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ABSTRACT
Biomarkers are critically needed for the early detection of pancreatic cancer 

(PC) are urgently needed. Our purpose was to identify a panel of genetic variants 
that, combined, can predict increased risk for early-onset PC and thereby identify 
individuals who should begin screening at an early age. Previously, we identified 
genes using a functional genomic approach that were aberrantly expressed in early 
pathways to PC tumorigenesis. We now report the discovery of single nucleotide 
polymorphisms (SNPs) in these genes associated with early age at diagnosis of 
PC using a two-phase study design. In silico and bioinformatics tools were used to 
examine functional relevance of the identified SNPs. Eight SNPs were consistently 
associated with age at diagnosis in the discovery phase, validation phase and 
pooled analysis. Further analysis of the joint effects of these 8 SNPs showed that, 
compared to participants carrying none of these unfavorable genotypes (median 
age at PC diagnosis 70 years), those carrying 1–2, 3–4, or 5 or more unfavorable 
genotypes had median ages at diagnosis of 64, 63, and 62 years, respectively  
(P = 3.0E–04). A gene-dosage effect was observed, with age at diagnosis inversely 
related to number of unfavorable genotypes (Ptrend = 1.0E–04). Using bioinformatics 
tools, we found that all of the 8 SNPs were predicted to play functional roles in 
the disruption of transcription factor and/or enhancer binding sites and most of 
them were expression quantitative trait loci (eQTL) of the target genes. The panel 
of genetic markers identified may serve as susceptibility markers for earlier PC 
diagnosis.

INTRODUCTION

Pancreatic cancer (PC) is the fourth leading cause 
of cancer-related death in the United States. An estimated 
53,070 new cases and 41,780 deaths due to this disease 
are expected in the United States in 2016 [1]. Because 
of the asymptomatic onset of pancreatic cancer and 
absence of reliable biomarkers for early detection, most 
patients already have late-stage or metastatic disease 

at the time of diagnosis, resulting in an overall 5-year 
survival rate of only 7.2% [2]. Although for most cancers 
there have been notable improvements in survival over 
the past 3 decades, PC has shown little improvement [1]. 
Biomarkers for the early detection of PC are urgently 
needed. A better understanding of the molecular 
mechanisms underlying PC tumorigenesis would help in 
development of early detection strategies as well as more 
meaningful diagnostic and prognostic markers.
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As a part of the National Cancer Institute Early 
Detection Research Network, our goal is to assemble a 
panel of candidate blood-based biomarkers for early 
detection of PC. Our premise is that uncovering the 
earliest genetic pathways aberrant in PC could reveal a 
clinically useful panel of biomarkers. We have focused on 
intervals of recurrent cytogenetic loss and gain associated 
with deletion/loss of function of tumor suppressor loci 
and overexpression/gain of function of oncogenes. Our 
objective has been to identify recurrent alterations that fall 
within an early cytogenetic pathway to PC tumorigenesis. 
Published studies suggest that multiple tumor types share 
a common 3p12 pathway to tumorigenesis and that regions 
of loss and amplification of chromosome 20q occur early 
in tumorigenic transformation and may initiate cancer  
[3–8]. We have chosen to concentrate on these pathways 
in our search for potential biomarkers. Significantly, 
early losses of chromosome 3p or 1p and amplification of 
chromosome 20q have been reported in smoking-related 
cancers [9, 10]. 

Members of the 3p12 pathway and genes related to 
the chromosome 20q interval are important in pancreatic 
tumorigenesis [3, 7, 8], and their combined influence 
is believed to contribute to the process of pancreatic 
tumorigenesis. It is therefore reasonable to hypothesize 
that combinations of genetic variants in these genes may 
help in driving the process of tumorigenesis. Our previous 
studies indicate that single nucleotide polymorphisms 
(SNPs) in several different genes, including SEL1L, 
Aurora-A, p16, p21, and p27, can modify the age at 
diagnosis of PC [12–14]. We hypothesized that variants of 
genes involved in the 3p12 and 20q pathways may work 
together to modify age at diagnosis of PC. We previously 
utilized functional genomic pathways approaches to 
identify chromosome 3p12 pathway and chromosome 20q 
pathway genes as candidate early detection biomarkers, 
which could discriminate PC from healthy controls (11 
and unpublished). To test our hypothesis, we first selected 
tagging SNPs for these genes based on observed linkage 
disequilibrium (LD) through construction of metric LD 
maps.  Secondly, we used a two-phase study design to 
identify SNPs in these genes associated with early age 
at diagnosis of PC in total 1729 PC patients. Thirdly, we 
utilized In silico and bioinformatics tools for examining 
functional relevance of SNPs we identified.

Our study integrated data from a systems biology 
approach and population science methods to discover 
genetic variants as susceptibility markers for earlier 
pancreatic cancer diagnosis. Then, we functionally 
analyzed the susceptibility loci using in silico and 
bioinformatics tools. The study design flow diagram is 
shown in Figure 1. We identified a panel of genetic risk 
factors, i.e., SNPs, and other relevant covariates that, in 
combination, can predict risk for early age onset of PC 
and thereby identify individuals who might benefit from  
screening at an early age.

RESULTS

Participant characteristics

The demographic characteristics and PC risk 
factor status of participants are shown in Table 1. We 
restricted the analysis to self-reported non-Hispanic 
white participants to minimize confounding by ethnicity. 
The discovery (phase 1) analysis and the validation  
(phase 2) analysis included 480 and 1249 randomly 
selected patients, respectively. There was no overlap of 
subjects in the discovery phase and the validation phase. 
The mean ages at diagnosis in phase 1 and phase 2 were 
61.6 and 64.2 years, respectively. Age at diagnosis was 
50 years or younger for more than 10% of participants 
in both phases 1 and 2. The proportion of smokers was 
higher than the proportion of non-smokers in both phases  
(phase 1, 59.4%; phase 2, 54.7%), as was the proportion of 
alcohol users (phase 1, 61.9%; phase 2, 57.9%) (Table 1).

SNPs and age at diagnosis

In phase 1, among 1240 tested SNPs, a total of 149 
SNPs were significantly associated with age at diagnosis 
of PC (P < 0.05) by Cox regression analysis adjusted for 
sex, smoking and alcohol use, and presence of diabetes 
(Supplementary Table 1). In phase 2, 11 of these 149 SNPs 
were replicated, showing significant association with age at 
diagnosis (P < 0.05). After the Benjamini-Hochberg false 
discovery rate correction, SNP rs61992671 in miR-412  
remained strongly associated with age at diagnosis of PC, 
with a P-value of 7.19 × 10−5, hazard ratio (HR) = 1.28  
(95% confidence interval [CI] = 1.14–1.45), corrected  
P = 0.011 (Supplementary Table 2). In a pooled analysis 
for phases 1 and 2 (N = 1729), 25 SNPs showed significant 
association with age at diagnosis (P < 0.05). The 
association remained significant for 8 SNPs (rs61992671 
in miR-412, rs2766669 in ZNF217, rs6128327 in RAB22A, 
rs2282544 in SMAD4, rs1076064 in PPARGC1B, 
rs7799635 in KDELR2, rs4940086 in SMAD2, and 
rs3217992 in CDKN2B) after multiple testing correction 
(threshold with false discovery rate of 10%), with P-values 
of 2.09 × 10−6, 8.11 × 10−4, 1.07 × 10−3, 2.66 × 10−3,  
2.80 × 10−3, 3.30 × 10−3, 3.45 × 10−3, and 4.93 × 10−3, 
respectively (Supplementary Table 3). Altogether, we 
found 8 SNPs (rs61992671 in miR-412, rs2766669 
in ZNF217, rs6128327 in RAB22A, rs7799635 in 
KDELR2, rs4940086 in SMAD2, rs3217992 in CDKN2B, 
rs12803915 in miR-612, and rs1559849 in SERAC1) that 
were consistently associated with age at diagnosis in the 
discovery phase, validation phase, and pooled analysis, 
with P-values < 0.05 (Table 2).

To assess the cumulative effects of the unfavorable 
genotypes on age at diagnosis, we performed a joint 
analysis of the 8 SNPs that were consistently associated 
with age at diagnosis in all the analyses. In the pooled 
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analysis (N = 1729), we found that, compared with 
participants carrying no unfavorable genotype (of any 
of the 8 SNPs), participants carrying 1–2, 3–4, or 5 or 
more unfavorable genotypes exhibited an 1.63-fold (95%  
CI = 1.10–2.42, P = 0.016), 1.88-fold (95% CI = 1.27–2.78;  
P = 0.002) or 2.11-fold (95% CI = 1.4–3.18, P = 3.0 × 10−4)  
increased risk of early PC onset, respectively. The median 
age at diagnosis differed significantly between the 4 groups: 
This was 70 years for participants with no unfavorable 
genotypes, 64 years for those with 1–2 unfavorable 
genotypes, 63 years for those with 3–4 unfavorable 
genotypes, and 62 years for those with 5 or more unfavorable 
genotypes, with a significant dose-response trend (P for 
trend = 1.0 × 10−4) (Table 3). The age at diagnosis between 
participants carrying no unfavorable genotypes and those 
carrying 5 or more unfavorable genotypes differed by 8 
years.

SNP function and eQTL analysis

ENCODE data and the F-SNP, HaploReg, and 
RegulomeDB tools indicate that all of the 8 identified 
SNPs (rs61992671, rs2766669, rs6128327, rs7799635, 

rs4940086, rs3217992, rs12803915, and rs1559849) 
have potential for disruption of transcription factor  
and/or enhancer binding sites. rs4940086 (SMAD2) 
and rs12803915 (miR-612) are located in potential 
enhancer regions, based on histone marks, in normal 
breast, lymphocyte, or leukemia cells. In addition, 
rs12803915 (miR-612) is located in a “hot spot” of DNase  
I hypersensitivity sites in 9 cell types and is predicted 
to affect binding of proteins, including POLR2A, 
REST, TFAP2C, and ZBTB7A. rs3217992 (CDKN2B) 
and rs7799635 (KDELR2) are also located in DNase I 
hypersensitivity sites. Furthermore, rs7799635 (KDELR2) 
is predicted to affect binding and was linked to expression 
of the CTCF gene target as well as the cis-eQTL of 
KDELR2. rs61992671 (miR-412) is predicted to be located 
in a conserved transcription factor binding site and to be 
an exonic splicing enhancer.

In cis-eQTL analysis based on the public dataset 
Genevar, we found that rs4940086 AA genotype was 
associated with significantly higher expression level 
of SMAD2 in 3 cell types (fibroblasts [P = 1.2 × 10−5], 
a lymphoblastoid cell line [P = 2.0 × 10−4], and T cells 
[P = 0.0058]) derived from umbilical cords of 75 

Figure 1: A schematic flow diagram of functional genomic data and population epidemiology method to identify 
genetic variants as susceptibility markers for earlier pancreatic cancer diagnosis. CGH: comparative genomic hybridization; 
CNA: copy number alterations; SSH: suppression subtractive hybridization; eQTL: expression quantitative trait loci.
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Geneva GenCord individuals [15] than the AG or GG 
genotypes. The correlations remained significant in 
10,000 permutation tests for the 3 cell types (Figure 2). 
rs7799635 was also significantly associated with the 
expression level of KDELR2 in 3 tissue types (adipose, 
lymphoblastoid cell line, and skin) derived from a subset 
of ~160 MuTHER healthy female twins [16] (Figure 3). 
In addition, rs1559849, rs6128327, and rs3217992 were 
significantly associated with the expression levels of 
SERAC1, RAB22A, and IFNA1 in lymphoblastoid cell 
lines from 726 HapMap3 [17] (Supplementary Figure 1).

DISCUSSION

Currently, there is no clinically useful biomarker 
for earlier diagnosis of PC in the general population. We 
hypothesized that focusing on aberrantly expressed genes 
related to early cytogenetic pathways to PC tumorigenesis 
might be a feasible approach to discover early detection 
biomarkers. In this study, we utilized functional genomic 

data which had previously described [11] to discover 
targeted pathway-based genes and used a two-phase 
population study design to systematically assess the 
associations of a large panel of SNPs in the genes that 
interact in the two targeted pathways with age at diagnosis 
of PC. Our two-phase study design ultimately identified 
8 SNPs consistently associated with age at diagnosis in 
the discovery phase, validation phase, and pooled analysis. 
Analysis of the joint effects of these SNPs revealed that 
participants with more unfavorable genotypes carried 
higher risk of developing PC at a younger age. The 
8-year difference in age at diagnosis between subjects 
carrying no unfavorable genotypes and those carrying 5 
or more unfavorable genotypes suggests that these genetic 
variants may jointly contribute to an earlier age onset of 
PC in non-Hispanic white patients. Using bioinformatics 
tools, we found all of the 8 SNPs were located in DNA 
sequences with potential functional roles in disruption of 
transcription factor and/or enhancer binding sites and most 
of them were eQTL of the targeted genes.

Table 1: Demographic characteristics and risk factors associated with pancreatic cancer cases

Variable
Discovery Phase Validation Phase Pooled Analysis

No. of Participants (%) No. of Participants (%) No. of Participants (%)
N = 480 N = 1249 N = 1729

Mean age at diagnosis, years
± SD 61.6 ± 10.8 64.2 ± 11.1 63.5 ± 11.1
Median age at diagnosis, years
(range) 62 (21–87) 64, 24–91 64, 21–91
Age groups at diagnosis
 ≤ 50 years 67 (13.9) 128 (10.2) 195 (11.3)
 51 ~ 60 years 129 (26.9) 301 (24.1) 430 (24.9)
 60 ~ 70 years 179 (37.3) 427 (34.2) 606 (35.0)
 > 70 years 105 (21.9) 393 (31.5) 498 (28.8)
Sex
 Female 171 (35.6) 541 (43.3) 712(41.2)
 Male 309 (64.4) 708 (56.7) 1017(58.8)
Diabetes
 No 339 (70.6) 862 (69.0) 1201 (69.5)
 Yes 141 (29.4) 387 (31.0) 528 (30.5)
Smoking status
 Never 195 (40.6) 566 (45.3) 761 (44.0)
 Former 213 (44.4) 532 (42.6) 745 (43.1)
 Current 72 (15.0) 151 (12.1) 223 (12.9)
Alcohol status
 Never 183 (38.1) 526 (42.1) 709 (41.0)
 Former 135 (28.1) 293 (23.5) 428 (24.8)
 Current 162 (33.8) 430 (34.4) 592 (34.2)
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Of the 8 SNPs consistently associated with age 
at diagnosis, the most significant one is rs61992671, 
which is found in precursor miR-412. We used miRNA 
prediction programs (microRNA.org, Targetscan, and 
Diana-microT v3.0) to predict that miR-412 may target 
the conserved 3′-untranslated region (UTR) of Sel-1-like 
(SEL1L). SEL1L is a putative tumor suppressor gene that 
is downregulated in a significant proportion of human 
pancreatic ductal adenocarcinomas (PDAC). Our previous 
studies showed that SEL1L was downregulated by 
aberrantly upregulated hsa-mir-155 in human PDAC [18], 
and a SNP in SEL1L gene plays a role in modifying age at 
diagnosis of PDAC in white nonsmokers and may serve 
as a prognostic marker in PDAC patients [12]. SEL1L 
has been reported to play a role in cell transformation and 
tumor progression in human pancreatic, breast, non–small 
cell lung, esophageal, and prostate cancers [19–24]. Many 
human miRNA genes are located in fragile sites or areas 
of the genome that are frequently associated with cancer. 
SNPs in precursor miRNA genes may potentially affect 
the processing of miRNAs and may thus significantly 
affect risk of cancer [25, 26]. Recently, miR-412  
was observed to be upregulated by more than 3-fold in 

squamous cell lung carcinoma tissues compared with 
normal tissues [27]. rs61992671 (miR-412) was predicted 
to be located in a conserved transcription factor binding 
site that may be an exonic splicing enhancer.

The other significant miRNA SNP identified by 
our study is rs12803915, which is located in precursor 
miR-612. TargetScan predicts that miR-612 may target 
the conserved 3′-UTR of (DEAR1, ductal epithelium–
associated RING chromosome 1 (annotated as TRIM62)). 
DEAR1 has been shown to be a novel tumor suppressor 
and polarity regulator [28, 29]. Loss of DEAR1 gene 
expression in breast cancer tissues is associated with 
a higher risk of recurrence in early -onset breast cancer 
[28]. DEAR1 has also been shown to regulate TGF-
beta mediated epithelial mesenchymal transition (EMT) 
[29]. Kim et al. observed that, in several cell lines, the 
minor allele of rs12803915 significantly alters the 
cellular processing of pre-miR-612 and, consequently, the 
expression levels of mature miR-612 [30]. In addition, a 
recent study reported this SNP as significantly associated 
with acute lymphoblastic leukemia susceptibility [31]. 
Other recent studies found that miR-612 suppresses the 
invasive-metastatic cascade in hepatocellular carcinoma 

Table 2: SNPs significantly associated with age at diagnosis of pancreatic cancer in the discovery 
phase, validation phase, and pooled analysis

Gene SNP ID Genetic 
Model

Discovery Phase Validation Phase Pooled Analysis

Adjusted 
HRa(95% CI) P Adjusted 

HRa(95% CI) P Adjusted 
HRa(95% CI) P

miR-412 rs61992671 Dominant 1.29 (1.05–1.58) 0.015 1.28 (1.14–1.45) 7.19E–05 1.29 (1.16–1.43) 2.09E–06
ZNF217 rs2766669 Dominant 1.34 (1.10–1.64) 0.005 1.16 (1.02–1.31) 0.021 1.20 (1.08–1.33) 8.11E–04
RAB22A rs6128327 Additive 1.12 (1.05–1.20) 0.008 1.10 (1.01–1.22) 0.023 1.12 (1.05–1.20) 0.001
KDELR2 rs7799635 Additive 0.87 (0.75–0.94) 0.042 0.89 (0.81–0.98) 0.013 0.89 (0.82-0.96) 0.003
SMAD2 rs4940086 Additive 1.22 (1.01–1.47) 0.040 1.10 (1.00–1.20) 0.040 1.11 (1.04–1.20) 0.003
CDKN2B rs3217992 Recessive 0.78 (0.61–0.99) 0.048 0.84 (0.72–0.98) 0.028 0.83 (0.73–.95) 0.005
miR-612 rs12803915 Additive 1.69 (1.03–2.76) 0.039 1.11 (1.01–1.22) 0.038 1.11 (1.02–1.21) 0.012
SERAC1 rs1559849 Recessive 1.25 (1.01–1.54) 0.038 1.85 (1.26–2.72) 0.001 1.47 (1.06–2.04) 0.021

aAdjusted by sex, smoking status, alcohol status, diabetes status, and study phase (for pooled analysis)
SNP, single nucleotide polymorphism; HR, hazard ratio; CI, confidence interval.

Table 3: Cumulative analysis of unfavorable genotypes
No. of Unfavorable 

Genotypes No. of Participants Median Age at 
Diagnosis, years Adjusted HRa (95% CI) P

0 26 70 1.00 (reference)

1–2 528 64 1.63 (1.10–2.42) 0.016

3–4 943 63 1.88 (1.27–2.78) 0.002

≥ 5 227 62 2.11 (1.40–3.18) 3.0E–04

Trend test 1.0E–04
aAdjusted by sex, smoking status, alcohol status, diabetes status, and study phase; HR, hazard ratio. 
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[32, 33]. However, so far, no reports indicate that miR-412  
and miR-612 play a role in PC or the implicated SNPs 
alter the levels of these microRNAs. Further studies 
that measure these microRNA levels in PC tissues and 
investigate if the levels of these microRNAs correlate with 
these SNPs should be conducted to confirm our results.

Two of the significant SNPs are potentially 
functional as they are in the 3′-UTR. The SNP rs6128327 
is located in the 3′-UTR region of RAB22A and may be 
of functional relevance because it is located in an exonic 
splice enhancer sequence as predicted by SNPinfo [34]. 
RAB22A gene expression was reported to be significantly 
increased in breast cancers compared with normal breast 
tissue. Elevated RAB22A mRNA levels in primary breast 
cancers were associated with significantly decreased overall 
survival and distant metastasis-free survival [35]. The SNP 
rs3217992 is located in the 3′-UTR region of CDKN2B and 
also in DNase I hypersensitivity site. It is predicted to affect 

mRNA stability and translation. Loss of CDKN2B is a very 
frequent event in several cancers, including PC [36–38]. 

The remaining SNPs that we identified are located 
in the intronic regions of genes. The ENCODE project 
has reported, after systematically mapping regions of 
transcription, transcription factor association, chromatin 
structure, and histone modification, that 80% of the 
genome is related to some biochemical function [39]. We 
found many intronic SNPs mapped to areas of histone 
modification, DNase I hypersensitivity, and altered 
transcription factor binding sites. Modification of histone 
proteins can influence gene expression by changing 
how accessible the chromatin is to transcription. Eighty 
percent of DNase hypersensitivity sites map to regions 
of genome expected to contain gene regulatory elements, 
including CpG islands and highly conserved sequences, 
and functions as promoter, silencer, insulator, cis- or 
trans-regulatory elements, or epigenetic signals [40]. 

Figure 2: eQTL analysis for rs4940086 and SMAD2 in the Geneva GenCord study. F, L, and T represent fibroblast, 
lymphoblastoid cell line and T-cell, respectively. Rho: Spearman correlation coefficient; P: P-values of Spearman correlation test; Pemp: 
empirical P-values calculated from 10,000 permutations. These figures were downloaded from Genevar.
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Transcription factors play key roles in transcriptional 
regulation by controlling gene expression. We also did 
cis-eQTL analysis based on public data sets and found 
that rs4940086, rs7799635, rs1559849, rs6128327, 
and rs3217992 were significantly associated with gene 
expression. Together, these results point to potentially 
important functional regulatory variation.

There is currently no biomarker which can be 
accurately used to identify persons at risk of PC. When 
diagnosed early, it may be more possible to effectively 
treat, while most patients are diagnosed at later stages. 
Therefore, Biomarkers accurate enough to detect PC in the 
earliest stages are urgently needed. For individuals who 
are at increased risk due to genetic factors, effective early 
screening methods are especially important. Our study 
found a panel of SNPs associated with earlier onset of PC. 
Since the SNPs identified herein increase risk for early 
onset disease, it would be interesting for future studies 

to examine hereditary cancers that predispose to PC to 
determine whether these SNPs are associated with earlier 
ages of PC development or disease development itself 
since previous studies provided strong evidence of an 
increased risk of PC in BRCA2 mutation carriers [41, 42].

In conclusion, we analyzed functional genomic 
data sets to identify SNPs in the 3p12 pathway genes 
and genes related to the chromosome 20q interval and 
systematically assessed the associations of a large panel 
of tagging SNPs in the genes with age at diagnosis of 
PC. Compared with genome-wide association studies, 
a pathway-based approach improves the efficiency of 
identifying disease variants by jointly considering variants 
of the genes that belong to the same biological pathway.  
It reduces the number of false-positive findings and 
increases the effective power of the study by restricting 
analyses to SNPs in specific pathways and reduces the 
number of multiple tests. In addition, because the genes 

Figure 3: eQTL analysis for rs7799635 and KDELR2 in the MuTHER pilot study. A, L, and S are short for adipose tissue, 
lymphoblastoid cell line, and skin tissue, respectively, from MuTHER healthy female twins. Rho: Spearman correlation coefficient;  
P: P-values of Spearman correlation test; Pemp: empirical P-values calculated from 10,000 permutations. The figures were downloaded 
from Genevar.
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we selected from functional genomic datasets were 
frequently differentially/aberrantly expressed in PC, 
SNPs in these genes are more likely to be detected for 
associations with age at diagnosis of PC. Furthermore, 
we used two-phase study design. By adding the validated 
phase to the study design, our study is sufficiently powered 
to scrutinize false-positive findings. These findings require 
further replication and functional validation. The panel of 
SNPs identified may serve as susceptibility markers for 
earlier PC diagnosis, which is important for improving the 
prognosis of this disease. The findings of this study will 
contribute to our long-term goal to develop a risk model 
for PC and hopefully lead to early detection by allowing 
us to identify those individuals who will develop PC 
at an earlier age based on a risk score. If these findings 
are confirmed, these genetic variations may have utility 
as a panel of risk markers that could, combined with 
other genetic risk factors, be used as a screening tool to 
screen individuals who are more likely to develop PC at 
a younger age and recommended clinical surveillance. 
Such clinical application could lead to earlier detection 
and treatment, longer survival time, and lower mortality. 

METHODS

Study cohort

We identified 1956 newly- diagnosed and 
histopathologically confirmed pancreatic adenocarcinoma 
patients, who were consecutively recruited at The 
University of Texas MD Anderson Cancer Center 
(Houston, TX) or the University of Pittsburgh (Pittsburgh, 
PA) from February 1999 to August 2004. To avoid 
heterogeneity attributable to racial differences in allele 
frequencies, the analysis was limited to 1729 self-reported  
non-Hispanic white individuals, 1279 from MD Anderson 
Cancer Center and 450 from the University of Pittsburgh. 
The study was approved by the Institutional Review Boards 
of both institutions, and all participants provided written 
informed consent for contributing blood for this research. 
DNA of patients was extracted with an AUTOPURE LS 
Automated DNA Purification Instrument (QIAGEN, Inc.) 
according to the manufacturer’s instructions.

Gene selection

We first analyzed a functional genomic dataset to 
identify genes from the targeted pathways involving 
3p12 [11]. The 3p pathway dataset of genes differentially 
expressed in PC tumor versus normal samples and 
representing the 3p12 pathway to tumorigenesis have been 
described [5, 11, 26].

The 20q pathway genes were identified with  
integrated comparative genomic hybridization (CGH) 
and expression array analyses of PC cell lines and two 
primary tumor datasets (unpublished). Genes analyzed 

are in the copy number altered (CNA) genomic 
intervals with 2 fold or greater change in expression 
(P < 0.05). We also included microRNA (miRNA) 
genes predicted to be involved in the regulation of 
these pathways genes. miRNA prediction programs 
(microRNA.org, Targetscan, and Diana-microT v3.0)  
were used to identify miRNAs that are known or predicted 
to target the candidate biomarkers. We finally selected 
135 genes that interact in the 3p12 pathway and pathways 
affected by altered gene expression in the 20q interval.

SNP selection and genotyping

We used SNPbrowser version 4.0 (Life Technologies,  
Grand Island, NY) [43] to select tagging SNPs. This 
software was designed for selection of SNPs based on 
observed linkage disequilibrium (LD) through construction 
of metric LD maps and selection of haplotype tagging 
SNPs. The application provides easy and intuitive selection 
of SNPs, including visualization of SNPs, by showing 
gene structure, LD map, and haplotype block information. 
SNP selection was based on the ethnicity-specific  
LD patterns identified by the HapMap Project  
(http://hapmap.ncbi.nlm.nih.gov/). The tagging SNPs 
chosen had an r2 of 0.80 or more and a minor allele 
frequency (MAF) of 0.05 or more in the white population. 
SNPs from the adjacent 10-kb regions on either side of the 
gene were also included.

In the discovery phase (phase 1), Illumina’s Golden 
Gate SNP genotyping assay (Illumina, San Diego, CA) 
was developed to examine SNPs that were assayable 
(design score > 0.60) according to the GoldenGate 
genotyping platform criteria. Genotypes were called using 
Beadstudio software (Illumina). Plates were constructed 
with duplicate and quality control samples. Twenty-four 
duplicated DNA samples were included for genotyping 
quality control. The average discordance rate of duplicates 
was 0.06%. We removed SNPs with an MAF of 0.01 or 
less, with a call rate < 95%, with discordance between 
duplicates, or with Hardy-Weinberg equilibrium with 
a P-value of 10−5 or less. A total of 1240 SNPs were 
included in the final analysis of association with age in 
phase 1. The SNPs that were significantly associated with 
age onset in phase 1 were further genotyped in phase 2 by 
using the Illumina BeadXpress platform according to the 
manufacturer’s protocol. The BeadXpress system offers a 
cost effective platform for low- to mid- plex Golden Gate 
SNP genotyping assay using VeraCode technology. 

Statistical analysis

The outcome variable for the phase 1 and phase 2 
as well as a pooled analysis was time to onset of PC. We 
used Cox proportional hazard regression analysis to test the 
association of each of the SNPs with age-associated risk of 
PC. All association analyses were adjusted for sex, history 
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of smoking and alcohol use, presence of diabetes, and 
institutions, when appropriate. The Kaplan-Meier product-
limit estimator was used to plot time to onset and the log-
rank test to test for homogeneity of the survival curves by 
genotype for each of the SNPs. We examined the risk of 
each SNP by additive, dominant, and recessive models. The 
best-fitting model was the one with the smallest P-value 
among the three models. A combined analysis tested the 
underlying hypothesis that individuals with a larger number 
of unfavorable (risk-increasing) genotypes would be at 
higher risk for developing PC at a younger age. Unfavorable 
genotypes were defined on the basis of the genetic model that 
attained significance in the Cox regression.  A Benjamini-
Hochberg multiple testing correction threshold with false 
discovery rate of 10% was used to identify significant 
associations [44]. STATA software (version 10, StataCorp 
LP, College Station, TX) was used to perform the analyses.

SNP function annotation

We explored the functional consequences of 
the SNPs using custom tracks on the UCSC Genome 
browser (http://genome.ucsc.edu) [45]. The UCSC 
Genome browser incorporates visualization of some 
of the Encyclopedia of DNA elements (ENCODE) 
functional elements, such as regions of transcription, 
transcription factor binding motifs, chromatin structure, 
CpG site methylation, and histone modification [39]. 
We also used online tools F-SNP [46], HaploReg [47], 
and RegulomeDB [48] to confirm each SNP in relation 
to annotated protein-coding genes and/or non-coding 
RNA genes. We investigated expression quantitative 
trait loci (eQTL) associations for the significant SNPs 
using Genevar, a database and Java tool designed for 
data analysis of SNP-gene associations in eQTL studies 
integrating multiple datasets [49].
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