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ABSTRACT

Background: Apoptosis is a highly conserved form of cell death and aberrant 
regulation of apoptotic cell death mechanisms leads to variety of major human 
diseases, especially tumor formation. Genetic variations in apoptosis genes may 
increase susceptibility to ovarian cancer.

Results: In individual SNP analysis, 12 SNPs in 5 apoptosis pathway genes 
were significantly associated with ovarian cancer risk after adjustment for multiple 
comparisons at q-value <0.05. The most significant SNP was rs11152377 in the Bcl-
2 gene. The homozygous variant TT genotype was associated with a significantly 
decreased risk of ovarian cancer (odds ratio [OR] =0.53; 95% confidence interval 
[CI], 0.37-0.77, P<0.001). Cumulative effect analysis showed joint effects of increased 
risk of ovarian cancer with increasing number of unfavorable genotypes in patients. 
Classification and regression tree (CART) analysis further revealed high-order gene-
gene interactions and categorized the study subjects into low-, medium-, and high-
risk groups. Compared with the low-risk group, medium-risk group and high-risk 
group conferred 1.76-fold (95% CI: 1.06–2.90) and 3.64-fold (95% CI: 2.37–5.59) 
increased risk of ovarian cancer (P for trend <0.001)

Materials and Methods: In a case-control study of 417 ovarian cancer patients 
and 417 matched controls, we evaluated the associations of 587 single nucleotide 
polymorphisms (SNPs) from 65 genes of the apoptosis pathway with the risk of 
ovarian cancer.

Conclusions: Our results suggest that genetic variations in apoptosis pathway 
genes modulate the risk of ovarian cancer individually and jointly.

INTRODUCTION

Ovarian cancer is the fifth most frequently leading 
cause of cancer deaths and remains the most lethal of all 
gynecologic malignancies in women in the United States. 
Approximately, 22,280 new cases and 14,240 deaths 
were estimated in 2016 [1]. Most women with ovarian 
cancer are diagnosed with advanced disease (stage III 
or IV) and have only 10–30% survival rates [2, 3]. The 
main risk factors for ovarian cancer are all hormone-
related, including parity, oral contraceptive use, and age 
of menarche and menopause [4]. Smoking and alcohol 
drinking are not associated with epithelial ovarian cancer, 
but obesity, physical activity and dietary intake may be 
associated with ovarian cancer [4]. Family history is an 

important risk factor of ovarian cancer pointing to genetic 
susceptibility of this disease [5]. It is well known that 
BRCA1 and BRCA2 mutations are the most frequent 
hereditary risk factor [6]. DNA mismatch repair genes such 
as MSH2 or MLH1 also play important roles in inherited 
ovarian cancer [7]. Recent genome-wide association 
studies (GWAS) have identify nearly 20 common genetic 
susceptibility loci for ovarian cancer [8, 9]. In the ear of 
GWAS, pathway-based approach is a complementary 
method to identify novel genetic susceptibility loci 
for diseases including cancer. By focusing on specific 
biological pathways that are closely related to disease 
pathogenesis, pathway-based approaches require smaller 
sample sizes, offer higher genomic coverage, and more 
reliably find gene-gene interactions and gene networks 
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than GWAS. Many recent studies have demonstrated the 
value of the pathway-based approach in identifying novel 
genetic susceptibility SNPs for cancer risk [10-16].

Multicellular organisms maintain homoeostasis 
by the controlled elimination of cells that are no longer 
needed or are damaged by a cell suicide pathway known 
as apoptosis [17]. Apoptosis is a highly conserved form 
of cell death and aberrant regulation of apoptotic cell 
death mechanisms leads to a variety of human diseases, 
especially cancer [18]. Previous molecular epidemiologic 
studies have shown that SNPs in apoptosis pathway are 
associated with the risks of different cancers [19-22]. 
However, the association of SNPs in the apoptosis 
pathway with the risk of ovarian cancer has not been 
systematically studied yet.

In this case-control study, we applied a pathway-
based approach to evaluate a large number of single 
nucleotide polymorphisms (SNPs) in major apoptosis 
genes as genetic susceptibility loci for ovarian cancer 
and also explored high-order gene-gene interactions 
in the apoptosis pathway in affecting ovarian cancer 
susceptibility.

RESULTS

Characteristics of the study population

A total of 417 patients diagnosed with ovarian cancer 
cases and 417 controls were included in this study. Control 
subjects were matched to the cases by age (±5 year) and 
ethnicity. The mean ages (± SDs) of cases and controls 
were 60.73 ± 10.36 and 60.30 ± 10.71, respectively. No 
significant differences were observed between cases and 
controls for age (P = 0.554) and ethnicity (P = 0.269). The 
major of ethnicity were Caucasians (81.3% in cases vs. 
83.7% in controls) (Table 1).

Association between individual SNP variant 
genotype and risk of ovarian cancer

The analyses included 587 SNPs within 65 genes of 
the apoptosis pathway. We discarded 5 SNPs that showed 
significant departure from Hardy–Weinberg equilibrium (P 
< 0.01). A total of 46 SNPs showed significant association 
with ovarian cancer risk at P<0.05. Among 46 SNPs with 
significant main effects, 12 SNPs in 5 genes remained 
significant after adjustment for multiple comparisons at 
q-value <0.05. SNP rs11152377 in BCL-2 gene showed 
the most significant effect on ovarian cancer risk with a 
recessive model (Table 2). The homozygous variant TT 
genotype was associated with a 0.53 fold decreased risk 
of ovarian cancer (odds ratio [OR] =0.53; 95% confidence 
interval [CI], 0.37-0.77, P<0.001). Among these 12 
SNPs, 11 SNPs exhibited considerably reduced risk. Only 
rs2889 located in TNFRSF10B exhibited considerably 

increased risk in a dominant model. To internally validate 
the associations, we performed bootstrap resampling for 
100 times and listed the number of times for each SNP 
that bootstrap-generated P value was <0.05, p<0.01, 
p<0.001. The overall odds ratios and 95% CIs generated 
by bootstrapping were consistent with our initial results. 
All these 12 SNPs exhibited highly consistent results 
with P<0.05 at 100 times in 100 bootstrap samples. This 
indicates that the results for these SNPs are unlikely to be 
due to chance alone. All of these SNPs, with the exception 
of rs1801018 on BCL-2 that is a coding non-synonymous 
SNP, are either intronic or intergenic, because most of the 
SNPs were tagging SNPs.

Cumulative effect of unfavorable genotypes 
of apoptosis genes

To further assess the cumulative effect of multiple 
SNPs in apoptosis genes associated with ovarian cancer 
risk, we conducted the unfavorable genotype analysis 
by distributing individuals into separate risk groups and 
analyzed the resulting association with ovarian cancer 
risk (Table 3). We divided the subjects into four risk 
subgroups according to the quartile of overall subject 
investigated. We found a statistically significant trend 
toward an increasing gene-dosage effect for ovarian cancer 
risk associated with an increasing number of unfavorable 
genotypes. That is, compared with reference group (group 
1 with 3-7 unfavorable genotypes), group 2 (with 8-9 
unfavorable genotypes), group 3 (with 10 unfavorable 
genotypes), and group 4 (with 11-12 unfavorable 
genotypes) had a progressively increased ovarian cancer 
risk with ORs of 2.62 (95% CI, 1.52-4.51), 4.25 (95% CI, 
2.43-7.45), and 7.42 (95% CI, 4.23-13.04), respectively (p 
for trend <0.001).

CART analysis

We then applied the CART analysis by using a 
binary recursive-partitioning method, which identifies 
subgroups of high-risk subjects and detects higher-order 
gene–gene interactions among a large number of variables. 
By examining genotypes of significant apoptosis SNPs 
(P< 0.05 in the best-fitting model) identified from the 
individual SNP analysis as attributes for tree construction, 
a resulting tree with nine terminal nodes was generated 
(Figure 1). The initial split was rs11152377 of BCL-2, the 
most significant SNP out of those evaluated for ovarian 
cancer risk. Terminal node 1 was defined as individuals 
carrying the homozygous variant genotypes (VV) for 
rs11152377 of BCL-2, following by the homozygous 
wildtype (WW) for rs2889 of TNFRSF10B, which had 
the lowest ovarian cancer risk as the reference node. 
Subjects with the highest ovarian cancer risk were those 
individuals in node 9 with genotypes of the homozygous 
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wildtype or heterozygous genotype (WW/WV) for 
rs11152377 of BCL-2, following by WW for rs4988360 
of BIK, WW/WV for rs1001793 of TNFRSF10B, WW/
WV for rs744120 of BIRC5, and WW for rs16957730 
of TP53BP1. Compared to node 1, the ORs of terminal 
node 2 to 8 ranged from 1.25 (95% CI 0.51–3.03) to 5.40 
(95% CI 2.86-10.16) based on distinct SNP genotype 
combinations (Table 4).

DISCUSSION

In this case–control study, we systematically 
assessed the association between a panel of genetic 
polymorphisms involved in the apoptosis pathway and 
risk of ovarian cancer. We screened 587 SNPs located in 
65 apoptotic-pathway genes in a case-control study. We 
found that 46 SNPs showed significant associations with 
ovarian cancer risk in the discovery population and 12 
SNPs remained significant after adjustment for multiple 
comparisons at q-value <0.05. The results from cumulative 
analysis further suggested that these genetic variants may 
influence ovarian cancer risk jointly, consistent with the 
polygenic etiology of ovarian cancer. Moreover, we also 
found potential high-order gene-gene interactions involved 
in the apoptosis pathway concerning ovarian cancer 
susceptibility that further defined high versus low risk 
subgroups in the study population.

Apoptosis is an essential cellular defense mechanism 
against cancer development [23, 24]. Apoptosis is 
triggered through two distinct molecular routes; the 
extrinsic or receptor-mediated pathway and intrinsic or 
mitochondrial pathways [25]. Both pathways involve 
the activation of a cascade of enzymes called caspases, 
a family of cysteine proteases that cleave substrates at 
aspartic acid residues [26]. The extrinsic and intrinsic 
pathways each have an independent group of “initiator” 
caspases, and the pathways converge on the same group 
of “effector” caspases to execute the cell death program. 

Intrinsic death stimuli, such as DNA damage, hypoxia, 
growth factor deprivation, or stress signals, can activate 
the intrinsic pathway resulting in the release of cytochrome 
c and the formation of the apoptosome complex consisting 
of cytochrome c, Apaf-1 and caspase-9 through members 
of the BCL-2 family [27-29]. Subsequently, caspase-9 
cleaves and activates downstream enzymatic effector, 
such as caspases-3, -6, and -7, which then cleave the key 
regulatory and structural proteins to execute cell death 
[30]. The extrinsic apoptosis pathway is initiated by the 
activation of cell surface death receptors of the TNF 
receptor superfamily through binding of the extracellular 
ligands. Ligand binding to the extracellular domain of 
the death receptor results in receptor trimerization, with 
the subsequent recruit the adaptor protein Fas-associated 
death domain (FADD) and caspase-8 and/or caspase-10 
to form a death-inducing signaling complex (DISC) in 
the intracellular death domain [31]. The activation of the 
caspase enzyme cascade leads to the unique morphological 
and biochemical cellular changes characteristic of 
apoptosis phenotypes such as membrane blebbing, 
nuclear condensation, DNA fragmentation, and ultimately 
phagocytosis by immune cells [32].

In this study, we found the SNP that most 
significantly associated with ovarian cancer risk is 
rs11152377 located in the BCL-2 gene. BCL-2 gene 
derives its name from B-cell lymphoma 2. It is the second 
member of a range of proteins initially described in 
chromosomal translocations involving chromosomes 14 
and 18 in follicular lymphomas, placing BCL-2 under 
the control of the immunoglobulin heavy-chain promoter 
resulting in its deregulated high level of expression [33]. 
BCL-2 is one of the major pro-survival proteins that has 
an essential function in normal immunity and whose 
constitutive expression leads to the development of 
lymphomas. The BCL-2 gene promotes cellular survival 
rather than proliferation by inhibiting apoptosis and de-
regulation of the gene induces overexpression of BCL-2 

Table 1: Basic characteristics of cases and controls

Category Subcategory Cases, N (%) Controls, N (%) P

Age, Mean (SD*) 60.7 (10.4) 60.3 (10.7) 0.554

Ethnicity White 339 (81.3) 349 (83.7) 0.269

Hispanic 48 (11.5) 49 (11.8)

Black 20 (4.8) 15 (3.6)

Other 10 (2.4) 4 (0.9)

Smoking status Never 279 (68.6) 285 (68.4) 0.957

Former 93 (22.8) 98 (23.5)

Current 35 (8.6) 34 (8.1)

*SD: standard deviation.
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Table 2: Significant individual SNPs associated with ovarian cancer risk

Gene SNP Genotype Cases, N(%) Controls,N(%)
Adjusted OR 

(95% CI)* P value
Best fitting 

Model# Q value

Bootstrap

P <0.05 P <0.01 P <0.001

BCL-2 CC+CT 364 (87.29) 326 (78.18) 1 (reference)

rs11152377 TT 53 (12.71) 91 (21.82) 0.53 (0.37-0.77) <0.001 Recessive 0.037 100 99 49

BIK AA 150 (35.97) 119 (28.74) 1 (reference)

rs135014 AG 199 (47.72) 189 (45.65)

GG 68 (16.31) 106 (25.60)

p for trend 0.73 (0.60-0.89) 0.001 Additive 0.037 100 99 32

TP53BP1 AA 308 (74.04) 268 (64.27) 1 (reference)

rs16957730 AG+GG 108 (25.96) 149 (35.73) 0.63 (0.47-0.85) 0.002 Dominant 0.037 100 95 28

TNFRSF10B CC 167 (40.14) 209 (50.12) 1 (reference)

rs2889 CT+TT 249 (59.86) 208 (49.88) 1.53 (1.16-2.02) 0.002 Dominant 0.037 100 97 25

TP53BP1 CC 378 (90.65) 348 (83.45) 1 (reference)

rs17782975 CT+TT 39 (9.35) 69 (16.55) 0.53 (0.35-0.81) 0.003 Dominant 0.037 100 92 16

BCL-2 AA+AG 353 (84.65) 318 (76.26) 1 (reference)

rs1801018 GG 64 (15.35) 99 (23.74) 0.60 (0.42-0.85) 0.004 Recessive 0.037 100 81 6

BIRC5 CC+CG 394 (94.49) 373 (89.67) 1 (reference)

rs744120 GG 23 (5.52) 43 (10.34) 0.45 (0.26-0.78) 0.004 Recessive 0.037 100 74 3

BCL-2 AA 348 (83.65) 322 (77.40) 1 (reference)

rs1016860 AG 66 (15.87) 84 (20.19)

GG 2 (0.48) 10 (2.40)

p for trend 0.63 (0.46-0.87) 0.005 Additive 0.037 100 91 11

BCL-2 AA+AG 340 (81.53) 306 (73.38) 1 (reference)

rs4941183 GG 77 (18.47) 111 (26.62) 0.63 (0.45-0.88) 0.007 Recessive 0.045 100 75 6

BIK CC 337 (80.82) 302 (72.42) 1 (reference)

rs4988360 CT+TT 80 (19.19) 115 (27.58) 0.64 (0.46-0.89) 0.007 Dominant 0.045 100 80 1

BIK GG+GT 339 (81.29) 305 (73.54) 1 (reference)

rs5759167 TT 78 (18.71) 112 (26.86) 0.64 (0.46-0.89) 0.008 Recessive 0.045 100 57 2

TNFRSF10B AA+AG 363 (90.75) 338 (85.57) 1 (reference)

rs1001793 GG 37 (9.25) 57 (14.43) 0.54 ( 0.35-0.86 ) 0.008 Recessive 0.046 100 56 3

*Adjusted by age, ethnicity, and smoking status.
#Internal validation of the results choosing from the best genetic model using bootstrap for 100 times.

Table 3: Joint effects of unfavorable genotypes in apoptosis pathway genes on the risk of ovarian cancer

Number of 
unfavorable genotypes Cases, N (%) Controls, N (%) Adjusted OR* P value

3~7 21 (22.11) 74 (77.89) 1 (reference)

8~9 115 (42.44) 156 (57.56) 2.62 (1.52-4.51) <0.001

10 110 (54.73) 91 (45.27) 4.25 (2.43-7.45) <0.001

11~12 151 (67.11) 74 (32.89) 7.42 (4.23-13.04) <0.001

p for trend <0.001

*Adjusted by age, ethnicity, and smoking status.
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Figure 1: CART analysis of genetic polymorphisms in the apoptosis pathway and risk of ovarian cancer. For each SNP, 
“WW” represents wild-type, “WV” represents heterozygous genotype, and “VV” represents homozygous variant genotype.

mRNA and the encoded protein, a phenomenon which 
has been observed in many solid cancers. Damage to the 
BCL-2 gene has been identified as a cause of a number of 
cancers, including melanoma, breast, prostate, leukemia, 
and lung cancer [34-38]. It is also a cause of resistance to 
cancer treatments [39, 40]. This SNP is an intronic SNP. 
Previous studies have shown that intonic SNPs may be 
functional, for example, intronic SNPs can alter RNA 
or DNA secondary structures [41, 42]. It is also likely 
that this SNP is a tagging SNP that tags other functional 
SNP(s). The molecular mechanisms underlying the 
association of this SNP with ovarian cancer risk warrants 
further study.

Our data showed that individual SNPs were only 
moderately associated with ovarian cancer risk, which is 
consistent with current literature of common SNPs and 
cancer risk [43]. However, we found a significant trend 
of increased risk with increasing numbers of unfavorable 
genotypes in the apoptosis pathway when the cumulative 
effects of genetic variations were assessed by using 
unfavorable genotype analysis. Ovarian cancer risk was 
higher in individuals with a higher number of adverse 
alleles than in individuals carrying a lower number of 
adverse alleles. These findings highlight the importance 

of using a multigenic approach to identify signatures of 
genetic variations as predictors of cancer risk.

We also performed CART analysis to define high-
risk versus low-risk subgroups by exploring high-order 
gene-gene interactions among apoptosis pathway SNPs. 
Consistent with the main effect derived from the logistic 
regression analysis, the rs11152377 located in the BCL-2 
gene was at the initial split, thereby suggesting that this 
variant functions as the primary determinant of ovarian 
cancer risk. The risk of ovarian cancer development 
in each node with distinct genotype profiles differed 
significantly, suggesting CART analysis has good 
discriminative ability. However, since CART analysis is 
a post-hoc data-mining tool and the number of subjects 
in the terminal nodes was small, these results should be 
interpreted with caution.

The major strength of this study is the large scale 
tagging SNP-based query of apoptosis pathway SNPs in a 
relatively large case control study. The cases and controls 
were matched on age, gender, and ethnicity. Nevertheless, 
our study has some limitations. The main limitation of this 
study is that due to the exploratory nature of this study, we 
did not perform more stringent multiple testing adjustment 
and we did not have an external validation. Further 
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external validations in independent studies are warranted 
to confirm the results of the identified associations 
between apoptosis genes and ovarian cancer risk.

In conclusion, our study is the first study to apply 
a pathway-based approach to evaluate germline genetic 
variations in the apoptosis pathway and their associations 
with ovarian cancer risk. We support that common 
sequence variants of the apoptosis pathway genes may 
predispose individuals to increased risks of ovarian 
cancer. Future studies are needed to confirm out results 
and determine how these SNPs affect gene function and 
alter ovarian cancer susceptibility.

MATERIALS AND METHODS

Study subjects

Ovarian cancer cases were accrued from the 
University of Texas MD Anderson Cancer Center from 
August 1991 to January 2009. All patients were newly 
diagnosed and histologically confirmed ovarian cancer 
with no prior chemotherapy or radiotherapy treatment. 
There was no restriction on age, ethnicity, or disease stage 
in case recruitment. Control subjects were recruited in 
parallel with the cases from healthy individuals with no 
prior history of any type of cancer, except non-melanoma 
skin cancer, at Kelsey Seybold Clinic, the largest 
private multispecialty physician group in the Houston 
metropolitan area. Control subjects were frequency 
matched to the cases based on age (±5 years) and ethnicity. 
The response rate for cases was 90% and for controls 71%.

Epidemiological and clinical data collection

Epidemiological data were collected based on a 
standardized questionnaire by trained MD Anderson 
Cancer Center staff. Data are collected on demographic 
characteristics (age, ethnicity, etc.), height, weight, body 

mass index, family history of cancer, medical history, 
working history, smoking status, and alcohol consumption. 
Ethnicity information was self-reported. After completion 
of the interview, a 40 ml blood sample was collected into 
heparinized tubes for immediate lymphocyte isolation and 
DNA extraction. Written informed consent was obtained 
from all patients before interview. The study was approved 
by the University of Texas MD Anderson Cancer Center 
and Kelsey Seybold institutional review boards. Written 
consent forms were obtained from patients before the 
interview.

SNP selection and genotyping

We combined literature exploration and database 
of Gene Ontology (http://www.geneontology.org/) to 
select candidate genes in the apoptosis pathway. We 
also identified potentially functional SNPs, which are 
located in the functional regions of the genes, including 
coding (synonymous SNPs and nonsynonymous SNPs) 
and regulatory (promoter, splicing site, 5’-UTR, and 3’-
UTR) regions. Tagging SNPs were then selected using 
the IDSelect program (http://droog.gs.washington.
edu/ldSelect.html) to separate all of the selected SNPs 
into bins based on the linkage disequilibrium. Selected 
tagging SNPs have an r2 threshold of 0.8 and minor allele 
frequency (MAF) ≥0.05 in Caucasians and are located 
within 10 kb upstream of transcriptional start site and 10 
kb downstream of transcriptional end site. For genes of 
less well-defined functional importance, only potentially 
functional SNPs from all two-hits in dbSNP database 
(http://www.ncbi.nlm.nih.gov/projects/SNP/) or HapMap 
database (http://www.hapmap.org) validated SNPs with 
an Illumina designability score ≥ 0.6 and MAF≥ 0.01 in 
Caucasians were included. A total of 587 SNPs in 65 genes 
of the apoptosis pathway were selected for genotyping.

Genomic DNA was isolated from peripheral 
blood using the QIAamp DNA Blood Maxi Kit (Qiagen, 

Table 4: CART terminal nodes and ovarian cancer risk

Terminal node* Cases, N (%) Controls, N (%) Adjusted OR# P value

Node 1 15 (24.59) 46 (75.41) 1 (reference)

Node 2 12 (28.57) 30 (71.43) 1.25 (0.51-3.03) 0.629

Node 3 8 (33.33) 16 (66.67) 1.58 (0.56-4.42) 0.388

Node 4 9 (34.62) 17 (65.38) 1.42 (0.51-3.94) 0.501

Node 5 27 (40.30) 40 (59.70) 1.79 (0.82-3.91) 0.143

Node 6 37 (45.12) 45 (54.88) 2.53 (1.22-5.24) 0.012

Node 7 55 (46.61) 63 (53.39) 2.67 (1.34-5.31) 0.005

Node 8 60 (56.60) 46 (43.40) 3.94 (1.95-7.92) <0.001

Node 9 185 (64.01) 104 (35.99) 5.40 (2.86-10.16) <0.001

p for trend <0.001
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Valencia, CA) according to the manufacturer’s protocol. A 
custom-designed panel of cancer-related genes had been 
generated in our lab, which covered 12 major cellular 
signaling pathways and 998 genes, including those in 
the apoptosis pathway [16]. Genotyping was carried out 
using Illumina’s Infinium iSelect HD Custom Genotyping 
Beadchip according to the manufacturer’s Infinium II 
assay protocol (Illumina, San Diego, CA) with 750 ng 
of input DNA for each sample. Genotyping data was 
then analyzed and exported using BeadStudio software 
(Illumina, San Diego, CA). The average call rate for the 
SNP array was >99.7%. Randomly selected 2% of samples 
were run in duplicates and the concordance of genotype 
calls was >99.9% for duplicate samples. All laboratory 
personnel were blinded to the case-control status of the 
study subjects.

Statistical analysis

Statistical analyses were performed using the 
Intercooled Stata 10.0 statistical software package 
(StataCorp LP, College Station, TX). We performed 
Pearson chi-square test or Fisher’s exact test to compare 
the difference in distribution of categorical variables 
such as genotype frequencies in cases and controls. For 
continuous variables, such as age, the Student’s t test was 
used to test for differences between the case and control 
subjects. Unconditional multivariate logistic regression 
was applied to estimate the odds ratios (ORs) and 95% 
confidence intervals (95% CI) adjusted for age, where 
appropriate. Hardy-Weinberg equilibrium was tested for 
the genotypes using goodness-of-fit X2 test to compare 
the observed with the expected frequency of genotypes 
in controls. For each SNP, we tested its association 
with cancer risk in three different genetic models, 
dominant, additive and recessive models to define the 
best-fitting model with most significant P value. Only 
the result predicted by the best model was reported and 
considered in the subsequent analysis. If the percentage 
of the homozygous variant genotypes was less than five 
in cases or controls, we only considered the dominant 
model which has the highest statistical power. For internal 
validation, we generated a bootstrap resampling method 
for 100 times on samples randomly drawn from the 
original data set. Cumulative effects of multiple variants 
were analyzed by counting the number of unfavorable 
genotypes identified from the main effects analysis of 
single SNPs (P < 0.05). The unfavorable genotypes were 
divided into 4 groups (low-, medium-low, medium-high, 
and high-risk) according to the quartile of overall subject 
investigated. The reference group was that with the lowest 
risk. The high-order gene-gene interactions were explored 
via classification and regression tree (CART) analysis 
using Helix-Tree Genetics Analysis Software (Golden 
Helix, Bozeman, MT). CART uses recursive partitioning 

to build a decision tree that enables identification of 
subgroups of individuals at differential risks [43, 44]. We 
selected P-values to measure goodness of split and control 
tree growth (P <0.05). To control for multiple testing, 
q value (a false discovery rate (FDR)-adjusted P value) 
[45] was calculated for each SNP excluding those with 
strong linkage disequilibrium (r2>0.8) implemented in the 
R-package. We also performed 10,000 bootstrap runs to 
construct 95%CIs for the ORs in cumulative genotype 
analysis and CART analysis. All P values reported in this 
study were two sided.
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