectively (Figure 
7E-7H), which provide a mechanistic understanding of 
gastric carcinogenesis.
The GS stage

Totally, 35 extracted metabolites (18 correlated 
metabolites, 17 NMR-invisible metabolites), 23 enzymes 
and 98 metabolite-enzyme relations were used to 
reconstruct the perturbed metabolic network associated 
with GS (Figure 7A, Supplementary Table S10). Four 
significantly altered metabolic pathways were identified, 
including glutamate and glutamine metabolism; 
glutathione (GSH) metabolism; alanine, aspartate and 
glutamate metabolism; fatty acid degradation (Figure 
7E). Both glutamate and glutamine metabolism and 
GSH metabolism involved five metabolites (glutathione, 
NADP+, α-ketoglutarate (α-KG), glutamate, glutamine) 
and seven enzymes, which played important roles in 
oxidative stress.
The LGD stage

Totally, 33 extracted metabolites (20 correlated 
metabolites, 13 NMR-invisible metabolites), 20 enzymes 
and 60 metabolite-enzyme relations were used to 
reconstruct the perturbed metabolic network associated 
with LGD (Figure 7B, Supplementary Table S11). Five 
significantly altered metabolic pathways were identified, 
including glutamate and glutamine metabolism; 
arginine and proline metabolism; GSH metabolism; 
alanine, aspartate and glutamate metabolism; fatty acid 
degradation (Figure 7F). Besides the four metabolic 
pathways identified in GS, one extra metabolic pathway 
(arginine and proline metabolism) was markedly changed 
in LGD, involving three metabolites (lysine, 1-pyrroline-
5-carboxylat and proline). Note that as an immune-
modulating molecule [26], α-acid glycoprotein became 
involved in the perturbed metabolic network associated 
with LGD, exhibiting the correlations with three 
metabolites (glucose, asparagine, histidine) as shown in 
Figure 7B.
The HGD stage

Totally, 34 extracted metabolites (20 correlated 
metabolites, 14 NMR-invisible metabolites), 22 enzymes 
and 107 metabolite-enzyme relations were used to 
reconstruct the perturbed metabolic network associated 
with HGD (Figure 7C, Supplementary Table S12). Eight 
significantly altered metabolic pathways were identified, 
including glutamate and glutamine metabolism; valine, 
leucine and isoleucine biosynthesis; arginine and 
proline metabolism; GSH metabolism; alanine, aspartate 
and glutamate metabolism; fatty acid degradation; 
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tricarboxylic acid (TCA) cycle; phenylalanine, tyrosine 
and tryptophan biosynthesis (Figure 7G). Besides the 
five metabolic pathways identified in LGD, three extra 
metabolic pathways were significantly altered in HGD, 
including valine, leucine and isoleucine biosynthesis; 
TCA cycle; phenylalanine, tyrosine and tryptophan 
biosynthesis. As one of the core metabolites in TCA cycle, 
succinate became involved in the perturbed metabolic 
network, displaying the correlations with six metabolites 
(glucose, valine, histidine, PUFA, asparagine, α-acid 
glycoprotein) as shown in Figure 7C.
The GC stage

Totally, 45 extracted metabolites (27 correlated 
metabolites, 18 NMR-invisible metabolites), 31 enzymes 

and 125 metabolite-enzyme relations were used to 
reconstruct the perturbed metabolic network associated 
with GC (Figure 7D, Supplementary Table S13). Up 
to ten significantly altered metabolic pathways were 
identified, including glutamate and glutamine metabolism; 
phenylalanine, tyrosine and tryptophan biosynthesis; 
valine, leucine and isoleucine biosynthesis; glycine, serine 
and threonine metabolism; glycolysis/gluconeogenesis; 
arginine and proline metabolism; GSH metabolism; 
alanine, aspartate and glutamate metabolism; fatty acid 
degradation; TCA cycle (Figure 7H). Notably, succinate 
was significantly enhanced in GC with insignificantly 
changed level in the precancerous stages (Supplementary 
Tables S3-S6). In addition to the eight metabolic pathways 
identified in HGD, two extra metabolic pathways were 

Figure 6: Pseudo-2D OR-STOCSY spectra based on SRV clusters derived from the NMR data set of the sera. Significant 
inter-metabolite correlations between clusters were identified from the OR-STOCSY analysis for A. GS rats vs. CON rats; B. LGD rats vs. 
CON rats; C. HGD vs. CON rats; D. GC rats vs. CON rats (Supplementary Tables S7-S10). The degree of metabolic correlation is color-
coded (red for positive correlation, blue for negative correlation) with a correlation threshold of 0.9.
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Figure 7: Perturbed metabolic networks and significantly altered metabolic pathways associated with four typical 
pathological stages of gastric carcinogenesis compared with the normal stage. A, E. GS vs. CON; B, F. LGD vs. CON; C, 
G. HGD vs. CON; D, H. GC vs. CON. Filled squares are the metabolites with significant inter-metabolite correlations identified from 
OR-STOCSY spectra, which were used to calculate the shortest path lengths and reconstruct perturbed metabolic networks. The red, blue 
and black filled squares denote significantly increased (p < 0.05), significantly decreased levels (p < 0.05), and insignificantly changed 
levels (p > 0.05) in MODEL rats compared with those in CON rats, respectively. Unfilled squares are NMR-invisible metabolites and filled 
circles are significant enzymes, both extracted from the calculation of the shortest path lengths. Significantly altered metabolic pathways 
were identified based on pathway impact values calculated from the pathway topology analysis with a threshold of 0.3. The p value in the 
significantly altered metabolic pathways (right column) was calculated from the enrichment analysis.
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distinctly altered in GC, including glycine, serine and 
threonine metabolism, glycolysis/gluconeogenesis.

DISCUSSION

Gastric carcinogenesis is a multifactor and multistep 
process. Previous works have performed metabolic 
profiling of tissues and sera derived from both GC patients 
and GC animal models [6, 27, 28], and highlighted the 
metabolic profiles of GC. However, so for few works have 
been reported to clarify the globe metabolic alterations 
associated with GC progression, and reveal the underlying 
molecular mechanisms.

In the present study, we established a rat model 
of gastric carcinogenesis, observed distinctly different 
metabolic profiles and changed metabolite levels linked to 
gastric carcinogenesis. Based on pseudo-2D OR-STOCSY 
spectra, we extracted metabolites, enzymes and metabolite-
enzyme relations and reconstructed them into perturbed 
metabolic networks. From the pathological stages-related 
metabolic networks, we identified significantly altered 
metabolic pathways and significant metabolites through 
pathway analysis. To our knowledge, this work for the first 
time depicted the perturbed metabolic networks associated 
with the four pathological stages of gastric carcinogenesis.

Disordered oxidative stress might be responsible 
for dominant metabolic alterations in gastritis

Four significantly altered metabolic pathways in the 
GS stage include glutamate and glutamine metabolism; 

GSH metabolism; alanine, aspartate and glutamate 
metabolism; fatty acid metabolism (Figure 8). These 
results suggest that oxidative stress might be an early 
primary event in GS. Chronic inflammation, such as 
GS, was closely correlated to oxidative stress through 
generating high concentration of reactive oxygen species 
(ROS).

Animal models of GS, either H. pylori-infected 
or high salt diet-induced, were mostly associated with 
increased oxidative DNA damage. Previous works have 
detected high levels of 8-oxodG (a marker for oxidative 
DNA damage) in DNA from the tissues of patients with 
chronic atrophic gastritis and intestinal metaplasia, H. 
pylori infected patients [29], and GC patients as well [30].

The fatty acid metabolism was significantly altered 
in GS. 3-hydrobutyrate is usually synthesized from 
acetoacetate as the production of fatty acid degradation. 
Chronic inflammation has been well established to be 
a contributor of lipid peroxidation. In this work, the 
pathway analysis identified an excess fatty acid oxidation 
in GS. Furthermore, both decreased PUFA and increased 
3-hydroxybutyrate were indicative of activated fatty acid 
degradation in GS. Similar results have been reported by 
Yoshinori Ito et al [31]. They analyzed serum levels of 
fatty acids by GC-MS, and detected decreased levels of 
saturated fatty acids when the mice were infected with H. 
pylori.

As an extensively studied metabolic pathway, the 
GSH metabolism has been found to work as free radical 
scavengers and promotes DNA damage repairs and play 
crucial roles in oxidative defense systems. When gastric 

Figure 8: Schematic representation of significantly altered metabolic pathways associated with the four typical 
pathological stages of gastric carcinogenesis compared with the normal stage.
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mucosal damage occurs, shift of the metabolic flux to 
Pentose phosphate pathway (PPP) would generate a 
high level of GSH. This would enhance the capability of 
removing ROS, and thus prevent ROS-induced injury in 
gastric epithelial cells [32].

In short, enhanced oxidative stress might be a 
salient metabolic basis for GS which caused the disorders 
in its relevant metabolic pathways. Moreover, our results 
demonstrated that oxidative stress was also linked to 
other pathological stages (LGD, HGD, GC), reflecting an 
increase risk of oxidative stress in gastric carcinogenesis.

Amino acids levels were markedly increased 
during gastric dysplasia

Here we examined the perturbed metabolic networks 
associated with the two dysplasia stages (LGD, HGD). 
Both dysplasia stages showed increasing tendencies of 
amino acid levels, especially in HGD. The increased levels 
of amino acids were frequently observed in patients with 
gastric diseases, which made significant contributions to 
distinguish GC from normal subjects [33]. In addition, 
pathway analysis identified several disturbed amino 
acid-related pathways in HGD, including phenylalanine, 
tyrosine and tryptophan biosynthesis, valine, leucine and 
isoleucine biosynthesis. Pathway analysis also identified 
that TCA cycle became disordered in HGD, even though 
the levels of TCA intermediates were not significantly 
changed. Furthermore, the perturbed metabolic networks 
exhibit more inter-metabolite correlations between amino 
acids and TCA intermediates (such as succinate) in HGD 
than those in GS and LGC stages, These results imply that 
amino acid metabolism might be correlated with TCA 
cycle.

Amino acid could enter TCA cycle through being 
converted into TCA intermediates for generating ATP. 
Chan et al. analyzed metabolomic profiles of GC, and 
found that both TCA intermediates and amino acids were 
elevated, probably resulting from anaplerotic reactions 
[33]. It is well known that cancerous cells could enhance 
anaplerotic reactions. Our work observed increased 
levels of phenylalanine, tyrosine, lysine and serine were 
increased in HGD. These amino acids could be converted 
into fumarate and α-KG [34]. BCAAs are the most 
frequently identified amino acids in GC, and play critical 
roles in tumor growth and survival by coordinating cellular 
bioenergetics and biosynthesis through TCA cycle [35].

Contrary to other amino acids, glutamine showed 
significantly decreased levels in the four pathological 
stages, approaching the lowest level in HGD. It is thus 
suggested that glutamine, the most abundant amino acid 
in mammals, was utilized as an alternative source of TCA 
cycle anaplerosis. Furthermore, glutamine always works 
as an important metabolite consumed by the reductive 
carboxylation to sustain anabolic processes [36]. The 
decreased glutamine level might reflect the weakened 

antioxidant defense system as gastric mucosal damage 
occurred and GC progressed.

In addition to the four disordered metabolic 
pathways identified in GS, the arginine and proline 
metabolism was also significantly altered in the dysplasia 
stages (Figure 8). This altered metabolism was indicative 
of the ongoing enhanced oxidative stress in dysplasia 
as GS. The electrons from the arginine and proline 
metabolism produced ROS and initiated a variety of 
downstream effects [37], potentially brought the influence 
to the nucleotide metabolism and RNA production as 
reported previously [38]. Liu et al. found that the product 
of proline oxidation, namely 1-pyrroline-5-carboxylat, 
could be recycled back into proline with redox transfers 
[39]. The disorder of proline oxidase might increase the 
cancer risk [40].

Gastric carcinogenesis is a multi-stage nonlinear 
dynamical process. Our work indicated that both 
dysplasia-related metabolic pathways and levels of some 
metabolites were remarkably altered also in GC. These 
results suggest that gastric dysplasia might be near the 
critical state, which could be detected by dynamical 
network biomarkers based on the measured metabolites 
[41, 42]. These biomarkers could be potentially used for 
early diagnosis of GC.

Summarily, in gastric dysplasia stages some amino 
acids were enhanced and the relevant metabolic pathways 
were activated. These amino acids potentially acted as 
alternative sources to replenish the pools of metabolic 
intermediates in TCA cycle, and fit metabolic requirements 
of cell proliferation [36].

Disordered glycolysis substantially contributed 
to metabolic alterations in gastric cancer

The GC stage showed more significant metabolic 
alterations than the precancerous stages, in which up 
to ten significantly altered metabolic pathways were 
identified (Figure 8). In GC, glycolysis/gluconeogenesis 
became disordered, while lactate and glucose approached 
the highest level and lowest level, respectively. These 
results implied that glycolysis was activated in GC 
(Figure 7H). More metabolites are converted into lactate 
through glycolysis in tumor cells, which has been known 
historically as the “Warburg effect”. Enhanced aerobic 
glycolysis is a unique metabolic feature of cancer, which 
was observed frequently in metabolomic research of GC 
[33]. However, it is less consistent whether oxidative 
phosphorylation pathways were suppressed in gastric 
cancer cells [33]. Regarding TCA cycle, some previous 
studies demonstrated increased levels of certain TCA 
cycle intermediates, such as malate, citrate and fumarate 
[33], while Cai et al. [43] reported several inhibited 
enzymes in TCA cycle. They performed a combined 
proteomics and metabolomics profiling on gastric cardia 
cancer, and detected five stimulated enzymes correlated 
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with glycolysis, as well as five inhibited enzymes involved 
in TCA cycle and PPP pathways [43].

Compared with those in the precancerous stages, 
more amino acids-related metabolic pathways were 
identified, and more amino acids were dramatically 
increased in GC. The glycine, serine and threonine 
metabolism was activated with significantly increased 
levels of the glucogenic amino acids, which were 
associated with tumorigenesis. Jain et al. showed that 
glycine was closely correlated with the disordered 
glycolysis, working as a key metabolite in the rapid 
cell proliferation of tumors [44]. Furthermore, serine 
was derived from a branch of glycolysis and could be 
converted to glycine [45]. In addition, serine and glycine 
biosynthesis might suppress cellular antioxidative 
capacities and thus supported tumor homeostasis [46]. 
Similarly to HGD stage, the GC stage showed the 
disturbed BCAA biosynthesis and phenylalanine, tyrosine 
and tryptophan biosynthesis.

Although previous works have reported the up-
regulated flux through certain amino acids metabolism, 
the underlying mechanisms remain elusive. The 
metabolic fate of amino acids is intertwined with various 
process, including metabolic pathways such as TCA 
cycle, glycolysis, synthesis of protein, phospholipid and 
nucleotide, production of intermediates for one-carbon 
metabolism, and maintenance of cellular osmolality, 
etc. Given amino acid metabolism is correlated with 
complicated interaction networks in carcinogenesis, 
it remains a future challenge to establish a precise link 
between the altered amino acid metabolisms and cancer 
progression.

Choline phosphorylation kept disorder and fatty 
acid degradation kept stimulated during gastric 
carcinogenesis

Choline, PC and GPC could transform reciprocally 
during the choline phosphorylation process [47]. The 
increased level of total choline (choline, PC and GPC) 
has been extensively reported in a wide variety of cancers 
[48]. In this work, we detected markedly increased level 
of total choline together with the altered levels of PC and 
GPC during gastric carcinogenesis. This observation was 
indicative of the disturbance of choline phosphorylation 
in gastric carcinogenesis. The disturbed choline 
phosphorylation in cancer was usually accompanied by 
consequent alterations of choline-containing metabolites 
[49]. Furthermore, alteration in the levels of choline, PC 
and GPC could lead to fluctuated fatty acid levels and 
thereby activated fatty acid degradation [50]. Our work 
demonstrated that the pathway of fatty acid degradation 
kept activated during gastric carcinogenesis. Expectedly, 
the activated fatty acid degradation is a common feature of 
all cancers, since cellular proliferation requires fatty acids 
for synthesis of membranes and signing molecules [50].

In addition, the level of α-acid glycoprotein 
was increased in LGD, HGD and GC stages. As an 
immunomodulating molecule, α-acid glycoprotein 
usually participates in the immune regulation 
process [51]. Tilg et al. has demonstrated that α-acid 
glycoprotein facilitated the secretion of an IL-1 inhibitor 
by murine macrophages, most probably working as an 
IL-1 receptor antagonist [52]. Moreover, Nakamura et 
al. showed that monocytes stimulated by inflammatory 
cytokines, could produce α-acid glycoprotein and 
thereby promoted the fatty acid metabolism for the 
cell proliferation [53]. Thus, the increased level of 
α-acid glycoprotein could not only enhance metabolic 
alterations, but also stimulate the immune response 
during gastric carcinogenesis.

Limitations

Expectedly, the identified metabolic pathways 
could work as key modules to distinguish the five stages. 
However, in this work, we only detected the metabolite 
levels without measurements of the expression levels 
and activities of regulatory enzymes involved in the 
reconstructed metabolic networks. An integrated analysis, 
combining the differential metabolites with their upstream 
genes or proteins, should be conducted to specifically 
elucidate significant metabolic regulatory pathways 
underlying GC progression.

In addition, it should also be noted that the 
perturbed metabolic networks were mainly reconstructed 
based on the inter-metabolite correlation analysis, 
which could not correspond to the causal or direct 
the associations between molecules or between the 
pathways. Some analysis methods have been developed 
based on the direct or causal associations, which could 
be used to accurately quantify direct associations [54, 
55] or distinguish direct dependencies in regulatory 
networks [56].

In conclusion, we performed NMR-based 
metabolomic profiling of the sera derived from a rat model 
of gastric carcinogenesis. We reconstructed the perturbed 
metabolic networks, identified significantly altered 
metabolic pathways and significant metabolites with 
distinctly changed levels for the four pathological stages 
of gastric carcinogenesis. We found that oxidative stress-
related metabolic pathways, choline phosphorylation 
and fatty acid degradation, were continually disturbed 
during the progression from GS to GC. The amino acid 
metabolism was perturbed dramatically during gastric 
dysplasia and GC. In GC stage, more metabolite levels 
and more metabolic pathways were significantly altered. 
Two pathways (glycolysis; glycine, serine and threonine 
metabolism) became activated in GC. Our results shed 
light on the molecular mechanisms underlying gastric 
carcinogenesis, and may be of great benefit to the detailed 
understanding of the development and progression of GC.
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MATERIALS AND METHODS

Chemicals and animal diets

NaH2PO4·2H2O and K2HPO4·3H2O (all analytical 
grade) were purchased from Sinopharm Chemical Reagent 
Co., Ltd. (Shanghai, China), while analytical grade 
sodium azide (NaN3) was obtained from Sangon Biotech 
(Shanghai) Co., Ltd. (shanghai, China). N-methyl-N'-
nitro-N-nitrosoguanidine (MNNG) was purchased from 
TCI (Shanghai) Development Co., Ltd (Shanghai, China), 
while the custom 8% NaCl chow pellets were obtained 
from Suzhou Shuangshi Laboratory Animal Feed Science 
Co., Ltd. (Suzhou, China). MNNG was dissolved in water 
at a concentration of 1 mg/ml and kept in the refrigerator 
at 4°C. The stock solution of MNNG was diluted to 100 
μg/ml by tap water just before use.

Animal experiments

The male Wistar rats (age 3 weeks) were purchased 
from Shanghai Experimental Animal Center of the Chinese 
Academy of Sciences (Shanghai, China). The study was 
performed in accordance with protocols approved by 
Xiamen University Animal Ethics Committee. All 128 
animals were housed in suspended, wire-bottomed cages 
in animal quarters at a controlled temperature (20-24°C) 
and humidity (30-50%), with a 12-hr/12-hr light/dark 
cycle. Rats were randomly divided into the MODEL group 
(n=96) and CON (normal control) group (n=32). After 
one week of habituation, each MODEL rat was given 
the MNNG solution (100 μg/ml) from a bottle covered 
with aluminum foil to prevent photolysis of MNNG. The 
solution was replenished every day. MODEL rats were 
given chow pellets with 8% NaCl [57], while CON rats 
were fed standard rodent chow pellets and water. After 
40 weeks MODEL rats were given standard rodent chow 
pellets and water. During the process of establishing 
the rat model, one or two MODEL rats were randomly 
sacrificed by exsanguinations under ether anesthesia 
after 10 weeks. CON rats were randomly sacrificed at the 
same time points. The blood was drawn to prepare serum 
samples for NMR spectroscopic analysis. Then the lesion 
stomach tissues were excised and fixed in 10% formalin 
for histopathological examination. Primary organs of the 
rats have also been histopathologically examined to ensure 
the model specificity. All surviving rats were sacrificed at 
the end of the experiment (in 51th week).

Histopathology

The stomach tissues from MODEL and CON 
rats were fixed in 10% formalin. After dehydrating, the 
biopsies embedded in wax were sectioned at 5 μm, and 
stained with hematoxylin and eosin for histopathological 
examination by light microscopy [22, 23].

Sample preparation and NMR measurements

The serum samples (300 μL) were thawed on the ice, 
and mixed with 210 μL of deuterated phosphate buffer (50 
mM, pH 7.4). After centrifugation at 12000 g at 4°C for 10 
min to remove the precipitates, 500 μL of the supernatants 
was transferred into a 5 mm NMR tube and analyzed by 
NMR spectroscopy [58]. 1D 1H CPMG spectra of these 
samples were acquired on a Bruker Avance III 600 MHz 
spectrometer at 25°C using the pulse sequence [RD-90°-
(τ-180°-τ)n-ACQ] with water suppression. A fixed total 
spin-spin relaxation delay of 80ms were used to attenuate 
broad NMR signals of slowly tumbling molecules with 
short T2 relaxation times, and retain signals of low 
molecular weight compounds. The spectral width was 12 
KHz with an acquisition time per scan of 2.7 s, and a total 
of 256 transients were collected into 64K data points for 
each spectrum. For the purpose of resonance assignments, 
2D NMR 1H-1H TOCSY spectra were recorded on selected 
samples. The acquisition parameters were referred to the 
literatures [24, 59].

Data processing and multivariate statistical 
analysis

The FIDs were multiplied by an exponential 
function corresponding to a 0.3 Hz line-broadening 
factor before Fourier transformation. The obtained NMR 
spectra were manually phased and baseline-corrected by 
using the Bruker TOPSPIN 2.1 package (Bruker Biospin, 
Germany) and referenced to the CH3 resonance of lactate 
at 1.33 for serum spectra. Each 1H NMR spectrum was 
segmented into regions of 0.001 ppm and integrated using 
the MestReNova Version 6.1 (Mestrelab Research S.L, 
Espain). For the metabolites with highly overlapping 
peaks, we selected the non-overlapping peaks to accurately 
calculate the spectral integrals for these metabolites. The 
spectral region of serum was δ 9.00-0.00, while the data 
of region δ 5.7-4.6 was set to zero to eliminate distorted 
baseline from imperfect water saturation. The icoshift 
algorithm was performed to remove misalignment of 
NMR signals in MATLAB (Math Works, USA) [60].

Normalization was applied to the total sum of 
integrated data from each sample (a constant integral of 
100 was used), making the data directly comparable with 
each other [61, 62]. Relative integrals of the identified 
metabolites (Supplementary Figure S2) were used for 
comparison among the five groups of rats. Variations were 
calculated by utilizing one way ANOVA followed by 
the Tukey's multiple comparisons test in MATLAB. The 
variables with p < 0.05 were considered as statistically 
significant.

Furthermore, the SRV arithmetic was utilized to 
analyze the NMR spectra [14, 63]. SRV is an automated 
variable size bucketing procedure aiming at the 
identification of statistically significant metabolic NMR 
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peaks [9]. The effect of SRV is achieved by focusing 
on the statistical relationships between consecutive 
variables inherited from the high-resolution bucketing 
without a priori knowledge. The SRV approach could 
greatly reduce the dimensionality inherited from the 
high-resolution bucketing to decrease invalid signals 
of the metabolite correlations. We performed the SRV 
arithmetic in MATLAB. The following parameters were 
used to efficiently recouple variables inherited from the 
high-resolution bucketing: peak base width at the noise 
threshold for a resolved weak singlet in the aromatic 
area of 0.01 ppm (singlet size), bucketing resolution of 
0.001 ppm. Totally, 153 SRV clusters were identified in 
the CPMG spectra, representing 84.42% of the spectral 
signals (Supplementary Figure S10).

As the following OR-STOCSY analysis was 
uniquely conducted on the data of the SRV clusters to 
identify intra/inter-metabolite correlations, PCA was thus 
performed on the SRV data too for keeping the consistency 
of data analysis. Using the software SIMCA-P+12.0 
(Umetrics, Sweden), we performed PCA to reveal 
trends, highlight outliers, and show clusters among the 
observations. The parameters R2X(cum) and Q2(cum) 
were used to evaluate the quality of the PCA model. 
R2X(cum) denotes the fraction of the sum of the squares of 
the explanation of the integral values in the model, while 
Q2(cum) represents the cross-validated explained variation 
[64]. Based on the PCA scores plots, discriminant planes 
were calculated in MATLAB to highlight metabolic profile 
differences among the five stages.

Moreover, we performed PLS-DA on the SRV data 
to check grouping trends. The supervised approach used 
class membership information to attempt at the maximum 
segregation among the groups of the rats. Furthermore, 
RPT was utilized to determine the reliability of the sample 
classification [65], and assess the risk that the current 
PLS-DA was spurious [66]. This validation is usually 
performed by comparing the goodness of fit (R2 and Q2) 
of the original model with that of several models based on 
data where the order of the Y-observations is randomly 
permuted, while the X-matrix is kept intact. If the original 
model is valid, all the Q2-values to the left are lower than 
the original points to the right, and the regression line of 
the Q2-points intersects the vertical axis below zero [67]. 
Both PLS-DA and the corresponding RPT were conducted 
by using SIMCA-P+ 12.0.

OPLS-DA is a derivative PLS-DA removing 
uncorrelated variables in the within-class with the 
orthogonal filter [16, 64]. Most of the variables related to 
the class belonging are described on the first predictive 
principal component in the OPLS-DA model. Then, the 
linear classifiers were created on the basis of the PLS-
DA models and OPLS-DA models in MATLAB (www.
mathworks.com/help/stats/discriminant-analysis.html). The 
linear classifiers were used to verify the accuracy of 

classification [68]. From the OPLS-DA loading plots, we 
identified differential metabolites significantly responsible 
for the class separation. Two criterions were used for the 
identification: one is the variable importance value (VIP) 
in the projection [64], another is the correlation coefficients 
(r) of the variables relative to the first predictive component 
(tp1) in the OPLS-DA model [69]. The table of critical 
values of correlation coefficient (r) was referred based on 
the degrees of freedom (df). The df values were determined 
as n1+n2-2 with n1 and n2 as the respective number of 
samples of the two groups in the OPLS-DA model. The 
loading plots of the OPLS-DA model with the two criterions 
were reconstituted in MATLAB. In the reconstituted loading 
plots, the red color indicates the peak with VIP > 1 and |r| > 
the critical value of P = 0.01; orange indicates the peak with 
VIP > 1 and |r| between the critical values of P = 0.05 and 
P = 0.01; blue indicates the peak with VIP < 1 or |r| < the 
critical value of P = 0.05.

R-STOCSY for assigning metabolite resonances

The R-STOCSY analysis was developed by a 
combination of SRV with the STOCSY analysis [13]. 
STOCSY can not only provide the hallmark information 
of spin correlations contained in a classical TOCSY 
spectrum (intra-metabolite corrections in spin systems), 
but also offer significant information of metabolic 
correlations (inter-metabolite corrections in metabolic 
systems). R-STOCSY represents the autocorrelation 
matrix of a spectral data set as a 2D pseudo-spectrum [9]. 
The autocorrelation matrix between the SRV clusters 
identified from the NMR data set was calculated in 
MATLAB, according to [9]

Where, NS is the number of spectra in the data set, X 
represents the autoscaled SRV cluster matrix of NS spectra 
× NV SRV clusters, C is the autocorrelation matrix (NV× 
NV).

Compared to STOCSY, R-STOCSY removes 
random correlations from the noise that otherwise 
deteriorate the quality of the STOCSY spectrum [9]. 
Therefore, R-STOCSY can be used to identify only 
meaningful correlations between metabolic signals, and 
significantly enhances the biological interpretation of the 
STOCSY spectrum. In addition, R-STOCSY is validated 
through measuring the distances between correlated 
metabolites within the whole metabolic network, which 
shows that the average shortest path length is significantly 
shorter for the detected correlations compared with 
metabolite couples randomly selected from within the 
entire KEGG metabolic network [9].

C =
−
1
1NS
X X'
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OR-STOCSY for identifying inter-metabolite 
correlations

As one of the preprocessing methods, the orthogonal 
filter is extensively used to remove undesirable systemic 
variation within the data set [16, 65]. The OR-STOCSY 
analysis was developed by associating the orthogonal 
filter with R-STOCSY [15]. As a supervised approach, 
OR-STOCSY yields pairwise inter-metabolite correlations 
related to perturbations of biological interest, even if they 
make a minor contribution to the global variance of a 
complex data compared to other (possible confounding) 
effects under study [15].

Reconstructing perturbed metabolic networks

The metabolism is the set of life-sustaining chemical 
transformations within the cells of living organisms which 
include thousands of reactions between metabolites and 
enzymes. As a comprehensive knowledge repository, the 
Kyoto Encyclopedia of Genes and Genomes (KEGG, 
www.genome.jp/kegg/) has been extensively utilized as 
one of the main data resources to reconstruct metabolic 
networks [70]. The metabolic network can be viewed 
both as a network of proteins (metabolic enzymes) and 
as a network of chemical compounds (metabolites). In 
the KEGG database, the information of one metabolic 
pathway is separately stored into one separate KGML file 
(KEGG Markup Language, www.genome.jp/kegg/xml/) 
[71]. The information contains metabolites, enzymes and 
metabolite-enzyme relations, and involves many different 
species (human, rats, mice, etc.). To more efficiently 
explore a global metabolic network for rats, we integrated 
all rat-related information contained in KGML files into 
one bio-graph object file with our homebuilt scripts 
executed in MATLAB. The bio-graph object file was 
developed specially for bioinformatics analysis, using 
nodes to represent metabolites and enzymes, edges to 
denote metabolite-enzyme relations. The bio-graph object 
file contains 70 metabolic pathways, including 2501 nodes 
(1183 metabolites, 1318 enzymes) and 2862 relations. 
This novel network analysis tool is provided herein as 
Supplementary Materials and Methods, including the 
scripts with instructions and the edited KEGG PATHWAY 
database.

From the OR-STOCSY analyses of GS, LGD, 
HGD, GC rats vs. CON rats, we identified significant 
inter-metabolite correlations linked to the four 
pathological stages with a correlation threshold of 0.9. 
Through calculating the shortest path lengths among 
the corrected metabolites [17], we extracted significant 
metabolites, enzymes and metabolite-enzyme relations 
from the bio-graph object file to reconstruct perturbed 
metabolic networks associated with the four pathological 
stages.

Identifying significantly altered metabolic 
pathways

A perturbed metabolic network is consist of several 
metabolic pathways linked by metabolites, enzymes and 
metabolites-enzyme relations. Expectedly, metabolic 
alterations occurring in important nodes of the metabolic 
network would potentially trigger significant impacts on 
the pathway than those occurring in marginal or relatively 
isolated nodes [72]. The architecture of metabolic 
pathways represents the knowledge about the complicated 
relationships among molecules within a global metabolic 
network. The pathway topology analysis has been used to 
identify metabolic pathways which are significantly altered 
under conditions of study [18]. The relative-betweenness 
centrality arithmetic is usually used to measure the number 
of shortest paths going through the node. We conducted 
the pathway topology analysis in MetaboAnalyst 3.0 
(www.metaboanalyst.ca/) [73] to calculate pathway 
impact values based on the metabolites which were used 
to reconstruct the metabolic network. Thereafter, we 
identified the significantly altered metabolic pathways 
according to the calculated pathway impact values with a 
threshold of 0.3 [18].
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