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INTRODUCTION

Pancreatic cancer (PC) remains the most common 
cause of cancer-related mortality worldwide [1]. 
Pancreatic ductal adenocarcinoma (PDAC) is the most 
frequent subtype of pancreatic cancer, accounting for 
more than 85% of pancreatic tumor cases [2]. Despite 
increasing efforts in PDAC, the 5-year survival rate is 
low at less than 5%, primarily due to late stage diagnosis 

at advanced stages in a large proportion of patients [1]. 
To decrease mortality and improve the management of 
PDAC, diagnostic markers is critical for early detection 
and risk stratification of PDAC which could aid clinicians 
to select early tailored treatment. However, the PDAC 
is a heterogeneous disease in various aspects including 
clinicopathological, molecular and cellular heterogeneity 
[3, 4]. Therefore, traditional recognizable clinical and 
pathological symptoms or signs have limited value in 
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ABSTRACT
It is increasing evidence that ceRNA activity of long non-coding RNAs (lncRNAs) 

played critical roles in both normal physiology and tumorigenesis. However, functional 
roles and regulatory mechanisms of lncRNAs as ceRNAs in pancreatic ductal 
adenocarcinoma (PDAC), and their potential implications for early diagnosis remain 
unclear. In this study, we performed a genome-wide analysis to investigate potential 
lncRNA-mediated ceRNA interplay based on “ceRNA hypothesis”. A dysregulated 
lncRNA-associated ceRNA network (DLCN) was constructed by utilizing sample-
matched miRNA, lncRNA and mRNA expression profiles in PDAC and normal samples 
in combination with miRNA regulatory network. The results of network analysis 
uncovered seven novel lncRNAs as functional ceRNAs whose aberrant expression will 
result in the extensive variation in tumorigenic or tumor-suppressive gene expression 
through DLCN at the post-transcriptional level contributing to PDAC. Therefore, 
we developed a 7-lncRNA signature (termed LncRisk-7) based on the expression 
data of seven lncRNAs and SVM algorithm as a novel diagnostic tool to improve 
early diagnosis of PDAC. The LncRisk-7 achieved high performance in distinguishing 
PDAC patients from nonmalignant pancreas samples in the discovery cohort and 
was further confirmed in another two independent validation cohorts. Functional 
analysis demonstrated that seven lncRNA biomarkers act as ceRNAs involving the 
regulation of cell death, cell adhesion and cell cycle. This study will help to improve 
our understanding of the lncRNA-mediated ceRNA regulatory mechanisms in the 
pathogenesis of PDAC and provide novel lncRNAs as candidate diagnostic biomarkers 
or potential therapeutic targets. 
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detecting early PDAC. Molecular biomarkers have been 
proven to be a promising clinical tool for identifying 
patients’ subgroup having early-stage disease.

Over the last ten years, large-scale genome and 
transcriptome studies have documented large numbers of 
non-coding RNAs (ncRNAs), including short ncRNAs and 
long ncRNAs [5, 6]. Long non-coding RNAs (lncRNAs), 
a major class of ncRNAs with larger than 200 nucleotides 
in length, have been reported to participate in a wide range 
of biological processes, including genomic imprinting, 
transcriptional and post-transcriptional regulation [7– 9]. 
It has been shown that lncRNAs harboring miRNA 
response elements (MREs) can be regulated by miRNAs, 
thus acting as competing endogenous RNAs (ceRNAs) 
to communicate with mRNAs by competing for shared 
miRNAs [10, 11]. Experimental evidence revealed that 
dysregulated expressions of key lncRNAs of ceRNA 
network have greater effects on the miRNA-mediated 
lncRNA/mRNA ceRNA crosstalk interactions and disrupt 
bistable states, thus contributing to the initialization and 
development of cancers [11, 12]. Wang and his colleagues 
showed that the crosstalk between lncRNA HULC and 
PRKACB gene via competitive binding to miR-372 in a 
ceRNA-dependent feed-forward loop resulted in highly 
up- regulated expression of HULC in liver cancer [13]. 
Paci et al. built two miRNA-mediated lncRNA-mRNA 
networks in normal and pathological breast tissue and 
investigated the potential role of lncRNA as ceRNA 
in breast cancer [14]. Recent two studies had led to 
important insights into ceRNA-mediated gene regulation 
in gastric cancer and ovarian cancer and identified 
candidate functional cancer-related lncRNAs [15, 16]. 
Several lncRNAs have been found to be differentially 
expressed in PC tissues compared to the healthy controls, 
such as HOTTIP-005, RP11-567G11.1 and MALAT1 
[17, 18], implying their potentials as diagnostic or 
prognostic biomarkers in PC. A more recent study 
reported that lncRNA NUTF2P3-001 function as ceRNAs 
to communicate with KRAS mRNA by competitively 
binding to miR-3923, and the overexpression of 
NUTF2P3-001 will unregulated KRAS expression by 
depriving the inhibition of miR-3923 on KRAS leading 
to the proliferation and invasion of pancreatic cancer cell 
[19], revealing the functional roles of lncRNA-mediated 
ceRNA crosstalk in PC for the first time.

In this study, as demonstrated by Chou’s 5-step 
rule [20] to establish a really useful prediction method 
for a biological system, we first investigated the altered 
expression patterns of lncRNAs, miRNAs and mRNAs 
between PDAC patients and normal samples. Then 
a dysregulated lncRNA-associated ceRNA network 
(DLCN) was constructed by integrating altered lncRNAs, 
miRNAs, mRNAs and their co-dysregulated regulatory 
relationships based on “ceRNA hypothesis”. We 
uncovered 7 novel lncRNAs as functional ceRNAs with 
key roles in the pathogenesis of PDAC, and developed 

a SVM-based 7-lncRNA signature (termed LncRisk-7) 
which significantly discriminate PDAC tumors from 
nonmalignant pancreas samples with high performance. 
The diagnostic values of the LncRisk-7 were further 
validated in another two independent testing cohorts. With 
further experimental validation, these novel lncRNAs 
acting as ceRNAs at the post-transcriptional level may 
become promising diagnostic biomarkers and therapeutic 
targets.

RESULTS

Identification of differentially expressed mRNAs, 
miRNAs and lncRNAs in PDAC patients

We first compared the expression profiles of 
mRNAs, miRNAs and lncRNAs between 25 PDAC 
samples and 7 nonmalignant pancreas samples from 
the discovery cohort, and found that 1032 mRNAs, 87 
miRNAs and 78 lncRNAs are differentially expressed 
(Fold change ≥ 1.5 or ≤ 0.67 and FDR-adjusted p ≤ 0.1) 
in PDAC samples compared with nonmalignant pancreas 
samples using the SAM analysis (Supplementary 
Table S1). Of these, 632 mRNAs, 47 miRNAs and 52 
lncRNAs were over-expressed and 400 mRNAs, 40 
miRNAs and 26 lncRNAs were down-expressed in PDAC 
patients compared with nonmalignant pancreas samples.

Construction and analysis of dysregulated 
lncRNA-associated ceRNA network

The preliminary dysregulated lncRNA-associated 
ceRNA network (DLCN) was first built by integrating 
expression profiles and regulatory relationships of 
mRNAs, miRNAs and lncRNAs of 32 samples in the 
discovery cohort. As described in the Materials and 
Methods section, we detected 290 miRNA-mediated 
lncRNA-mRNA competing triplets among 5 miRNAs, 
7 lncRNAs and 150 mRNAs (Supplementary Table S2). 
These significant competing triplets were then assembled 
to constitute dysregulated lncRNA-associated ceRNA 
network for exploring the dynamic changes of ceRNA 
regulation in PDAC. The resulted DLCN was comprised 
of 467 edges among 5 miRNAs, 7 lncRNAs and 150 
mRNAs (Figure 1A). 

Next, we performed network analysis to study the 
structure and organization of the DLCN. The degree 
distribution of nodes in the DLCN was investigated and 
the power-law distribution with a slope of –1.783 and 
R2 = 0.9988 was observed (Figure 2B), suggesting that 
the DLCN displayed scale-free characteristics typical of 
biological networks. Furthermore, the DLCN showed 
module characteristics with a significantly higher 
clustering coefficient than random networks (p < 0.01, 
Figure 2C). However, the characteristic path length of the 
DLCN is substantially larger than that of random networks 
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(p < 0.001) (Figure 1D), implying that the DLCN 
had reduced global efficiency. The scale-free, module 
characteristics and reduced global efficiency of the DLCN 
suggested that dysregulated ceRNA interactions often 
occurred at a local scale and hubs in the modules tended 
to be critical in the context of the entire network.

Further comparison analysis showed that there 
were significant differences in the degree distribution 
and betweenness centrality among mRNAs, miRNAs 
and lncRNAs (p = 3.356e-09 for degree and p = 2.65e- 07 
for betweenness centrality, Kruskal-Wallis test) 
(Figure 2A and 2B). LncRNAs and miRNAs have 
significantly higher degree and betweenness centrality 
compared with mRNAs, suggesting that lncRNAs and 
miRNAs tended to be hub nodes. As showed in Figure 1A, 
a large proportion of mRNAs (55.3%) communicated with 
individual lncRNAs, and all lncRNAs acted as ceRNAs 
to communicate with multiple mRNAs by competing 
specific shared miRNAs. These results suggested that 
the aberrant expression of lncRNA ceRNA would result 
in the extensive variation in gene expression by miRNA-

mediated lncRNA-mRNA ceRNA crosstalk interactions, 
implying that ceRNA function of lncRNAs in the DLCN is 
of crucial importance in the development of PDAC.

Identification of potential diagnostic lncRNA 
signature in PDAC from the discovery cohort

Based on the above observation, these 7 lncRNAs 
with ceRNA activity were considered as potential 
biomarkers associated with PDAC (Table 1). To test whether 
these 7 lncRNA biomarkers could efficiently distinguish 
PDAC patients from nonmalignant pancreas samples, we 
performed unsupervised hierarchical clustering for 32 
samples in the discovery cohort according to the expression 
pattern of 7 lncRNA biomarkers. The results showed that 
all samples in the discovery cohort were grouped into two 
distinctive sample clusters (11 samples in Cluster 1 vs. 21 
samples in Cluster 2), which were highly correlated with 
disease status (p = 9.804e- 05, Fisher exact test; Figure 2C). 
As seen in Figure 2C, all nonmalignant pancreas samples 
were clustered into Cluster 1, and most of PDAC patients 

Figure 1: The layout of dysregulated lncRNA-mediated ceRNA network (DLCN) and its structural characteristics.  
(A) Global view of the DLCN in pancreatic cancer. The DLCN was comprised of 467 edges among 5 miRNAs, 7 lncRNAs and 150 mRNAs. 
(B) Degree distribution of the DLCN. (C) The clustering coefficient of the DLCN is higher than randomization test. The arrow represents 
the clustering coefficient in the real ceRNA network. (D) The characteristic path length of the DLCN is higher than randomization test. The 
arrow represents the characteristic path length in the real ceRNA network.
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Table 1: The detailed information of dysregulated 7 lncRNAs with ceRNA activity in the DLCN
Ensembl ID Gene name Genomic location Fold change FDR

ENSG00000224660 SH3BP5-AS1 Chr 3: 15,254,184–15,264,493 (+) 0.42 0.09713
ENSG00000246859 STARD4-AS1 Chr 5: 111,512,226–111,739,726  (+) 2.47 0.09713
ENSG00000245311 ARNTL2-AS1 Chr 12: 27,389,789–27,446,625 (–) 2.78 0.09713
ENSG00000261312 AC002550.5 Chr 16: 19,706,351–19,715,383  (+) 6.63 0.09713
ENSG00000240618 RP11-206L10.5 Chr 1: 759,032–764,925(–) 2.21 0.09713
ENSG00000223947 AC016738.4 Chr 2: 100,993,676–101,002,244(–) 2.67 0.09713
ENSG00000255306 RP5-901A4.1 Chr 11: 68,024,809–68,030,461(–) 3.12 0.09713

Figure 2: The lncRNA ceRNAs are more critical components compared to mRNA ceRNAs in the DLCN. (A) The 
difference of degree among lncRNAs, miRNAs and mRNAs. The lncRNA ceRNAs have significantly higher degrees than mRNA ceRNAs 
in the DLCN. (B) The difference of betweenness centrality among lncRNAs, miRNAs and mRNAs. The lncRNA ceRNAs had a higher 
betweenness centrality than mRNA ceRNAs in the DLCN. (C) The unsupervised hierarchical clustering heatmap of 32 samples based on 
the expression profiles of 7 lncRNA biomarkers in the discovery cohort.
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(23/25, 84%) were subdivided into Cluster 2. The above 
results demonstrated that these 7 dysregulated lncRNAs 
in the DLCN might have a predictive role and could be 
used as biomarkers in the diagnosis of PDAC. Thus, we 
integrated these 7 lncRNA biomarkers to construct a 
7-lncRNA signature (termed LncRisk-7) by developing 
an SVM classifier. The performance of the LncRisk-7 
in distinguishing PDAC patients from nonmalignant 
pancreas samples was evaluated in the discovery cohort 
using the LOOCV procedure, in which 31 samples were 
used as training set and the remaining one was served as 
the test sample. Results of discovery cohort showed that 
the LncRisk-7 was able to correctly classify 24 out of 32 
samples, achieving an overall predictive accuracy of 75% 
with a sensitivity of 84% and a specificity of 57.1%. The 
discriminatory performance of the LncRisk-7, evaluated 
by calculating the AUC and DOR, revealed that the AUC 
was 0.829 (Figure 3A and 3B) and the DOR was 3.938 
(Figure 3C), which were significantly higher than those 
of randomization tests (Figure 3B and 3C). These results 
demonstrated that the LncRisk-7 had the better predictive 
performance for discriminating PDAC tumors from 
nonmalignant pancreas samples.

Further validation of the LncRisk-7 with two 
additional independent PDAC cohorts

To independently validate the diagnostic power 
of the LncRisk-7, we first test the discriminatory 
performance of the LncRisk-7 in an independent 
cohort of 52 samples from Pei’s study [21]. For this, 
we first performed unsupervised hierarchical clustering 
analysis based on the expression profiles of 7 lncRNAs 
and found that 52 samples were grouped into two 
distinctive clusters based on expression patterns of 
seven lncRNAs, with significantly different tumor status 
(p = 4.241e- 05, Chi-square test; Figure 4A). Furthermore, 
the LncRisk-7 efficiently distinguished PDAC patients 
from nonmalignant pancreas samples in the Pei cohort, 
achieving 76.9% prediction accuracy with 86.1% 
sensitivity and 43.8% specificity. The discriminatory 
power measured by the AUC and DOR was 0.833 and 
7.97, respectively (Figure 4B).

Further validation of the discriminatory power of 
the LncRisk-7 was conducted using another completely 
independent cohort of 72 samples from Badea’s study 
[22]. Results with unsupervised hierarchical clustering 
analysis were similar to those observed in the discovery 
cohort and Pei cohort above (Figure 5A). Most of PDAC 
patients (30/36, 83.3%) was clustered into one subgroup 
and 28 out of 36 (77.8%) normal samples was divided into 
another subgroup, indicating the significant association 
between expression patterns of 7 lncRNAs and tumor 
occurrence (p = 7.144e-07, Chi-square test; Figure 5A). 
Next, we performed classification of PDAC and control 
samples in the Badea cohort using the LncRisk-7, and 

found that the LncRisk-7 was able to correctly classify 
26 out of 36 PDAC samples and 24 out of 36 control 
samples, resulting in 69.4 % accuracy, 72.2% sensitivity 
and 33.3% specificity. The discriminatory power measured 
by the AUC and DOR was 0.781 and 5.2, respectively 
(Figure 5B). Taken together, these results with additional 
independent validation cohorts demonstrated better and 
reproducible diagnostic performance of the LncRisk-7 in 
discriminating PDAC tumors from normal samples.

Functional implication of lncRNA biomarkers

To investigate the potential functional implication of 
the LncRisk-7, we performed functional enrichment analysis 
of GO and KEGG for mRNAs in the DLCN. Results of GO 
analysis revealed 39 enriched GO terms in the “Biological 
Process” (GOTERM-BP-FAT) (p < 0.05 and Fold 
Enrichment > 3.0) (Supplementary Table S3), which could 
be clustered into three functional sub-networks involved in 
cell death, cell adhesion and cell cycle (Figure 6A). KEGG 
analysis focusing on the biological pathways showed that 
these mRNAs as ceRNA interactors of lncRNA biomarkers 
in the LncRisk-7 were significantly enriched in several 
pathways involved in pathways in cancer, ECM-receptor 
interaction, cell adhesion molecules (CMAs) and adherens 
junction (p < 0.05 and Fold Enrichment > 3.0) (Figure 6B 
and Supplementary Table S3). These enriched biological 
processes and pathways have been reported to play 
important roles in PDAC pathogenesis, thus the LncRisk-7 
might be involved with.

DISCUSSION

PDAC is one of the deadliest solid tumors 
characterized by complex molecular and cellular 
heterogeneity [4, 23]. During the past years, great 
efforts have been made to provide novel insights into 
the molecular mechanisms underlying PDAC, but the 
focus has been on protein-coding genes or miRNAs 
[24, 25]. A recently discovered non-coding RNA 
class, termed lncRNAs, has been widely reported to 
participate in a wide range of biological processes and 
their dysregulated expression is associated with many 
complicated human disease phenotypes including cancers 
[26–28]. There is increasing evidence that lncRNAs 
are extensively targeted by miRNAs, and function as 
ceRNAs. The crosstalk between ceRNAs occurred 
through competitively binding to shared miRNAs and 
formed a complex ceRNA-mediated regulatory network 
contributing to a novel dimension of post-transcriptional 
gene regulation [10, 11]. It has been shown that lncRNAs 
are key components of ceRNA-mediated regulatory 
network and their ceRNA activity has been implicated in 
both physiological conditions and cancer development 
[12, 29, 30]. Systematic analysis of ceRNA network 
has been performed in breast cancer [14, 31], gastric 
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cancer [16], glioblastoma multiforme [32] and ovarian 
cancer [15]. However, lncRNAs are known to have more 
developmental stage-, tissue-, organ- and disease-specific 
expression patterns than protein-coding genes, suggesting 
that lncRNA-associated ceRNA crosstalk will likely shift 
under different specific conditions and occur in a disease-
specific manner. Therefore, it is critical for studying 

functional roles and regulatory mechanisms of lncRNA as 
ceRNAs in the development of PDAC, and investigating 
their potential implications for early diagnosis of PDAC.

In this study, we obtained genome-wide expression 
profiles of lncRNAs in PDAC patients and nonmalignant 
pancreas samples by repurposing three publicly available 
PDAC-related GEO cohorts and identified 78 differentially 

Figure 3: The performance of the LncRisk-7 in distinguishing PDAC patients from nonmalignant pancreas samples in 
the discovery cohort. (A) ROC analysis of the sensitivity and specificity of the LncRisk-7. (B) The AUC values of the LncRisk-7 based 
on leave-one-out cross validation. (C) The DOR values of the LncRisk-7 based on leave-one-out cross validation.

Figure 4: Independent validation of the LncRisk-7 for early diagnosis in another cohort of 52 samples from Pei’s 
study. (A) Hierarchical clustering heatmap and dendrogram of 52 samples based expression patterns of 7 lncRNA biomarkers. (B) The 
discriminatory performance of the LncRisk-7, evaluated by ROC analysis and calculating the AUC and DOR.
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expressed lncRNAs, implying that these lncRNAs may 
be associated with PDAC. In order to explore the ceRNA 
activity of lncRNAs in PDAC, we used an integrative 
computational framework to identify 290 dysregulated 
lncRNA-mediated ceRNA crosstalks through integrating 
sample-matched expression profiles of lncRNAs, miRNAs 
and mRNAs with miRNA-target regulatory information 
and constructed a lncRNA-mediated ceRNA regulatory 
network. Only 7 of 78 differentially expressed lncRNAs 
displayed ceRNA activity and communicated with 150 
mRNAs by competing for 5 common miRNAs in PDAC. 
Network analysis showed that PDAC-specific DLCN was 
a scale-free and small world network as general biological 
networks, and the topological properties of DLCN were 

significantly distinguished from random networks, including 
high clustering coefficient and characteristic path length. 
We further examined the associations between mRNAs 
ceRNAs in the DLCN and cancers, and found that 150 
mRNA ceRNAs in the DLCN were significantly enriched 
in the cancer class from The Genetic Association Database 
[33] (GAD, https://geneticassociationdb.nih.gov/) (p = 5.0e-
03), in which 40 mRNAs are known to be related to cancers 
recorded in GAD (Supplementary Table S4). Previous 
studies have suggested that hub nodes, characterized by their 
high degree of connectivity to other nodes, play critical roles 
in a network and tend to be essential in network organization 
[34, 35]. In the DLCN, lncRNAs were observed to be 
topological key nodes whose degree and betweenness 

Figure 5: Further confirmation of the LncRisk-7 for early diagnosis in other independent cohort of 72 samples from 
Badea’s study. (A) Hierarchical clustering heatmap and dendrogram of 72 samples based expression patterns of 7 lncRNA biomarkers. 
(B) The discriminatory performance of the LncRisk-7, evaluated by ROC analysis and calculating the AUC and DOR.

Figure 6: Functional analysis of the diagnostic lncRNAs. (A) The functional enrichment map of GO terms for mRNAs as ceRNA 
counterparts of lncRNA biomarkers. Each node represents a GO term and an edge represents the proportion of shared genes between 
connecting GO terms. (B) The enriched KEGG pathways ranked by –log10 (p-value).
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centrality are significantly higher than mRNA ceRNAs, 
indicating that ceRNA activity of lncRNAs has profound 
implications for PDAC and the dysregulated expression of 
lncRNA ceRNAs will result in the extensive variation in 
tumorigenic or tumor-suppressive gene expression through 
lncRNA-mediated ceRNA regulatory network at the post-
transcriptional level contributing to PDAC.

With increasing attention to the roles of lncRNAs as 
oncogenes and tumor suppressors in cancers, lncRNAs have 
exhibited superior potential as diagnostic and prognostic 
biomarkers than protein-coding genes owing to the more 
closely association between lncRNA expression and their 
functions [36, 37]. Recent studies have reported several 
lncRNA-focus signatures to improve prognosis prediction 
for some malignant tumors including breast cancer, lung 
cancer, colorectal cancer and so on [38–45]. However, 
the diagnostic role of lncRNAs in PDAC has not been 
investigated. Introducing graphic methods into biological 
systems can provide an intuitive vision and useful insights. 
It is particularly helpful to deal with complicated biological 
systems as demonstrated in recent some studies [46–48]. To 
explore whether 7 lncRNAs with ceRNA activity uncovered 
in the DLCN could become suitable diagnostic biomarkers 
for PDAC, we first performed unsupervised hierarchical 
clustering analysis and found that expression patterns of 
7 lncRNAs could discriminate effectively between PDAC 
tumors and nonmalignant pancreas samples in the discovery 
cohort and two independent validation cohorts. In statistical 
prediction, the following three cross-validation methods are 
often used to examine a predictor for its effectiveness in 
practical application: independent dataset test, subsampling 
test, and jackknife test [49]. We adopted the leave one out 
cross-validation in this study as done by many investigators 
with SVM as the prediction engine and chose independent 
dataset test method to examine the accuracy of 7 lncRNAs 
in dignostic precdition. Therefore, we developed a 
7-lncRNA signature based on the expression data of 7 
lncRNAs and SVM algorithm as a novel diagnostic tool 
to improve early diagnosis of PDAC. The 7-lncRNA 
signature achieved a high performance in distinguishing 
PDAC patients from nonmalignant pancreas samples in the 
discovery cohort and was further confirmed in another two 
independent validation cohorts. These results demonstrated 
that the 7-lncRNA signature had the robust discriminatory 
power and may become a reliable and powerful predictor 
for early diagnosis of patients with PDAC.

As functional characterization of lncRNA is still 
in its infancy, only very few lncRNAs have been well 
functionally annotated until now. The ceRNA activity 
of these 7 lncRNAs was reported to be associated with 
PDAC for the first time and their function is unknown. It 
is increasing evidence that ceRNA crosstalk has become 
a powerful approach to infer functional roles of lncRNA 
with unknown function based on their ceRNA activity 
[27, 28, 50–52]. Therefore, as a preliminary exploration 
for the potential functional implication of the LncRisk-7, 

we used ‘guilt by association’ principle to investigate 
biological processes and pathways regulated by the 
dysregulation of lncRNAs biomarkers and associated 
ceRNA crosstalk by functional enrichment analysis for 
mRNAs in the DLCN. We found that mRNAs as ceRNA 
counterparts of lncRNA biomarkers were involved in 
three GO biological processes (cell death, cell adhesion 
and cell cycle) and four KEGG pathways (pathways in 
cancer, ECM-receptor interaction, cell adhesion molecules 
(CMAs) and adherens junction). Three GO biological 
processes(cell death, cell adhesion and cell cycle) are 
well known to be associated with the hallmarks of cancer 
[53]. The extracellular matrix (ECM) not only provided 
mechanical and structural support but also played 
important roles in the development processes [54]. The 
dysregulated expression of ECM receptors contributing 
to the alterations of ECM formation and composition 
has been implicated in PDAC [55, 56]. Therefore, it is 
a plausible inference that the seven lncRNA biomarkers 
act as ceRNAs involving the regulation of cell death, 
cell adhesion and cell cycle. The dysregulation of these 
lncRNA ceRNAs and the resultant perturbation in 
lncRNA-mediated ceRNA network will have important 
effects in cancer-related biological processes contributing 
to tumorigenesis and progress of PDAC.

In summary, we performed a genome-wide analysis 
to investigate potential lncRNA-mediated ceRNA 
interplay by utilizing sample-matched miRNA, lncRNA 
and mRNA expression profiles in PDAC patients and 
normal samples in combination with miRNA regulatory 
network based on “ceRNA hypothesis”. Then a PDAC-
specific dysregulated lncRNA-mediated ceRNA network 
was constructed, which for the first time enables an 
overall view and analysis of lncRNA-associated ceRNA-
mediated gene regulation in the development of PDAC 
on a system-wide level. This study will help to improve 
our understanding of lncRNA-mediated ceRNA regulatory 
mechanisms in the pathogenesis of PDAC and provide 
novel lncRNAs as candidate diagnostic biomarkers or 
potential therapeutic targets.

MATERIALS AND METHODS

Patient datasets

Three independent, nonoverlapping PDAC patient 
cohorts were used in this study. The initial discovery 
cohort of 25 PDAC samples and 7 nonmalignant pancreas 
samples with whole genome gene expression profiles and 
miRNA expression profiles were retrieved from Donahue’ 
study [63] and were used to identify dysregulated 
lncRNA-mediated ceRNA interplay in PDAC. Another 
two PDAC patient cohorts composed of 52 samples (36 
tumor samples and 16 normal samples, denoted by “ 
Pei cohort” ) and 72 samples (36 tumor samples and 36 
normal samples, denoted by “ Badea cohort”) only with 



Oncotarget56391www.impactjournals.com/oncotarget

whole genome gene expression profiles were collected 
from Pei’s study [21] and Badea’s study [22], and were 
used as validation cohorts to test the diagnostic power of 
lncRNA biomarkers.

Acquisition and analysis of expression profiles

The sample-matched whole genome gene expression 
data and miRNA expression profiles data of 32 samples 
in the discovery cohort and the whole genome gene 
expression data of 52 samples in the Pei cohort and 72 
samples in the Badea cohort were obtained from the 
public available GEO database (the GEO accession 
number is GSE32688, GSE16515 and GSE15471). Raw 
gene expression data profiled from Affymetrix Human 
Genome U133 Plus 2.0 Array (HG-U133_Plus_2.0) in 
the three patient cohorts were processed and normalized 
using the Robust Multichip Average (RMA) algorithm for 
background adjustment [64] and log-transformed (base 2). 
miRNA expression data produced by the Exiqon miRNA 
arrays (miRCURY LNA microRNA Array v.11.0 -hsa, 
mmu & rno) were adjusted and normalized by variance 
stabilizing transformation [63]. lncRNA expression data 
were obtained by repurposing the probes in the HG-
U133_Plus_2.0 array to lncRNAs based on the annotation 
from the GENCODE project (http://www.gencodegenes.
org, release 22) as previously described [36, 41, 65, 66]. 
Finally, expression data of 11005 protein-coding genes 
(PCGs), 826 miRNAs and 2330 lncRNAs were retained 
for further analysis.

Differential expression analysis of mRNAs, miRNAs 
and lncRNAs between PDAC samples and normal 
samples was carried out using the significance analysis of 
microarrays (SAM) method [67]. Unsupervised hierarchical 
clustering was used to investigate the expression pattern 
between PDAC samples and normal samples, and the Chi-
square test or Fisher exact test was used to analyze the 
correlations between tumor status and lncRNA biomarkers.

MiRNA-mRNA and miRNA-lncRNA interaction 
data

The experimentally validated miRNA-mRNA 
interaction data was collected and integrated from TarBase 
(version 6.0) [68], miRTarBase (version 4.5) [69] and 
miRecords [70], including 37659 interactions between 
402 miRNAs and 12360 PCGs. The putative interactions 
of miRNA-lncRNA were downloaded from lnCeDB 
database [71], including 1562845 interactions between 
1394 miRNA and 28364 lncRNAs.

Construction and analysis of dysregulated 
lncRNA-associated ceRNA network

The dysregulated lncRNA-associated ceRNA 
network (DLCN) in PDAC was constructed based on 

“ceRNA hypothesis” as follows: Firstly, expression 
correlation between differentially expressed mRNAs and 
differentially expressed lncRNAs was evaluated using 
Pearson correlation coefficient (PCC) from matched 
mRNA and lncRNA expression profiles data. Those 
dysregulated lncRNA-mRNA pairs with PCC > 0.5 and 
p < 0.05 were selected as co- dysregulated lncRNA-mRNA 
pairs. Then, the Pearson correlation coefficient between 
differentially expressed miRNAs and differentially 
expressed mRNAs, and between differentially expressed 
miRNAs and differentially expressed lncRNAs was 
computed from paired miRNA, mRNA and lncRNA 
expression profile data. For a given co-dysregulated 
lncRNA-mRNA pair, both mRNAs and lncRNAs in this 
pair are targeted and co-expressed negatively with a 
certain common miRNA, this miRNA-mRNA-lncRNA 
was identified as dysregulated competing triplets (DCTs). 
Finally, a DLCN was built for PDAC by assembling all 
DCTs identified above.

The network characteristics of DLCN, including 
degree, characteristic path length (CPL), clustering 
coefficient (CC) and betweenness centrality were 
analyzed.

Development of lncRNA-based signature in 
PDAC diagnosis

For classification of PDAC vs. normal samples, 
lncRNA biomarkers were integrated to form a lncRNA-
focus signature using support vector machine (SVM) with 
the sigmoid kernel. An unbiased performance estimate in 
identifying PDAC patients was carried out using leave one 
out cross-validation (LOOCV). Diagnostic ability of the 
lncRNA-focus prediction model was evaluated by 
obtaining the area under a receiver operating characteristic 
(ROC) curve (AUC) and diagnostic odds ratio (DOR).  
The ROC curve was produced by plotting true positive 
rates (sensitivity) against false positive rates 
(1-specificity). The DORs were calculated as follows: 

DOR = 
Sensitivity × Specificity

(1 – Sensitivity) × (1 – Specificity) . 
The permutation p-value of AUC and DOR was obtained 
from 1,000 randomization tests by randomizing lncRNA 
expression data for testing the null hypothesis.

Functional analysis of lncRNA biomarkers

Functional enrichment analysis of Gene Ontology 
(GO) and Kyoto encyclopedia of genes and genomes 
(KEGG) for mRNAs in the DLCN was performed to 
infer potential biological processes and pathways of 
lncRNA biomarkers using DAVID Bioinformatics Tool 
(version 6.7) [72] limited to GO terms in the “Biological 
Process”(GOTERM-BP-FAT) and KEGG pathway 
categories. The biological processes and pathways with 
p-value of < 0.05 and an enrichment score of > 3.0 
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using the whole human genome as background were 
considered as significant functional categories which 
were organized into an interaction network with similar 
functions using the Enrichment Map plugin in Cytoscape 
environment [73].
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