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AbstrAct
Breast cancer is one of the most widespread carcinoma and one of the main 

causes of cancer-related death worldwide, especially in women aged between 
35 and 75 years. Among the different subtypes, triple negative breast cancer 
(TNBC) is characterized by the total absence of the estrogen-receptor (ER) and 
progesteron-receptor (PR) expression as well as the lack of human epidermal growth 
factor receptor 2 (HER2) overexpression or gene amplification. These biological 
characteristics confer to TNBC a higher aggressiveness and relapse risk along with 
poorer prognosis compared to other subtypes. Indeed, 5-years survival rate is still 
low and almost all patients die, despite any adjuvant treatment which at moment 
represents the heading pharmacological approach. To date, several clinical trials 
have been designed to investigate the potential role of some molecular markers, 
such as VEGF, EGFR, Src and mTOR, for targeted treatments in TNBC. In fact, many 
inhibitors of the PI3K/AKT/mTOR pathway, frequently de-regulated in TNBC, are 
acquiring a growing interest and several inhibitors are in preclinical development 
or already in early phase clinical trials. In this Review, we investigated the role 
of the PI3K/AKT/mTOR pathway in TNBC patients, by summarizing the molecular 
features that led to the distinction of different histotypes of TNBC. Furthermore, 
we provided an overview of the inhibition mechanisms of the mTOR and PI3K/AKT 
signaling pathways, highlighting the importance of integrating biological and clinical 
data for the development of mTOR inhibitors in order to implement targeted therapies 
for TNBC patients.

INtrODUctION

Breast cancer (BC) is one of the most widespread 
carcinoma and one of the main causes of cancer-related 
death worldwide especially in women aged between 35 
and 75 years [1]. In the last few years new molecular 
markers have been studied to provide new insights on 
BC heterogeneity but also to better understand and 
predict tumor behavior during treatment. It is now well 
established that BC can be classified into different groups 

according to gene expression profiles [2-5]. This new 
classification will certainly provide new insights into the 
BC biology and will probably drive treatment decisions 
in the near future by microarray analysis that soon will 
switch the clinical approach to different illnesses by giving 
a huge support to conventional pathology (morphology 
and immunohistochemistry) [6].

The different BC subgroups detected by their 
different gene expression profiling are below described as 
discussed in San Gallen Expert Consensus report: 
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Luminal A subgroup is characterized by estrogen/
progesterone receptor (ER/PR) positivity, lower 
expression of Ki-67 ( < 20%) and HER2 lack, accounting 
for the 50% of all invasive BCs; Luminal B subgroup 
results characterized by ER/PR positivity or variable 
expression of HER2 (+ or -), accounting for the 10-20% 
of all invasive BCs [7]; HER2 overexpression subtype 
is characterized by ER/PR negativity and HER2 strong 
positivity. This subtype accounts for 15% of all invasive 
breast cancer; Basal like breast cancer (BLBC) subtype 
exhibits an expression profile similar to that of the 
epithelial cell mammary tissue and includes triple negative 
breast cancer (TNBC) [8-10].

Among the different subgroups, TNBC presents 
biological characteristics that confer higher aggressiveness 
and relapse risk along with worse outcome in comparison 
to other subgroups. Several studies showed that PI3K/
AKT/mTOR signaling is often altered in TNBC patients 
[11].

sELEctION crItErIA

We have searched trials using Medline (PUBMED), 
EMBASE and COCHRAINE database, the following 
search strategy (“TNBC” [MESH] AND (“PI3K” [tiab] 
OR “mTOR” [tiab]) AND (“ER” [tiab] OR “PgR” [tiab]) 
and free text terms as “PI3K” [tiab], “triple negative breast 
cancer” [tiab] and “mTOR” [tiab].

trIPLE NEGAtIVE brEAst cANcEr

TNBC is characterized by lack of ER and PR 
expression as well as the absence of HER2 [12, 13]. 
The percentage of new TNBC diagnosis is variable, but 
it mainly ranges between 9% and 16% with a higher 
frequency in young women carrying BRCA1 gene 
mutation, showing a strong correlation with ethnic origin 
(in particular, African-American and Hispanic women) 
[14-17]. TNBC also shows greater size and tumor burden, 
and often is a more aggressive high grade tumor [18, 19]. 

TNBC patients show a higher susceptibility to 
develop metastases, resulting in an unfavorable clinical 
outcome compared to other subgroups [20-22].

Although TNBC patients initially respond to 
neoadjuvant treatments, only 30% of them will exhibit a 
survival higher than 5-years following the first diagnosis, 
reflecting the aggressiveness of this subtype [23, 24]. 
Patients with BRCA1 mutation are often diagnosed 
with TNBC but not all TNBC are BRCA1 positive. 
Nevertheless, it been shown that TNBC not carrying 
BRCA1 mutation, behave similarly to BRCA1-deficient 
tumors, showing also similar gene expression profiles [25, 
26].

The growing interest in the TNBC biology allowed 
to develop trials investigating new drug targeting potential 
biomarkers such as VEGF, EGFR, Src and mTOR [27]. 

Moreover, the introduction of tumor molecular features in 
the characterization of TNBC has led to a further subtype 
labeling. Indeed, 6 new TNBC subtypes have been 
identified [28]: 

Basal-like 1 (BL1) and Basal-like 2 (BL2) subtypes: 
both are characterized by up-regulation of gene and 
cellular markers mainly implicated in cell growth. In fact, 
Ki-67 expression and nuclear fraction staining are higher 
(BL1+BL2 = 70%) if compared to other subtypes (42%). 
All these features combined together indicate that more 
efficient treatment for BL TNBCs could be that directed 
against the mitotic apparatus such as a taxane-based 
therapy [29-32]. Furthermore, BL2 shows the involvement 
of a different plethora of growth factors and receptors 
(EGF, EGFR, NGF, MET, Wnt/β-catenin, IGF1R and 
EPHA2). 

Immunomodulatory subtype: it is characterized by 
immune system gene signature similar to that of medullar 
BC determining its better clinical outcome.

Mesenchymal and mesenchymal stem-like subtypes: 
both are characterized by increased expression of gene 
and cellular markers involved in cell motility (Rho 
pathway), extracellular matrix-receptor interaction and 
differentiation (Wnt/β-catenin, ALK, TGF-β pathways). 
The mesenchymal stem-like subtype shows reduced 
expression of proliferative genes and enrichment of 
genes involved in several signaling pathways, including 
the inositol phosphate-dependent signaling pathway, 
EGFR, PDGF, and ERK1/2 signaling. Moreover, notable 
is the contribute of the adipocytokine signaling and ABC 
transporter. Both subtypes exhibit gene expression pattern 
and chemoresistance similar to metaplastic BC [28].

Luminal androgen receptor (LAR) subtype: this 
TNBC subgroup is ER-negative and is characterized by 
high deregulation of hormone-dependent pathways. In 
particular, the androgen receptor pathway seems to play a 
pivotal role in inducing expression of specific genes of the 
LAR subtype [33-35]. 

Indeed, androgen receptor mRNA expression 
has been shown to be considerably increased (9-fold) 
with respect to the other subtypes. Furthermore, tumors 
here classified show the up-regulation of a plethora of 
downstream targets and co-activators of the androgen 
receptor signaling [36-38].

tArGEt tHErAPY IN tNbc

The major issue for targeted therapy against TNBC 
is the lack of specific oncogene drivers due to wide BC 
heterogeneity [39-41].

To date, the main approach in TNBC treatment 
remains the chemotherapy, in particular the administration 
of anthracyclines, taxanes and/or platinum compounds 
able to target dividing cells. Unfortunately, not all 
chemotherapy treated patients show a favorable outcome 
and is still unclear whether treatment choices should be 



Oncotarget60714www.impactjournals.com/oncotarget

personalized among the different TNBC subtypes [42, 43]. 
Maybe a possible solution would be represented 

by the new proposed genetic signature tools as suggested 
by the recent MINDACT trial results, in the order 
to avoid the aggressive treatment to non-responder 
patients. MammaPrint genetic study allowed to identify 
a large group of patients which showed a good five-year 
progression-free survival (PFS) good though they have 
not received adjuvant treatment (AACR Annual Meeting 
2016).

Indeed, for pre-operative treatment pCR 
(pathological Complete Response) would represent the 
best surrogate survival end-point for TNBC patients and 
it results doubled if platinum compounds are added to 
conventional therapy compared to the worse outcome 
achieved by TNBC patients showing residual disease [44, 
45]. 

Given the aforementioned issues for management of 
TNBC patients, studies are urgently needed to improve the 
use of target therapies. The major difficulty is to discover 
actionable target because of wide heterogeneity of the 
disease. In fact, clinical trials on TNBCs that aim to point 
out a particular receptor fail to demonstrate an evident 
clinical benefit. One of the most important involved 
receptors is EGFR, that is upregulated in about 60% of 
TNBCs, whose trial investigating chemotherapy plus 
EGFR targeted agent versus chemotherapy alone showed 
a modest advantage in terms of response rate (RR) (33% 
vs 28%) [46]. Among the reasons why studies were not 
able to underline a significant clear advantage of these 
new proposed drugs, we should not take into account the 
heterogeneity of the disease that probably masks the real 
effect of the drug in a smaller population carrying the right 
target [47]. Recent studies are investigating a number of 
promising molecules and, thanks to some favourable 
hopeful results, a growing interest is developing about 
some specific signaling pathways such as PI3K/AKT/
mTOR. [48-50]. 

PI3K/AKt/mtOr signaling pathway

PI3K/AKT/mTOR (PAM) represents the main 
signaling pathway responsible for cell proliferation, 
survival, metabolism and motility regulation and is often 
activated in BC [51-54] (Figure 1). A heterodimeric 
molecule belonging to the lipid kinases, phosphoinositide 
3-kinase (PI3K), is the major component of this pathway. 
Based on structure, regulation mechanism and lipid 
substrate specificity, they can be categorized in three 
classes, but the class I PI3K is the more dysregulated in 
cancer [55]. 

PI3K signaling pathway starts following the binding 
of a growth factor or ligand to a variety of tyrosine kinase 
(TK) receptors, including HER proteins and IGF-1 
receptors [56-58]. 

In its activated form PI3K phosphorylates 
phosphatidylinositol 4,5-bisphosphate (PIP2) to 
phosphatidylinositol 3,4,5-triphosphate (PIP3) which 
represents the docking site for AKT kinase. AKT 
activation leads to protein synthesis and cell growth by 
activating mTOR through TSC1/2 [59-61].

The main PI3K counteracting protein is the PTEN 
phosphatase, which acts by converting PIP3 to PIP2 [62]. 
Therefore, PIP3 results activated by PI3K and negatively 
controlled by PTEN [63]. 

Moreover, PIP3 levels seem to be also tightly 
modulated by another tumor suppressor, inositol 
polyphosphate 4-phosphatase type II (INPP4B), which 
dephosphorylates PIP3 to PIP2 [64]. 

Many research works report a higher incidence of 
PTEN and PI3K mutations in TNBC patients with respect 
to other histological subtypes [65]. 

A downstream component of PI3K/AKT pathway 
is mTOR which exists in two functionally different 
complexes, mTOR complex 1 (mTORC1) and mTOR 
complex 2 (mTORC2). mTORC1 is responsible for the 
activation of protein translation process by promoting 
mRNA translocation and is also involved in metabolism 
and lipid synthesis [66]. mTOR downstream substrate 
is S6K1 which in turn can phosphorylate estrogen 
determining its activation with a mechanism independent 
of the ligand [67-69]. 

On the other hand, mTOR complex 2 is involved 
in the organization of actin cytoskeleton and, at the same 
time, regulates AKT phosphorylation. The importance 
of mTOR complexes and their pathways is fundamental 
in clinics due to the ability of many drugs to target 
selectively mTORC1 [70]. Indeed, studies conducted 
on TNBC murine models highlighted the effects of the 
inhibitor Dactolisib in controlling the whole mTOR 
pathway [71]. The frequency of mTOR pathway activation 
is higher in TNBC compared to other subtypes and is often 
correlated with poor prognosis [22, 72, 73]. Moreover, 
the up-regulation of PAM signaling induces resistance 
to hormone treatment, HER2-targeted treatment and 
cytotoxic therapy [74]. 

MAMMALIAN tArGEt OF rAPAMYcIN 
INHIbItOrs

Everolimus (RAD001) is a mTOR inhibitor 
exhibiting vast anticancer activity in preclinical studies 
[75]. The combined treatment of rapamycin with 
paclitaxel in cell lines altered in the PI3K/AKT/mTOR 
signaling has been shown to increase effectiveness of 
treatment in TNBC [76]. This rationale has been explored 
in different clinical experiences. In a phase II study, Meyer 
and collaborators investigated the addition of everolimus 
5 mg/day for 12 weeks to a short course pre-operative 
chemotherapy regimen containing weekly cisplatin (25 
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mg/m²) + paclitaxel (80 mg/m²) in patients affected by 
stage II / III TNBC demonstrating that no improvement 
was detected in the pCR after surgery and RR, following 
the addition of RAD001 [77]. Another phase II randomized 
study aimed to investigate the addition of everolimus to 
paclitaxel in neoadjuvant sequential regimen containing 
anthracyclines. Fifty women affected by stage II/III TNBC 
were subjected to a therapy with paclitaxel 80 mg/mq for 
12 weeks or paclitaxel 80 mg/mq + everolimus 30 mg/day 
orally for 12 weeks followed by an FEC scheme (5-FU 
500 mg/mq, epirubicin 100 mg/mq and cyclophosphamide 
500 mg/mq every 3 weeks for four cycles) [78]. The 

addition of everolimus, although well tolerated, did not 
add any significant benefit in terms of 12-week-RR (48% 
versus 30% in favour of everolimus) and pCR (30% versus 
26% in favour of everolimus) [79]. 

For the same principles, everolimus was tested 
in combination with carboplatin. In particular, Singh 
et al. enrolled 25 patients affected by metastatic TNBC 
who underwent to a 3-weekly chemotherapy regimen 
containing carboplatin AUC6 (or decreased to AUC5/4) + 
everolimus 5 mg/day. The treatment has shown significant 
hematologic toxicity especially with regimens containing 
carboplatin AUC6/5, but was well tolerated with AUC4, 

table 1: Ongoing trials studying the role of mtOr inhibitors in tNbc

trIAL rEGIstrAtION NUMbEr INVEstIGAtOr 
INstItUtION

Phase Ib/II Trials of RDA001 in Triple 
Negative Metastatic Breast Cancer NCT01939418 National Cancer Center, Korea

A study of Lapatinib in combination 
with Everolimus in patients with 
Advanced, Triple Negative Breast 
Cancer

NCT01272141 Emory University Winship Cancer 
Institute

Liposomal Doxorubicin, Bevacizumab 
and Temsirolimus (DAT) in Triple-
Negative Breast Cancer (TNBC) 
Insensitive  to Standard Neoadjuvant 
chemotherapy

NCT02456857 M.D. Anderson Cancer Center

Comparison of Single-Agent 
Carboplatin vs the Combination of 
Carboplatin and Everolimus for the 
Treatment of Advanced Triple-Negative 
Breast Cancer

NCT02531932 Icahn School of Medicine at 
Mount Sinai

Eribulin Mesylate and Everolimus in 
Treating Patients With Triple-Negative 
Metastatic Breast Cancer

NCT02120469 City of Hope Medical Center

NECTAR Everolimus Plus Cisplatin (-) 
Breast Cancer (NECTAR) NCT01931163 The Methodist Hospital System

Safety and Tolerability of Everolimus 
in Combination With Eribulin in Triple-
negative Breast Cancer

NCT02616848 Istituti Ospitalieri di Cremona

A Study of AZD2014 in Combination 
With Selumetinib in Patients With 
Advanced Cancer (TORCMEK)

NCT02583542 Queen Mary University of London

table 2: Ongoing trials studying the role of PI3K inhibitors in tNbc

trIAL rEGIstrAtION NUMbEr INVEstIGAtOr 
INstItUtION

Capecitabine +BKM120 TNBC Brain 
Mer NCT02000882 US Oncology Research

Phase I Study of the Oral PI3kinase 
Inhibitor BKM120 or BYL719 and the 
Oral PARP Inhibitor Olaparib in Patients 
With Recurrent Triple Negative Breast 
Cancer or High grade Serous Ovarian 
Cancer

NCT01623349 Dana-Farber Cancer Institute

Phosphatidylinositol 3-kinase (PI3K) 
Alpha iNhibition In Advanced Breast 
Cancer (PIKNIC)

NCT02506556 Peter MacCallum Cancer Centre, 
Australia
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demonstrating a clinical benefit rate > = 6 months of 28% 
with a total mOS of 16.6 months and mPFS of 3 months 
[80].

Despite TNBC is HER2- [81], RAD001 has also 
been tested in a regimen with anti-HER2 drugs since 
EGFR is overexpressed and upregulated in about 50% 
of TN tumors [82, 83], providing a strong rationale to 
investigate the association between an anti-EGFR and a 
mTOR inhibitor in order to overlap the resistance to anti-
EGFR agents [84, 85]. Although the mTOR inhibitors 
paradoxically trigger the AKT pathway [86], this 
activation could probably serve as resistance mechanism 
to mTOR inhibitors thus explaining the poor performance 
of these drugs when used as a single agent [78, 87]. On 
this basis, Liu et al. in their experience have shown that 
the addition of everolimus could sensitize BC cells to 
anti-EGFR drugs (lapatinib) [88], demonstrating that this 
association may be responsible for an increased apoptosis 
in some TNBC cell lines and murine xenograft progression 

compared to the same drugs used in monotherapy [89]. 
The main clinical studies concerning the function of 
mTOR inhibitors in TNBC and currently under evaluation 
are reported in Table 1. 

In another important work, Zhang et al. created 
a panel of seven patient-derived orthotopic xenografts 
from primary and metastatic neoplastic tissue having 
histological and immunohistochemical features matched 
between patient and their corresponding xenografts. 
Neoplasms were divided on the basis of the above 
characteristics in different TNBC subtypes and the 
authors created a response signature to mTOR inhibitors 
demonstrating that BLBC also possessed the highest 
expression rate of the genes belonging to the PI3K/AKT 
pathway and the highest extent of phosphorylation of 
4EBP1 [90]. 

Despite these promising results, it is not yet 
known the synergistic mechanism of action between the 
anti-EGFR and mTOR inhibitors and, furthermore, the 

Figure 1: PI3K/AKt/mtOr signaling pathway. The PI3K signaling pathway is triggered by activation of receptor tyrosine kinase 
(RTK) in cell membrane. After binding to the growth factors, the intracellular domain of RTK is phosphorylated, and PI3K is activated. 
Activated PI3K phosphorylates PIP2 to produce PIP3. The tumor suppressor phosphatase and tensin homolog (PTEN) could negatively 
regulate this process via dephosphorylation of PIP3. Activated PIP3 could prompt the phosphorylation of Akt and further stimulate the 
Akt- mediated activation of downstream targets, including the Bcl-2 family members, Mdm2 and tuberous sclerosis complex 2 (TSC2). 
Activated Akt inhibits the Rheb GTPase activity of TSC1/2 complex by phosphorylating TSC2. Then, activated Rheb promotes mTOR 
complex 1 (mTORC1) to phosphorylate p70S6 and 4E binding protein1 (4EBP1), resulting in dysregulation of protein synthesis and cell 
survival.
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importance of EIF4EBP1 gene is not completely clear. 
This topic was recently treated by Madden et al. that, using 
gefitinib (anti-EGFR) and temsirolimus (anti-mTOR) on 
TNBC cell lines, discovered the presence of a cross-talk 
mechanism between EGFR and mTOR also engaging the 
eukaryotic translation initiation factor 4B (eIF4B) [91]. 
Moreover, the action of these two molecules would seem 
to block phosphorylation of eIF4B, finally resulting in a 
growth and survival reduction in TNBC cell lines and then 
suggesting to investigate mTOR inhibition in association 
with other drugs [92, 93]. 

Recently, Bhola et al. [70] have suggested that 
resistance to TORC1/2 inhibitors may be exceeded via 
inhibition of the FGFR-mitochondrial metabolism-Notch1 
axis that allows to eradicate therapy-resistant cancer stem 
cells in TNBC.

PI3K/AKt INHIbItOrs

The PAM pathway may be targeted trough a 
different strategy involving the inhibition of its upstream 
targets such as PI3K and Akt [94]. While there are 
inhibitors inactivating both PI3K and mTOR, further 
development may be limited by issues, including increased 
toxicity [95]. Kalinski et al. have shown that subjecting 
patients affected by stage I/III BC (including 3 women 
TN) at different doses of MK-2206, an allosteric inhibitor 
of AKT, they experienced rash and pruritus G3, mucositis 
G2, fever G2 and hyperglycemia G2, leading to the trial 
suspension, despite two dose reductions [96]. 

A further setting in which the PI3K/AKT inhibitors 
could prove their usefulness could be in association 
to PARP inhibitors (PARPis) in TNBC patients who 
did not exhibited BRCA1/2 function loss [97]. This is 
because, as it is already known, PARPis result active in 
tumors deficient in the homologous recombination (HR) 
mechanisms due to alterations in the BRCA1/2 genes [98-
101], whereas their action is very negligible in non-BRCA 
mutant cancers [102].

Since the PI3K/AKT pathway stabilizes the function 
of HR, Ibrahim and collaborators have demonstrated 
that the use of AKT inhibitors in TNBC cell lines 
without BRCA1/2 alterations could cause HR function 
changes, and then sensitize to PARPis. In particular, 
the study showed that TNBC cancer cells treated with 
buparlisib (AKT inhibitor) were subject to a subsequent 
hyperactivation of ERK and MEK1, two essential 
component of the MAP kinase signal transduction 
pathway, resulting in downregulation of BRCA1 and then 
favoring the action of olaparib (PARPi) with subsequent 
reduction of cell proliferation and survival [103]. An 
interesting in vitro study showed that targeting multiple 
kinases such as IGF-1R, PI3K, mTORC or MEK may 
suppress cell proliferation and induce apoptosis in MDA-
MB-231 cells, increasing also the inhibition of Akt 
phosphorylation [104].

A similar experience has been carried out by 
Kimbung et al. which evaluated the association between 
Rucaparib (PARPi) and LY294002 (PI3Ki) in BRCA1-
deficient cells with the intent to improve the response to 
PARPis. This study showed promising results with sub-
micromolar doses of both drugs, providing then a strong 
rationale for further research especially in TNBC [105].

The main clinical trials concerning the function of 
PI3K inhibitors in TNBC and currently under evaluation 
are reported in Table 2. 

cONcLUsIONs

TNBC is a heterogeneous subtype of BC showing 
aggressiveness and high risk of relapse [106]. 

In the last years, the treatment of metastatic breast 
cancer has seen the development of new systemic 
treatments. Despite this progress, TNBC still has 
limited therapeutic options: cytotoxic chemotherapy 
is the standard of care; systemic treatment tipically has 
transitory efficacy and the response is early followed by 
disease progression.

TNBC patients exhibit, indeed, an unfavorable 
outcome compared to those with other subtypes.

Only recently driver mutations have been identified 
with encouraging results in preclinical models and have 
allowed to investigate new specific drugs for each different 
subtype of the disease.

The PI3K-AKT-mTOR pathway is an exciting target 
for developing new anticancer therapeutics [107]. Since 
several pathways may be involved, therefore, the best 
results are achieved by combining different molecules 
on various targets paying attention to toxicity. For these 
reasons, it will be necessary in the near future to rescue 
pathological tissue taken before and after therapy in order 
to better understand the mechanisms of drug resistance and 
new concepts on tumor pathogenesis. Using increasingly 
refined techniques, liquid biopsies could have an important 
role, allowing us to obtain a lot of information in a short 
time and in a minimally invasive manner and maintaining 
a high concordance rate with the primary tumor and/
or metastases. Therefore, is desirable enrolling TNBC 
patients with different subtypes in new specific trials to 
ensure them the most suitable treatment.

One of the main difficulties in the field of targeted 
therapies is represented by the extreme heterogeneity of 
the disease. This condition produces a number of different 
cases, each constituted by the presence of a rare mutation 
mostly detected in cases of exceptional responders in the 
context of negative trials. Consequently, although the 
discovery of these rare mutations is leading to the approval 
of many new antitumor therapies, it is necessary to design 
new studies showing benefits, avoiding all the problems 
related to the extreme heterogeneity of the disease 
contained in other conventional trials. A possible solution 
could be derived from the use of the so called basket 
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trials that find their maximum indication where neoplasia 
depends on the pathway of the target and whether the 
therapy can effectively inhibit the action of the target 
itself. This would make possible to consider a marker as a 
probable predictor regardless of tumor histology.
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