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Decellularized scaffolds in regenerative medicine
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ABSTRACT
Allogeneic organ transplantation remains the ultimate solution for end-stage 

organ failure. Yet, the clinical application is limited by the shortage of donor organs and 
the need for lifelong immunosuppression, highlighting the importance of developing 
effective therapeutic strategies. In the field of regenerative medicine, various 
regenerative technologies have lately been developed using various biomaterials to 
address these limitations. Decellularized scaffolds, derived mainly from various non-
autologous organs, have been proved a regenerative capability in vivo and in vitro 
and become an emerging treatment approach. However, this regenerative capability 
varies between scaffolds as a result of the diversity of anatomical structure and 
cellular composition of organs used for decellularization. Herein, recent advances in 
scaffolds based on organ regeneration in vivo and in vitro are highlighted along with 
aspects where further investigations and analyses are needed.

INTRODUCTION

Allogeneic organ transplantation remains the 
ultimate solution for end-stage organ failure; however, 
shortage of donor organs has resulted in extending 
transplantation waiting lists. Body organs are complex 
structures, mostly composed of various collections of 
tissues, made up of various extracellular matrixes and 
cellular components. In the field of regenerative medicine, 
organs are decellularized to remove cellular components 
to produce acellular extracellular matrix (ECM) or as 
known as Decellularized scaffolds. These scaffolds, since 
they lack cellular components and maintain ECMs, are 
“rejectless” when implanted, able to act as an inductive 
template for recellularization.

Decellularized scaffolds have become an emerging 
approach for treatment. The clinical use of decellularized 
scaffolds has been documented for applications such as 
blood vessels, cardiac valves and renal bladders. Even 
though, the current applications may be limited to tissue-
level and anatomically simple organs, they ultimately 
provide the foundation for future complex and functioning 
organs regeneration.

The use of decellularized scaffolds in regenerative 
medicine has provided several breakthroughs recently. 
Despite the variability in modalities and organs used, 
these scaffolds have been proved a capacity to promote 
regeneration. In vitro studies, relying on bioreactors, 
researchers investigated the effect (role) of these scaffolds 
on cell proliferation and organ construction. In vivo 
implantations of decellularized scaffolds explored the 
effect of the scaffold on promoting angiogenesis and 
local regeneration (Figure 1). This rapid burgeoning 
of knowledge has spawned an expanding gap between 
research and clinical application, Herein, a review of 
recent advances in scaffolds based on organ regeneration 
in vivo and in vitro and along with areas where further 
investigation and analyses are needed.

LIVER

Liver is a glandular organ, plays important roles in 
digestion, metabolism and homeostasis; therefore, liver is 
equipped with an extraordinary regenerative capability. 
Subsequent to hepatic tissue injury, surgical resection, 
poisoning, infection or necrosis of up to 80-90% of the 
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liver, remnant hepatic tissue can rapidly regenerate to 
restore the original volume and weight. [1]. However, this 
regenerative capability may be compromised or ineffective 
in cases involving acute and chronic liver failure, and 
effective treatment for such cases largely replies on 
allogeneic liver transplantation. Thus constructing a 
portable liver by liver tissue engineering in vitro might be 
a better choice at present.

Liver tissue engineering has made remarkable 
progress in recent years, providing insights into 
liver regeneration [2-5]. In 2010, transferable and 
intact acellular liver scaffolds, were developed by 
perfusing various chemical detergents into the portal 
vein in rats. These scaffolds maintained the three-
dimensional structure (Figure 2) and function of the 
microvasculature and extracellular matrix components 
[3, 4]. Decellularized liver scaffolds demonstrated an 
ability to support efficient in vitro recellularization 
with primary hepatocytes and subsequent perfusion of 
cells [2, 3, 5, 6]. In vivo microsurgical implantation of 
decellularized hepatic scaffolds, involving microsurgical 
vascular anastomoses, showed scaffolds seeding with 
cells. Thrombosis formations, however, were noticed 
shortly post transplantation [3, 5, 7]. To address the 
thrombogenicity, heparin was perfused into multilayer 
on the inner surface of the scaffolds. [8-11] Despite the 
efficacy of this intervention, long-term effectiveness needs 
further experimentation.

HEART

Heart has a limited regenerative capacity compared 
to liver. Studies have shown, cardiac stem cells in the 
adult heart are able to differentiate, but unable to restore 
functions when the heart undergoes severe pathological 
changes [12, 13]. Heart failure can be the end-stage of 
various cardiovascular diseases. Management of end-
stage heart failure including pharmacological, surgical and 
palliative approaches cannot provide ultimate solutions. 

The first decellularized cardiac scaffolds were 
produced from rats in 2008 [14]. These scaffolds were 
perfused in vitro with cardiomyocytes and vascular 
endothelial cells to mimic cardiac cell composition. 

Successfully, these cardiac constructs were able to perform 
pump function after implanting [14]. Human derived, 
induced pluripotent stem cells (iPSCs) were seeded into 
decellularized mouse hearts in vitro. The seeded iPSCs 
were able to migrate, proliferate and differentiate into 
functional cardiomyocytes after implanting, enabling the 
constructed cardiac tissues to demonstrate contractility 
[15] . Murine neonatal cardiac cells and human umbilical 
cord derived endothelial cells (HUVEC) were seeded 
into the left ventricle of decellularized porcine cardiac 
scaffolds resulted in contractive fibers formation in 50% 
of the injection site [16]. Yet, a thorough understanding 
of decellularized scaffolds effect on proliferation and 
differentiation of transplanted cells remains absent from 
the current literature.

Recently, an increasing attention has focused on 
mending myocardial tissue post ischemic myocardial 
infarctions. Bone marrow mesenchymal stem cells 
(MSCs) were anchored onto myocardial ischemia 
infarction, promoting the angiogenesis and heart repair 
[17]. Transplantation of stem cells improved infracted 
tissue condition and overall heart function [18, 19]. 
Considering that decellularized cardiac scaffolds offer 
biocompatibility and contains various cytokines, the utility 
of scaffold for repairing myocardial ischemia infarction 
area promotes the endogenous capacity of the infarcted 
myocardium to attenuate remodeling and improve heart 
function following myocardial infarction [20].

LUNG

Clinical application of scaffold-based tracheal 
regeneration has been reported in the literature [21], 
however, regeneration of pulmonary tissue remains 
challenging [22]. The auto-regenerative capacity of 
pulmonary tissue is limited, unable to restore complete 
pulmonary structure and function, although, local 
progenitor cells can just repair the epithelial layer [23, 24]. 
Therefore, lung transplantation unfortunately remains the 
treatment for end stage lung failure [25]. 

Research into pulmonary tissue regeneration 
has been through two stages. The fundamental notion 
of regenerating a lung segment combines pulmonary 

Figure 1: Schematic diagram of liver regeneration hypothesis using decellularized scaffolds. A. Partial resection of one 
hepatic lobule is operated. B. The defected part is replaced with decellularized liver scaffold. C. Cells in the residential liver cross the suture 
border and regenerate on the liver scaffold.
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stem cells with synthetic materials for constructing 
of pulmonary functional units (the alveolus), able to 
regenerate lung tissue. Based on such proposal, pulmonary 
stem cells were seeded into synthetic material in vivo 
and in vitro. The constructs failed to form complete 
pulmonary structure and function [26], possibly due to 
poor integration and histocompatibility and impaired 
respiratory function caused by post-operative infection 
[27] .

Recently, pulmonary tissue engineering has focused 
on regeneration promoted by decellularized scaffold in 
vivo and in vitro. During decellularization, the structural 
proteins and relevant cytokines of extracellular matrix 
(ECM) are retained, whereas cellular components are 
removed [28, 29] . Epithelial and endothelial cells were 
seeded onto trachea and vessels, two independent research 
groups at Yale University and Harvard University found 
that effective gas exchange can be generated six hours 
later in rats with the tissue engineered lungs [30, 31].

The MSCs cultured on the pulmonary scaffold could 
be induced to proliferate and differentiate. There was little 
difference in cell proliferation and differentiation between 
normal pulmonary scaffold and fibrosis scaffold [32]. 
Whether the fibrosis alleviated and whether other cells 
seeded on the scaffold appear the same result still need 
further examination. It is something to ponder that what 
the outcome occurs after transplanting the engineered 
fibrosis lung in vivo. 

KIDNEY

Kidney is a parenchymal organ, composed of nearly 
million nephrons, uniquely arranged to eliminate body 
wastes and regulate water and salt balance. Due to this 
complexity kidney regeneration, therefore, is not an easy 
task [35] [36]. Nevertheless, research into cell engineering 
and stem cells may influence kidney regeneration [37]. A 
recent study indicated that adult renal progenitor cells 
(ARPCS) can be used to repair renal tubular damage 
during regeneration [38]. Renal extracellular matrix is 
essential for renal development and repair and signal 
transduction. 

Porcine kidneys were successfully decellularized, 
proposing the possibility of using these transplantable 
scaffolds to construct tissue-engineered kidney 
clinically applicable [39] . Whole porcine kidneys were 
decellularized and then orthotopically in vivo transplanted, 
then prophylaxis was administrated as an anticoagulant. 
Inflammatory cells in the pericapsular region and 
thrombosis occurred due to the lack of endothelial cells 
[40] . 

Tissue-engineered kidney was constructed using rat 
renal decellularized scaffolds seeded with endothelial and 
epithelial cells [41] in vitro (Figure 3). The engineered 
kidneys were orthotopically in vivo transplanted and 
successfully produced urine [42]. The reabsorption of 
partial electrolytes did not reach the level of the normal 
kidney, which may be associated with incomplete 
implantation of cells and immature endothelial cells [43]. 
Along with the further research, the engineered kidney in 

Figure 2: Fabrication, vascular cast, light microstructure and implantation of decellularized liver scaffolds. A. 
Progressing decellularization of a single lobe of rat liver under continuous detergent perfusion. Scale bar 10mm. B. Decellularized whole 
liver scaffold with hepatic artery intact. Scale bar 20mm. C. Vessel corrosion casting of microstructure of the hepatic portal vein (blue), 
the hepatic artery (red) and the hepatic duct (transparent). Scale bar 2mm. H. & E. staining of liver matrix shows existence of blue-
stained nuclei in intact liver D. but not in decellularized liver scaffold (E). F., H. & E. staining results show the border between the liver 
parenchyma and implanted decellularized scaffold. Scale bar 100μm.
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Figure 3: Proliferation of cells in the decellularized kidney scaffolds in vitro. A. B. Double immunofluorescence shows 
the scaffold and the HUVEC with fibronectin (green) and CD31 (red), respectively. On the third day, adhered HUVECs are increased. 
On the seventh day, HUVECs adhere to the wall of median renal vessel-like structure in the scaffolds. C..D. The magnification pictures 
show the white squares in Figure. E. F. Fluorescence micrographs of a re-endothelialized kidney constructs. CD31 positive (red) and 
DAPI-positive HUVECs line the vascular tree across the entire graft cross section (image reconstruction, left) and form a monolayer 
to glomerular capillaries (right; white arrowheads indicate endothelial cells). G.-J. Fluorescence micrographs of re-endothelialized and 
re-epithelialized kidney constructs showing engraftment of podocin-expressing cells (green) and endothelial cells (CD31 positive; red) 
in a glomerulus (left; white arrowheads indicate Bowman’s capsule and the asterisk indicates the vascular pole); engraftment of Na/K-
ATPase-expressing cells (green) in a basolateral distribution in tubuli resembling proximal tubular structures with the appropriate nuclear 
polarity (left middle); engraftment of E-cadherin-expressing cells in tubuli resembling distal tubular structures (right middle); and a three-
dimensional reconstruction of a re-endothelialized vessel leading into a glomerulus (white arrowheads indicate Bowman’s capsule, and the 
asterisk indicates the vascular pole). T, tubule; Ptc, peritubular capillary. A.-D. Republished with permission of the Impact journals, from 
Jin et al. [33]; and E.-J. Reprinted from Song et al. [34] with permission from NPG, permission conveyed through Copyright Clearance 
Center, Inc. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).
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vitro may provide adequate kidney for patients with end-
stage renal disease.

Recent findings showed that the successfully 
engineered renal proximal tubule had the ability of 
absorption, metabolism and endocrine function [44]. We 
successfully demonstrated that the renal decellularized 
scaffolds can induce regeneration of injured kidney [45] 
(Figure 4). The various cytokines in the scaffold may play 
a key role in the recovery of renal function after partial 
nephrectomy. 

Despite the great progress has been made in 
recent researches, it remains difficult to reconstruct a 
complete functional kidney as lots of problems remain 
unresolved. It is essential that the engineered kidney have 
a complete renal function, producing urine and secretion 
of erythropoietin (EPO) before the regenerative kidney 
can be used in clinic. Further research on the stem cell 
biology and biological engineering is expected to open a 
new door for the treatment of renal damage and recovery 
of renal function. 

PANCREAS

Prepubescent, pancreas exhibits a vigorous auto-
regeneration capability, attributed mainly to the plasticity 
of δcells [46] and the regulatory effect of various 
proteins in pancreatic extracellular matrix [47-51]. 
Diabetes mellitus (DM), especially type 2, demonstrate 
compromised insulin secretion associated with β cells 
dedifferentiation [52]. Re-differentiation of βcells could 
possibly provide cure for DM, however, there is no 
definitive cure in present. Regenerative medicine, with 
notable developments of micro-capsule technology and 
bioengineered niche may contribute into the advancement 
of islet transplantation. 

Initial studies into pancreatic regeneration focused 
on the synthesis material such as cross-linked collagen 
matrix liquid scaffold [53-57]. First decellularized 
pancreatic scaffolds were produced from a porcine 
model in 2013. These scaffolds were subsequently 
seeded with human amniotic fluid-derived stem cells 
(hAFSC) and porcine islets. The scaffolds exhibited 

Figure 4: Fabrication and implantation of decellularized kidney scaffolds. A. With continuous detergent perfusion, the rat 
decellularzied kidney scaffold show different gross appearance. Scale bar 10mm. B. Casting model of decelluarized kidney scaffolds 
show intact microvessels. C. Decellularized scaffolds was sutured to a rat underwent partial nephrectomy. D. Macroscopic images show 
longitudinal cross-sections of whole experimental kidneys observation under stereoscopic microscope. Scale bar 20mm. E. Electron 
microscopy observation shows intact extracellular matrix in decellularized kidney scaffold. Scale bar 2μm. F. Radionuclide scanning 
analysis of experimental kidneys. G. H&E staining shows the border between the renal parenchyma and implanted decellularized scaffold. 
Scale bar 100μm.
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an to promote cell proliferation and maintain cellular 
function [58]. Pancreatic acinar cell and β cell were used 
to construct decellularized pancreatic scaffolds in vitro 
resulted in increased insulin level post the subcutaneous 
transplantation [59]. Recent studies indicated, the 
composed pancreas constructed by artificial three 
dimensional material withβcells can regulate the blood 
glucose level after transplanted into mouse in vivo 
[60]. The role of decellularized pancreatic scaffolds in 
controlling blood glucose levels remains unknown. In vivo 
transplantation success of pancreatic constructs demand 

proper oxygenation and re-vascularization of islet grafts 
[56]. Controlling and optimizing these essentials could 
be future research focus. (In addition, confronted with 
how to re-differentiate β cells that dedifferentiated in type 
2 diabetes, the decellularized pancreatic scaffold may 
provide a solution.)

SPINAL CORD AND BRAIN

Treatment of paralysis remains a puzzle in medicine 
nowadays. Paralysis occurs as a proportional resultant 

Table 1: Recent advances in scaffold based organ regeneration research in vivo and in vitro
organ In vitro In vivo reference

kidney

Construct engineered renal proximal 
tubule
Promote cell proliferation and 
differentiation such as iPS with scaffold
Construct engineered kidney by precursor 
or differentiated cell

Renal regeneration mediated by 
decellularized kidney scaffold
Production of urine with implanted tissue 
engineered kidney

[36, 38, 40, 
41, 93, 94]

Heart

Induce precursor cells to differentiate 
into cardiomyocytes with decellularized 
scaffold
The function of beat of biological 
engineered heart

Promotion regeneration of myocardium 
in the area of myocardial ischemia 
infarction [14-17]

Liver
The support of scaffold for the primary 
liver cell or various cell that can be 
induced into hepatocytes

Establish a vascular network rapidly and 
recover partial compensate function [2, 3, 5-10] 

Pancreas
The promotion of pancreatic islet cell 
proliferation and support function
Construction of engineered pancreas

Increase the expression of insulin gene 
by subcutaneous transplantation of 
engineered pancreas
Regulation of blood glucose levels with 
engineered islet transplanted into mice 
with type 1 diabetic  

[11, 49, 51, 52, 
54-56, 95]

CNS

Preservation most matrix of spinal cord 
acellular scaffold.
The modified matrix improve the 
mechanical  property and promote the cell 
proliferation, migration and differentiation

The transplantation of combined scaffold 
with HUCB-MSCs can form the neo-
axons with myelin sheath, and the 
recovery of motor function in rat [60-62, 96]

Bladder

The bladder acellular scaffold promoted 
regeneration of epithelial cells, smooth 
muscle cells, vessels and nerve, which 
can be enhanced by stem cells

[65, 79, 80, 
97]

Esophagus
Promotion of expression of marker protein 
by mucosal epithelial cells with scaffold, 
being suitable for cell survival and 
inhibiting apoptosis

The cover of esophageal sauamous 
epithelium, the regeneration of collagen 
fiber and inherent muscle layer

[75, 98-100]

Trachea
The co-culture of scaffold and cell 
can promote the proliferation of lung 
epithelium and endothelial cells

The appearance of ciliary epithelium and 
angiogenesis with tracheal transplantation [101-105]

Stomach The regeneration of proton pump and thin 
layer of muscle with gastric patch [81]

Intestinal 
tract

Regeneration of intestinal tract, the cover 
with small intestine mucous and the 
appearance of muscle and nerve layer.

[106-108]

Skin
Engineered dermis seeded with fibroblasts, 
endothelial cell can promote cell 
proliferation and adhesion

The engineered dermis, the acellular 
dermal matrix (AlloDerm) can be 
applied in burned wound healing, breast 
reconstruction and transplantation of 
combined stem cell with dermal matrix 
for abdominal wall hernia.

[85-92] 
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of damage to the central nervous system (CNS). Severe 
trauma or pathological conditions can lead to permanent 
loss of sensory and motor functions possibly due to the 
extremely limited auto-regenerative capacity [61, 62]. 
The development of tissue engineering can provide 
a new solution. The research strategy of regenerative 
medicine is the combination of biological scaffold and 
cell and bioactive molecules, to replace and recover the 
damaged tissue. The utility of scaffold has been applied 
in regenerating non-neural tissue with satisfactory 
results; however, the therapeutic potential of scaffolds for 
regenerating CNS tissue has not been well investigated.

First spinal scaffolds were made from rats, cellular 
structure, myelin and nervous process disappeared, while 
most of extracellular matrix structural proteins were 
preserved. [63] CD4+ and CD8+ cell infiltration were not 
obvious when it was subcutaneously embedded, positing 
the weakness of the immunogenicity of spinal scaffolds. 
Spinal scaffold, produced from rats, were combined 
with human umbilical cord blood mesenchymal stem 
cells, and then implanted into spinal cords in rats. The 
results showed that nerve cells migrated into the scaffold, 
accompanied with formation of and new myelinated axons 
resulting in motor function recovery. [64]

Decellularized cerebral scaffolds, derived from 
porcine brains, failed to maintain the original structure, 
but the ECM, containing glycosaminoglycans (GAGs), 
was successfully preserved. [65] The study suggests that 
the extracellular matrix could be used for cell culture due 
to nerve biocompatibility. Human-iPSC derived neurons 
can grow and mature on the matrix. Brain matrix can 
also be further processed into injectable hydrogel nano 
fiber structure. Porcine brain, spinal cord and optic nerve 
were decellularized using a combination of the freezing-
thawing, trypsin digestion, the chemical detergents 
methods. The generated cross-linked scaffolds, preserved 
various growth factors, cultured with pc12 cells and 
demonstrated an ability to promote cell proliferation, 
migration and differentiation. The ECM from CNS appears 
to be more effective than bladder ECM in promoting nerve 
cells proliferation and differentiation. [66] 

VISCERAL ORGANS

Unlike parenchymal organs, a visceral organ is 
an anatomically simple, hallow organ, contains a cavity 
to serve as a tube or poach. Longitudinal defects to a 
visceral organ consequent to trauma and surgical excision 
as per treatment of tumors and congenital diseases can 
be quite difficult to treat, and may require the use of 
artificial synthetic materials. The utility of decellularized 
scaffold has been gaining attention in tissue engineering 
as alternative therapeutic approach for such defects. 
Tissue engineering research has confirmed an applicable 
regenerative capability of decellularized scaffolds derived 
from visceral organs [67, 68]. The use of decellularized 

scaffolds provide optimal properties, leading to 
elimination of cell toxicity, appropriate cell adhesion, 
more extensive source and avoiding the complication such 
as stenosis [67]. 

Decellularized scaffolds derived from bladder 
and small intestine mucosal layer, preceded the clinical 
applications of visceral scaffolds, have become widely 
used for treatment of hollow viscera defect. Bladder 
acellular scaffold was used for repairing bladder defects 
in rats in 1996 [69] . Bladder acellular scaffold, due to 
similarity in anatomic simplicity, were also used in 
reconstruction of other visceral organs, such as tympanic 
membrane [70], esophagus [71-73], trachea [74], larynx 
[75], glottis [76], thoracic wall [77] , ventricular wall [78], 
small intestine [79], and artery [80] . 

Despite its applicability, the regenerative ability 
varies between visceral scaffolds as a result of the 
variability of the anatomical structure and cellular 
composition of organs used for decellularization. 
Therefore, scaffolds of different organs have different 
effects for regenerating an organ. Jejunum [81] [80] 
[79] [78] [77] scaffold is more potent promoting cell 
proliferation and angiogenesis compared to scaffolds of 
bladder [81]. However, visceral scaffolds may not be, or 
less, effective for parenchymal organs regeneration [82].

The process of scaffold-based regeneration of a 
visceral organ demands adequate blood supply to support 
restoration of the organ structure and components in 
addition to motility [67]. Scaffolds, in presence of 
blood supply, can promote implanted stem cells [83, 84] 
to enhance proliferation to functional cells, restoring 
functions to a some extent [85] i.e. motility may not 
be restored. Moreover, modified scaffold can inhibit 
inflammatory reactions for better integration into the 
recipient site [86, 87]. 

SKIN

The skin is the largest organ, covering the entire 
body and providing protection. Various appendages 
within the skin function to equip the skin with sensation, 
lubrication contractility and thermoregulation potentials, 
ultimately to maintain the internal environment. In 
addition, the skin serves as a physical defensive barrier 
against external hazards. Any defect to this barrier entails 
a rapid and efficient repairing, therefore, the abundance 
of stem cell in the skin empowers to a strong regeneration 
capability [88]. Repairing of major skin loss beyond 
this regenerative capability may require the transfer of 
autologous tissue. However, the transfer of autologous 
tissue, in certain situations, may be unavailable or cannot 
fill the defect, emphasizing the need of a backup approach 
to prevent greater mortality. Tissue engineered skin, first 
biomaterial used clinically, has been increasingly used to 
address this need.

The development of bioengineered products of 
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different skin layers - including the tissue engineered 
epidermis, dermis and composite skin - has provided 
innovative tools for clinical applications. Cultured 
epithelial autograft (CEA), an approach to obtain 
epidermal grafts, has been used in repairing of major burns. 
Tissue-engineered epidermal cells, prepared by culturing 
autologous human epidermal keratinocytes in vitro, was 
grafted for repairing burn wounds in two patients. [89] 
However, absence of dermis layer and wound contracture 
and may lead poor cells adhesion and subsequent survival. 
Moreover, scar contracture and blistering, in later stages, 
have been reported. Artificial skin, developed through 
extensive experimentation, comprised of a layer of Silastic 
(epidemis) and a porous bovine collagen-chondroitn 
6-sulfate (dermis), was physiologically used for repairing 
extensive burn injuries, constituted 50—95% of body 
surface area. [90] Compared to the engineered epidermis, 
the skin scaffolds has the ability of promoting migration 
of fibroblasts and angiogenesis and providing optimal 
mechanical and physiochemical properties necessary for 
healing. 

In late 1990s, remarkable progress has been made in 
the clinical application of bioengineered products with the 
use of human derived products in treating burned patients 
[91, 92]. Advances in of acellular scaffold technology 
have led to improved mechanical and biological properties 
of acellular dermal matrix (ADM). However, the porcine 
dermal acellular scaffolds remain widely used in clinical 
application [93, 94]. More recently, stem cells research has 
further enhanced the progress of tissue engineered skin. 
Bone marrow [95] and adipose [96] derived stem cells was 
induced to differentiate and were implanted in the dermal 
acellular matrix. The composite matrix has superior ability 
of promoting wound healing than the pure acellular dermal 
matrix. The property of engineered skin with appendages 
should be optimized in the future

CONCLUSIONS

Organs show huge differences in the regeneration 
capability (Table 1), due to the structure of various organs 
has individual specificity. The regenerative mechanisms 
of various organs differ from each other and therefore, 
strategies in organ regeneration based on the decellularized 
scaffold should be diversified. Different clinical needs 
reveal different research emphasis. New heart, liver and 
kidney are needed for patients with cardiac, hepatic or 
renal failure. Tissue engineered organs created from 
decellularized scaffold, bioreactors and seeding cells can 
meet this demand. For local damage and tumor within 
organs, decellularized scaffolds can be used as patches 
to repair defects. Furthermore, some chemical techniques 
improving regeneration become very necessary, such as 
modification via heparinization and kinds of growth factor. 
Drug-loading methods widely applied to artificial scaffolds 
can be introduced into decellularized scaffolds sooner. 

In addition, decellularized scaffolds have been widely 
reported to improve tissues and organs regeneration. 
However, related mechanisms are poorly understood. 
In-depth revelation on internal mechanisms will lead the 
development of this research field.
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