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ABSTRACT
Recent years have witnessed a dramatic increase in the number of 

therapeutic options available for the treatment of multiple myeloma (MM) - from 
immunomodulating agents to proteasome inhibitors to histone deacetylase (HDAC) 
inhibitors and, most recently, monoclonal antibodies. Used in conjunction with 
autologous hematopoietic stem cell transplantation, these modalities have nearly 
doubled the disease’s five-year survival rate over the last three decades to about 
50%. In spite of these advances, MM still is considered incurable as resistance and 
relapse are common. While small molecule protein kinase inhibitors have made 
inroads in the therapy of a number of cancers, to date their application to MM has 
been less than successful. Focusing on MM, this review examines the roles played 
by a number of kinases in driving the malignant state and the rationale for target 
development in the design of a number of kinase inhibitors that have demonstrated 
anti-myeloma activity in both in vitro and in vivo xenograph models, as well as those 
that have entered clinical trials. Among the targets and their inhibitors examined 
are receptor and non-receptor tyrosine kinases, cell cycle control kinases, the PI3K/
AKT/mTOR pathway kinases, protein kinase C, mitogen-activated protein kinase, 
glycogen synthase kinase, casein kinase, integrin-linked kinase, sphingosine kinase, 
and kinases involved in the unfolded protein response.

INTRODUCTION

Multiple myeloma (MM) is a plasma cell 
malignancy, which annually is diagnosed in approximately 
30,300 patients and accounts for about 12,600 deaths 
in the U.S, amounting to 2% of all cancer-related 
mortality. Overall, the disease ranks second - first among 
African-Americans - in terms of incidence among all 
hematological cancers [1]. Although males are afflicted 
more than females (59% vs. 41%), death rates by sex for 
the disease are nearly equal. Reflecting recent advances 
made in treatment, five-year survival rates for MM have 
nearly doubled since the 1980’s - 49% in the 2005-2011 
period vs. 27% for 1987-1989 [2]. The course of MM 
almost always includes an asymptomatic pre-malignant 
stage known as monoclonal gammopathy of undetermined 
significance (MGUS) which occurs in about 2.3% of 
Caucasians and 3.7% of African-Americans over the 
age of 50 [3]. The term smoldering MM (SMM) often 

is used to describe an asymptomatic state intermediate 
between MGUS and MM, accounting for about 15% 
of patients newly diagnosed with MM [4]. For several 
decades MM has been characterized by the classic tetrad 
of hypercalcemia, renal failure, anemia, and bone lesions 
(CRAB). Another feature of MM is the presence in the 
blood or urine of free light chains, regarded as a major 
contributor to renal damage [5], and monoclonal protein 
(M protein). One protein in particular, serum beta2-
microglobulin, is considered a major prognostic indicator 
of patient survival [6]. In 2014, the International Myeloma 
Working Group (IMWG) issued a consensus update 
expanding the diagnostic criteria for MM to include 
validated biomarkers predictive of myeloma-related organ 
damage within two years prior to their manifestation [7]. 
About two-thirds of MM cases are found in persons over 
the age of 65 and, as the population ages and the new 
IMWG criteria are applied, the number of cases of MM is 
expected to double in the next 15 years [8]. 
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For several decades the standard drugs for treating 
MM were the alkylating agents, primarily melphalan, 
in combination with corticosteroids. Over the past 
decade, this paradigm has shifted dramatically with the 
introduction of the immunomodulators (thalidomide, 
lenalidomide, and pomalidomide), proteasome inhibitors 
(bortezomib, carfilzomib, and ixazomib), and the histone 
deacetylase (HDAC) blocker panobinostat [9, 10]. 
Supplementation of MM therapy with autologous stem 
cell transplantation has further extended the range of 
options for combatting this disease. In late 2015, the U.S. 
Food and Drug Administration (FDA) approved for use 
in MM two monoclonal antibodies, daratumumab and 
elotuzumab, both directed against glycoproteins found on 
the surface of myeloma cells. The former targets CD38 
(cyclic ADP ribose hydrolase) while the latter is directed 
against signaling lymphocytic activation molecule F7 
(SLAMF7) [11, 12]. These developments, coupled 
with the sequencing of the myeloma genome and the 
identification of several genes, including those encoding 
kinases, critical for myeloma cell survival have given 
impetus for new lines of research in the quest for more 
effective drugs against a disease that heretofore has been 
considered fatal and mostly incurable [13, 14].

In addition to those noted above, a number of other 
molecular targets have been investigated in the search for 
new agents to treat MM [15]. These include inhibitors of 
a wide array of kinases known to be involved in cellular 
signaling pathways wherein aberrant functioning is 
believed to drive the malignant state. Although small-
molecule kinase inhibitors have had a major impact on the 
treatment of several cancer types, including hematologic 
malignancies such as chronic myelogenous leukemia 
(ABL kinase inhibitors imatinib, dasatinib, and nilotinib) 
and mantle cell lymphoma (Bruton’s tyrosine kinase 
inhibitor ibrutinib) [16], to date, no kinase inhibitors have 
been approved for use in MM. The objective of this review 
is to examine the current status of small-molecule kinase 
inhibitors for potential use in MM therapy. 

Complicating the therapy of MM are the 
interactions between myeloma cells and the surrounding 
bone marrow microenvironment [17, 18]; for example, 
myeloma cells suppress bone-forming osteoblasts while 
also promoting bone-resorbing osteoclasts [19]. In this 
regard bisphosphonates have proven useful in reducing 
myeloma-induced bone fractures [20]. These effects and 
other aspects of disease progression are further favored by 
stroma-secreted cytokines, such as transforming growth 
factor (TGF)beta [21], insulin-like growth factor 1 (IGF1) 
[22], interleukin 6 (IL-6) [23], hepatocyte growth factor 
(HGF) [24], tumor necrosis factor (TNF)alpha [25], Fms-
like tyrosine kinase 3 (FLT3) [26], endoglin (CD105) [27], 
and vascular endothelial growth factor (VEGF) [28], each 
of whose corresponding tyrosine kinase (TK) receptors 
serve as targets for several compounds investigated for 
their anti-myeloma activity. 

With a few notable exceptions, most of the anti-
kinase work in MM drug development has focused on 
protein kinase targets. The human genome encodes 
a total of 518 different protein kinases [29], each of 
which operates by transferring the gamma-phosphate 
group of ATP to hydroxyl groups of proteins. The 
protein kinases, which represent key components of 
cellular signal transduction pathways by regulating cell 
proliferation, survival, and migration, are broadly divided 
into two classes according to the amino acids that are 
phosphorylated. Many of the tyrosine kinases (TKs) are 
primarily found as components of the cytosolic domains 
of plasma membrane receptors while dual function serine/
threonine kinases (S/TKs) may be located in the plasma 
membrane but most are generally dispersed throughout 
the cytosol and other cellular compartments. The major 
non-protein kinase targets described in this review are 
phosphoinositide 3-kinase (PI3K) and sphingosine 
kinase, which target lipid-based substrates. For a broad 
overview of work on the kinome as relates to cancer and 
the development of kinase inhibitors influencing research 
in several disease states, including cancer, the reader is 
referred to the excellent recent reviews of Fleuren et al. 
[30] and Rask-Andersen et al. [31]. 

RECEPTOR TK (RTK) INHIBITORS

Aberrant activation of the TK function of the 
IGF1 receptor is known to play a key role in MM both 
in vivo and in vitro [22, 32]. This receptor is the major 
target for linsitinib (OSI-906), an orally bioavailable TK 
inhibitor that is currently the subject of a clinical trial 
(NCT01672736) in combination with bortezomib and 
dexamethasone for the treatment of relapsed or refractory 
MM. A preclinical study [33] had earlier shown that 
the addition of linsitinib to bortezomib-based therapy 
delayed emergence of resistance to the latter. In addition 
to linsitinib, a number of other IGF1 TK inhibitors have 
been reported to have anti-MM activity (Table 1). 

A potential drawback to the development of IGF1 
small molecule inhibitors in cancer therapy derives from 
the finding that the receptors for both IGF1 and insulin 
exhibit close sequence homology and identical ATP-
binding clefts [34]. In addition, IGF1 and insulin act 
in concert to regulate blood glucose levels [35]. Thus, 
inhibition of the IGF1 TK domain might be expected to 
affect insulin receptors as well with consequences for 
glucose homeostasis in patients. Consistent with this 
expectation, hyperglycemia has been noted as an adverse 
event in clinical studies with the anti-IGF1 monoclonal 
antibody figitumumab in cancer patients, including those 
with MM [36]. On the other hand, the small molecule TK 
inhibitor GSK1838705A, which inhibits growth of MM 
cell lines at concentrations below one micromolar, has 
been reported to inhibit both IGF1 and insulin receptors 
(in addition to another RTK, anaplastic lymphoma 
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Table 1: RTK Inhibitors With Anti-MM Activity

Compound Route Structure Kinase(s) Inhibited (IC50 
in nM)a References/ Clinical Trials

GSK1838705A* Oral
      

IGF1R (2) [37]

GSK1904529A* Oral
     

IGF1R (27) [231] 

GTX-134 I.P. 
  

IGF1R (97) [232]

Linsitinib 
(OSI-906)* Oral

              
IGF1R (35) [33, 233]; NCT01672736

Masoprocol (Nordihydro-
guaiaretic acid)† Oral IGF1R (NA) [234]

NVP-ADW742* Oral IGF1R (170) [235-237]

Picropodophyl-lotoxin 
(AXL1717)† Oral

                         

IGF1R (1) [235, 238] 

Amuvatinib* Oral KIT (10); MET (NA); 
PDGFRalpha (40) [43]

Imatinib* Oral
                

KIT (100); BCR-ABL (25) [39, 239, 240]

Masitinib* Oral   
KIT (200); PDGFRalpha/
beta (540/800)

[241];
NCT01470131; NCT00866138

Cabozantinib* Oral
 

MET (1.3); VEGFR2 
(0.035) [242, 243]; NCT01866293

SU11274* Oral
 

MET (10) [44, 244]

Tivantinib†
Oral

                      
MET (355b) [245];

NCT01447914

AZ8010* Oral FGFR1/2/3 (8/1/17) [46]

Dovitinib* Oral
    

FGFR1/3(8/9); 
VEGFR1/2/3 (10/13/8); 
PDGFRalpha/beta 
(210/27)  

[246, 247]

LY2874455* Oral
    

FGFR1/2/3/4 
(2.8/2.6/6.4/6.0) [248]
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kinase) at comparable IC50 values (2.0 and 1.6 nanomolar, 
respectively) but elicited only minimal effects on glucose 
levels in mice [37]. Moreover, the IGF1 TK inhibitor 
NVP-AEW541 reportedly produced significant decreases 
in blood glucose in non-tumor bearing nude mice [38].

The KIT TK surface receptor for the stem cell 
growth factor (SCGF) is absent in normal plasma cells but 
expressed in about one-third of myeloma cells and thus 
represents an attractive target for MM. Masitinib, an oral 
multi-targeted TK inhibitor primarily affecting KIT, as 
well as the receptors for fibroblast growth factor (FGF)3 

and platelet-derived growth factor (PDGF), has been the 
subject of two clinical trials in MM (NCT01470131 and 
NCT00866138). Imatinib, whose primary targets are KIT 
and the oncogenic BCR-ABL fusion TK, produced poor 
outcomes in a Phase II trial of patients with relapsed or 
refractory MM [39].

MET, an oncoprotein that serves as the receptor 
TK for HGF, has been implicated in a number of cancers, 
including MM [40, 41]. Tivantinib (ARQ197), a non-ATP 
competitive oral inhibitor of both constitutive and ligand-
induced phosphorylation of MET, is the subject of a 

NF449† NA
     

FGFR3 (200-500) [227]

PD173074* Oral FGFR1/3 (21/NA) [249, 250]

SU5402* NA
                      

FGFR1/3(30/NA); 
VEGFR1/2 (30/20) [50, 251, 252] 

TAS-120‡ Oral Undisclosed FGFR (NA) [253];
NCT02052778

GW654652 Oral VEGFR1/2/3 (12/2.3/2.5) [254, 255]

Nintedanib (BIBF 1120)* Oral
VEGFR1/2/3 (34/21/13); 
FGFR1/2/3 (69/37/108); 
PDGFRalpha/beta (59/65)

[256, 257]; NCT02182141

Pazopanib (GW786034B)* Oral VEGFR1/2/3 (10/30/47); 
KIT (140)

[258, 259];
NCT00256880

Semaxanib (SU5416)* Infusion
                   

VEGFR2 (1230) [260]; NCT00006013

Sorafenib (BAY 43-9006)* Oral VEGFR2 (90); 
PDGFRbeta (57) [261, 262]; NCT00253578 

Sunitinib (SU11248)* Oral VEGFR2 (80); 
PDGFRbeta (2)

[249, 263, 264];
NCT00514137

Tamibarotene (AM80) Oral
      

VEGFR (NA) [265]

Vandetanib (ZD6474)* Oral VEGFR2 (40) [266, 267]

Vatalanib (PTK787)* Oral
                          

VEGFR1/2 (77/37); KIT 
(73)

[268];
NCT00165347

NA = Information not available; *ATP-competitive inhibitor; †allosteric inhibitor; ‡irreversible inhibitor; aas determined in 
cell-free assays; bKi in nM
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Table 2: Non-Receptor TK Inhibitors With Anti-MM Activity

Compound Route Structure Kinase(s) Inhibited (IC50 
in nM)a

References/
Clinical Trials

Atiprimod Oral STAT3 (NA) [269] 

AZD1480* Oral
                               

JAK2 (0.26b); STAT3 
(350) [270, 271] 

Brevilin A (6-O-Angeloylplenolin) NA
                  

JAK2 (NA); STAT3 (NA) [272] 

Compound K NA
                     

JAK1 (NA); STAT3 (NA) [273] 

Ergosterol peroxide NA
             

JAK2 (NA); STAT3 (NA) [274] 

Farnesol NA JAK1/2 (NA); STAT3 
(NA) [275] 

Icaritin NA
                          

JAK2 (NA); STAT3 (NA) [276] 

INCB20* NA Undisclosed JAK1/2/3 (0.9/0.5/0.5); 
TYK2 (0.3) [277] 

INCB16562* Oral

                            

JAK1/2/3 (2.2/0.3/10) [278, 279] 

Momelotinib 
(CYT387)* Oral

     
JAK1/2/3 (11/18/155) [280, 281] 

Piceatannol* Oral
         

JAK1 (NA); STAT3 (NA); 
SYK (NA) [75, 282-284] 

Pyridone-6* NA
                      

JAK1/2/3 (15/1/5); TYK2 
(1) [285, 286]

Ruxolitinib (INCB018424)* Oral
                               

JAK1/2 (3.3/2.8) [287, 288] 

SC99 NA

                        

JAK2 (NA); STAT3 (NA) [289] 

TG101209* Oral JAK2 (6) [290, 291] 

TM-233 NA
                        

JAK2 (NA); STAT3 (NA) [292] 

Tyrphostin (AG490)* NA
  

JAK2 (100); STAT3 (NA) [282, 293, 294] 
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Phase II trial in relapsed/refractory MM (NCT01447914). 
This agent works by binding to and thereby stabilizing 
the inactive conformation of MET. In pre-clinical work, 
tivantinib was found to be equally effective in inducing 
apoptosis in chemotherapy-refractory myeloma cell lines 
and in cells co-cultured with a protective bone marrow 
microenvironment [42]. The orally bioavailable ATP-
competitive MET inhibitor amuvatinib, currently in trials 
for the treatment of solid tumors, has been shown to result 

in cell death in myeloma cells known to be dependent on 
HGF/MET signaling [43]. Amuvatinib also is known to 
inhibit other TKs, including KIT, PDGFRalpha, and FLT3. 
SU11274 is another oral ATP-competitive MET inhibitor 
with much less or no activity against other RTKs. It has 
been shown to block the autocrine HGF/MET loop that 
sustains MM angiogenesis [44]. Cabozantinib, which is 
FDA-approved for medullary thyroid cancer and renal 
cell carcinoma, is yet another oral ATP-competitive MET 

Decursin NA
  

STAT3 (NA) [295, 296] 

8-Hydrocalamenene NA
                                

STAT3 (NA) [297] 

5-Hydroxy-2-methyl-1,4-
naphthoquinone (plumbagin) NA

                           

STAT3 (NA) [298] 

Acalabrutinib (ACP-196) ‡ Oral
                  

BTK (3) [299]; 
NCT02211014

CC-292‡ Oral
                    

BTK (<0.5) [62, 300] 

Ibrutinib‡ Oral
                

BTK (0.5) [61, 301];
NCT01962792

Asiatic acid NA
                       

FAK (NA); PYK2 (NA) [66] 

VS-4718 (PND-1186)* Oral

                            

FAK (1.5); PYK2 (85) [67, 302] 

VS-6062 (PF562271)* Oral
 

FAK (1.5); PYK2 (13) [68, 303] 

Dasatinib* Oral
 

SRC (0.8); ABL (0.6); KIT 
(79) [71, 72]  

Tris(dibenzylidene-acetone) 
dipalladium NA 

 
SRC (NA) [70] 

BAY-61-3606* Oral

                              

SYK (10) [75, 304]

R406 (Fostamatinib active metabolite)* Oral SYK (30b) [75, 305]

NA = Information not available; *ATP-competitive inhibitor; ‡irreversible inhibitor;
aas determined in cell-free assays; bKi in nM
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inhibitor; it is now under clinical study for relapsed/
refractory MM (NCT01866293).

The FGF family of transmembrane receptors exist 
as different isoforms FGFR1-4, all of which feature 
an immunoglobulin-like extracellular domain and a 
cytoplasmic TK domain (Figure 1). FGFR mediates a 
number of signal transduction pathways in the cell, most 
notably those involving RAS-MAPK, PI3K-AKT, and 
phospholipase C-gamma, impacting cell proliferation, 
survival, and invasion, as well as angiogenesis and 
drug resistance [45]. FGFR is overexpressed in a 
number of tumor types, including gastric, breast, and 
urothelial cancers and MM [46]. Translocations in the 
immunoglobulin heavy chain region of chromosome 
14q32, are found in 40-60% of MM patients [47]. 
Particularly noteworthy is the t(4;14) translocation of 
FGFR3 and MMSET (Multiple Myeloma Set domain), 
which occurs in approximately 15% of MM patients 
and is associated with poor prognosis and resistance to 
chemotherapeutic measures [48]. Moreover, FGFR3 has 
been cited as one of the most significantly mutated genes 

in MM [49]. FGFR inhibitors with reported anti-myeloma 
activity are shown in Table 1, including two experimental 
FGFR3 inhibitors, SU5402 and PD173074, that have 
demonstrated activity against t(4;14)-positive myeloma 
cell lines [50]. 

MM was the first hematological cancer in which 
enhanced angiogenesis was discovered [51] and several 
subsequent studies have demonstrated that the growth 
of MM cells is highly dependent on angiogenesis [52]. 
VEGF, a glycoprotein principally secreted in response 
to hypoxia and belonging to the platelet-derived growth 
factor (PDGF) superfamily is the key mediator of 
angiogenesis. In mammals, VEGF is comprised of five 
members - VEGFA (the best characterized), VEGFB, 
VEGFC, VEGFD, and placenta growth factor. These act 
as ligands for three types of VEGF TK plasma membrane 
receptors, designated VEGFR1 (or FLT1), VEGFR2 (also 
known as FLK1/KDR; the key mediator of angiogenesis 
induced by VEGF), and VEGFR3 (the primary regulator 
of lymphangiogenesis), that activate downstream 
signaling pathways that result in vascular endothelial cell 

Figure 1: Putative sites of action of several kinase inhibitors with demonstrated anti-myeloma activity using activation 
of the FGFR3 receptor as an example. Three signal transduction pathways that are common features of receptor tyrosine kinase 
signaling are shown: JAK/STAT; PI3K/Akt/mTOR; and Raf/Mek/Erk. The FGFR3 receptor possesses three extracellular immunoglobulin 
domains (Ig I-III), a single transmembrane domain, and a split tyrosine kinase domain (TK1 and TK2). Also shown are adaptor proteins 
linking the TK domain with Ras activation: SRC-homology-2-domain-containing (SHC), growth factor receptor-bound protein 2 (GRB2), 
son of sevenless (SOS) adaptor proteins, and 80K-H (a protein kinase C substrate).
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proliferation, migration, and survival [53]. 
Myeloma cells are known to produce VEGF through 

both autocrine and paracrine signaling mechanisms. 
Moreover, MM cells stimulate bone marrow stromal cells 
to produce VEGF [54, 55]. A number of VEGFR TK 
inhibitors have been the subject of both preclinical and 
clinical studies in MM, although none of these compounds 
has advanced beyond Phase II (Table 1). The major site of 
action of these compounds is VEGFR2, consistent with 
reports that the effects of VEGF in MM are primarily due 
to binding to VEGFR2 [55].

NON-RECEPTOR TK INHIBITORS

The role of IL-6 in the growth and survival of 
MM cells is well-documented and elevated IL-6 serum 
levels are considered evidence of poor prognosis in the 
disease [56]. IL-6 binds to its transmembrane receptor and 
induces a cascading sequence of tyrosine phosphorylation 
reactions starting with Janus kinase (JAK) and leading 
to the activation of signal transduction and activator of 
transcription (STAT)3. Following activation, STAT3 
translocates to the nucleus where it targets genes involved 
in survival, proliferation, and apoptosis. The JAK family 
is comprised of four protein kinases, designated JAK1, 
JAK2, JAK3, and tyrosine kinase, nonreceptor, 2 (TYK2). 
Seven members of the STAT family are known: STAT1, 
STAT2, STAT3, STAT4, STAT5a, STAT5b, and STAT6 
[57]. Patients with MM show increased expression of 
anti-apoptotic proteins, such as BCL-2, BCL-XL, and 
MCL1, linked to constitutive expression of STAT3 [58, 
59]. Inhibitors of the JAK/STAT pathway that have 
demonstrated activity against myeloma cells are shown in 
Table 2. 

Bruton’s TK (BTK), a non-receptor member of the 
TEC family plays a key role in the development of B cells 
[60] and demonstrates robust expression in malignant 
plasma cells in MM patients [61]. Ibrutinib, an irreversible 
orally bioavailable BTK inhibitor, currently approved for 
mantle cell lymphoma, chronic lymphocytic leukemia, 
and Waldenstrom’s macroglobinemia, also is undergoing 
study for potential use in MM (NCT01962792). CC-
292, another oral BTK inhibitor, in combination with the 
proteasome inhibitor carfilzomib, was found to augment 
the osteoclast inhibitory effects of the latter in an in vivo 
MM mouse model [62]. 

Sulzmaier et al. [63] have recently reviewed the 
complex roles played by the cytoplasmic TK focal 
adhesion kinase (FAK), which associates not only with 
plasma membrane receptors but also with nuclear protein 
complexes, to promote tumor progression and metastasis. 
However, the part played by FAK in specifically driving 
MM has received little attention in the literature until 
relatively recently. For example, Wang et al. [64] found 
that higher expression levels of FAK correlated with lower 
levels of the tumor suppressor phosphatase and tensin 

homolog (PTEN) in MM patients with extramedullary 
disease. Furthermore, Ko et al. [65] have suggested that 
bortezomib and possibly other proteasome inhibitors may 
exert their effects in MM by suppressing FAK expression. 
In addition, the naturally-occurring triterpene asiatic 
acid, which down-regulates FAK expression, causes 
G2/M phase arrest in myeloma cells [66]. Proline-rich 
TK2 (PYK2), another non-receptor member of the FAK 
family having substantial homology with FAK, also has 
been reported to play a role in MM progression [67]. This 
kinase, in contrast to the ubiquitous expression of FAK, 
is restricted to the endothelium, central nervous system, 
and hematopoietic lineages. PYK2 appears to work by 
modulating the Wnt/beta-catenin signaling pathway in 
myeloma cells. The FAK/PYK2 inhibitors VS-4718 and 
VS-6062 have been reported to inhibit MM cell growth 
both in vitro and in vivo [67, 68].

SRC, a non-receptor protein TK, which is 
known to regulate a number of key cellular processes, 
such as cell survival, differentiation, growth, and 
migration, is constitutively activated in both MM cell 
lines and patient tumors [69]. The SRC inhibitor tris 
(dibenzylideneacetone) dipalladium (Tris DBA) was 
recently reported to induce G1 arrest and apoptosis and 
thereby reduce proliferation of MM cells. Moreover, this 
agent reversed the hypoxia-inducing properties associated 
with resistance to proteasome inhibitors [70]. Dasatinib 
is an orally effective inhibitor of receptor and non-
receptor TKs, including BCR-ABL, KIT, PDGFR, and 
SRC family kinases. Although this drug has been studied 
in several hematological malignancies and is approved 
for the treatment of chronic myelogenous leukemia and 
Philadelphia chromosome-positive acute lymphocytic 
leukemia, results with MM, either as a single agent 
or in combination with immunomodulators have been 
disappointing [71, 72].

Another intracellular TK that has received 
attention in hematological cancers is spleen TK (SYK), 
which, following activation by SRC family kinases, 
phosphorylates a number of target kinases, including those 
in the PI3K and mitogen-activated protein kinase (MAPK) 
pathways [73]. In pre-clinical studies SYK signaling has 
emerged as an important target for B-cell malignancies 
[74] and inhibitors of this pathway have been shown to 
have therapeutic potential in MM [75].

RECEPTOR S/TK INHIBITORS

The receptors for TGFbeta are single-pass plasma 
membrane proteins containing a cytosolic S/TK domain. 
They exist as homodimers of two types (type I and type 
II), which form an active tetrameric complex following 
phosphorylation. The complex phosphorylates and thereby 
activates transcription factors of the SMAD family, 
which enter the nucleus to control transcription of target 
genes [76]. TGFbeta acts as an inhibitor of proliferation 
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in many cells, including normal plasma cells. However, 
TGFbeta signaling is suppressed in MM cells. Moreover, 
TGFbeta produced in the bone microenvironment 
enhances secretion of various cytokines (e.g., IGF1, 
basic FGF, and IL-6) that stimulate MM cell growth. A 
negative balance in bone turnover occurs in MM with 
osteoclast bone resorption strongly outweighing osteoblast 
differentiation and maturation. The effect on osteoblasts 
is primarily due to Wnt signal inhibitors constitutively 
secreted by MM cells, both in myeloma cell lines and from 
MM patients. TGFbeta also plays a role by suppressing 
matrix mineralization during the later stages of osteoblast 
maturation. Moreover, bone resorption in MM causes 
release of TGFbeta from the matrix to further exacerbate 
loss of osteoblast activity [21, 76].

Most of the impetus for developing TGFbeta 
inhibitors for use in MM derives from their potential role 
in treating MM-induced bone disease. The TGFbeta type I 
receptor kinase inhibitors Ki26894 (structure undisclosed) 
and SB431542 were found to facilitate osteoblast 
differentiation while also preventing bone loss in MM 
cells in vivo although neither compound was cytotoxic 
to myeloma cells [77]. Another type I inhibitor, SD-208, 
has been reported to abrogate secretion of IL-6 and VEGF 
from myeloma-derived bone marrow stromal cells while 
also reducing tumor cell growth [78]. 

 
SB431542  SD-208

NON-RECEPTOR SERINE/THREONINE 
KINASE (S/TK) INHIBITORS

Dysregulation of the PI3K/AKT/mTOR pathway 
is a hallmark of many malignancies, including MM [79]. 
In this pathway, PI3K is attracted to the cytosolic TK 
domains of the activated receptors for the cytokine IL-6 
[80] and certain growth factors, notably, PDGF [69] and 
IGF1 [22], which are overexpressed in MM. PI3K, a non-
protein kinase, specifically phosphorylates the 3-position 
of the plasma membrane lipid phosphatidylinositol-
4,5-bisphosphate (PIP2) to form the corresponding 
trisphosphate (PIP3), which serves as a docking site for 
AKT via the latter’s pleckstrin homology (PH) domain. 
This docking causes a conformational change in the AKT 
molecule such that T308 and S473 become available for 
phosphorylation by phosphoinositide-dependent protein 
kinase-1 (PDPK1), which likewise uses a PH domain to 
target AKT. PI3K also is activated by plasma membrane-
tethered RAS. 

Three classes of PI3Ks, designated I, II, and III, are 
known. Members of Class I, which primarily are involved 
in regulating cell growth, proliferation, and survival, 
are subdivided further into Classes IA and IB. Those in 

Class IA are activated by RTKs and RAS while Class IB 
members are regulated by G protein-coupled receptors. 
Class I PI3Ks are characterized by their heterodimeric 
structures, consisting of a p110 catalytic subunit and 
a p85 regulatory subunit. Four isoforms of p110 are 
known - p110alpha, beta, and delta found in Class IA and 
p110gamma, which is confined to Class IB [81]. The alpha 
and beta isoforms are widely distributed in mammalian 
tissues while the gamma and delta subunits are mostly 
found in leukocytes, which makes the latter pair attractive 
targets for therapy of leukemias, lymphomas, and MM 
with reduced systemic effects [82]. The delta isoform 
in particular has been identified by Ikeda et al. [83] as 
an especially attractive target for MM. Mutations in the 
PIK3CA gene, which codes for the p110alpha isoform 
are noted in a number of cancers [84]. Two hotspots 
are primarily associated with these gain-of-function 
mutations: E545K and E542K in the helical region and 
H1047R in the kinase domain, although none of these 
mutations appear to be associated with MM [85]. 

The complex downstream effects of AKT 
include: 1) blockage of apoptosis through inhibition 
of the pro-apoptotic factors BCL-2-associated death 
promoter (BAD), caspase-9, and the transcription factor 
Foxhead box O1 (FOXO1), as well as by activation of 
the antiapoptotic proteins IkappaB kinase (IKK) and 
MDM2; 2) blockage of the anti-proliferative effects of 
glycogen synthase kinase (GSK)-3beta, FOXO4, and 
p21Cip1; and 3) inhibition of the anti-growth properties of 
tuberous sclerosis protein 2 (TSC2), a tumor suppressor 
gene product, whose phosphorylation by AKT results 
in mammalian target of rapamycin (mTOR) activation. 

mTOR has myriad downstream effects, including 
modulation of cell growth, angiogenesis, and autophagy. 
In addition, mTOR and AKT are capable of reciprocal 
phosphorylation. 

PI3K has received much attention in recent years as 
a target for new anticancer drug design and development 
and MM is no exception [86-88]. High throughput virtual 
screening was used to identify two potent blockers of the 
ATP binding site of Class I PI3Ks, designated C96 [89] 
and PIK-C98 [90], that demonstrated good activity against 
MM in preclinical studies. C96 showed a preference for 
the alpha and delta p110 isoforms. Pictilisib (GDC 0941), 
another inhibitor of both alpha and delta isoforms, has 
been found effective in both MM cell lines and in patient 
myeloma cells [91]. The delta-selective PI3K blockers 
idelalisib and IC488743 have demonstrated cytotoxicity 
in murine myeloma models [83] while copanlisib (BAY 
80-6946), which is selective for the alpha isoform, has 
been shown to be effective against four different MM cell 
lines [92]. 

In some cases, PI3K inhibition has been combined 
in the same molecule with chemical moieties that target 
other cellular pathways relevant in MM. An example of 
this is CUDC-907, an orally bioavailable inhibitor of all 
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Table 3: PI3K/AKT/mTOR Pathway Inhibitors With Anti-MM Activity

Compound Route Structure Kinase(s) Inhibited
(IC50 in nM)a 

References/
Clinical Trials

Alpelisib
(BYL719)* Oral

                
PI3Kalpha (5) [306, 307]; NCT02144038

BENC-511 Oral
                 

PI3K (non-selective); 
AKT (non-selective) [308] 

BGT226 (NVP-
BGT226)* Oral

                          

PI3Kalpha/beta/
gamma (4/63/38); mTOR 
(NA)

[96, 309] 

Buparlisib (BKM120)* Oral

                           

PI3Kalpha/beta/ gamma/
delta (52/166/262/116) [310-314] 

Copanlisib (BAY 80-
6946) IV PI3Kalpha/beta/ gamma/

delta (0.5/ 3.7/6.4/0.7) [92, 315] 

CUDC-907 Oral

  

PI3Kalpha/beta/
gamma/delta (19/54/311/ 
39) 

[93, 316] NCT01742988       

C96 NA
                   

PI3Kalpha/delta 
(5410/7050) [89]

Dactolisib (BEZ235)* Oral

                              

PI3Kalpha/beta/
gamma/delta (4/75/5/7); 
mTOR (6)

[93, 317-319] 

IC488743 Oral  Not disclosed PI3Kdelta (5) [83]

Idelalisib* (CAL-101) Oral

                                     

PI3Kdelta (2.5) [83, 320]; 
NCT00710528

LY294002 (SF1101)* NA

                                   

PI3Kalpha/beta/delta 
(500/970/570) [291, 321-323] 

PI-103* NA

                        

PI3Kalpha/beta/
gamma/delta (2/3/ 15/3); 
mTOR (30); DNA-PKcs 
(23)

[97]

Pictilisib (GDC-0941)* Oral

              

PI3Kalpha/delta (3/3) [91, 324] 

PIK-C98* NA
                    

PI3Kalpha/beta/
gamma/delta (590/ 
1640/740/3650)  

[90] 
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four p110 isoforms of PI3K, as well as both Classes I 
and II HDACs. Its molecular design combines structural 
elements found in other PI3K inhibitors with the 
hydroxamic acid functionality common to many HDAC 
inhibitors. CUDC-907 currently is in Phase I studies in 
lymphoma and MM patients (NCT01742988) [93, 94]. In 
this context, it is noteworthy, as cited above, that the FDA 
only recently approved the HDAC inhibitor panobinostat 
for MM. Dactolisib (BEZ235) [95] and BGT226 [96] are 
dual pan-PI3K/mTOR inhibitors that have demonstrated 
oral activity against MM in mouse models. PI-103, another 
such dual inhibitor, was found to cause cell cycle arrest in 
MM cells having t(4;14) and t(14;16) transversions that 
are often associated with poor treatment outcomes [97]. 

AKT, which occupies the central portion of 
this signaling pathway and is classed with the AGC 
superfamily of protein kinases [98], exists in three 
different isoforms in mammals: AKT1, AKT2, and 
AKT3. Three functional domains comprise each isoform 
in mammals. The N-terminus contains the PH domain, 
which uses a flexible linker to connect to the central 

kinase domain bearing T308. The 21-residue regulatory 
C-terminus has a hydrophobic motif and bears the S473 
phosphorylation site [99, 100]. In its inactive state the 
AKT PH domain shields the two phosphorylation sites of 
AKT (“PH-in” conformation) from phosphorylation by 
PDPK1. When PI3K is activated, the resulting PIP3 serves 
as a docking site for the PH domain of AKT, thus exposing 
the two phosphorylation sites to PDPK1. This docking 
causes a conformational change (“PH-out” conformation) 
in the AKT molecule such that T308 and S473 become 
available for phosphorylation by PDPK1 and mTOR 
complex 2 (mTORC2), respectively. Phosphorylation at 
these two sites serves a dual purpose: 1) opening up of the 
enzyme’s active site by forming a binding pocket for ATP 
proximate to the T308 site and 2) reducing accessibility 
of phosphatases. Transfer of a phosphate from ATP to 
substrate and the consequent formation of ADP exposes 
both threonine and serine phosphorylated residues to 
phosphatases and a return to the inactive form of the 
enzyme [101]. ATP-competitive inhibitors of AKT not 
only bar ATP from the active site but also lock the AKT 

SF1126 (LY294002 
prodrug)* IV

           

PI3K (non-selective); 
mTOR

[325-327] 

S14161 Oral
                         

PI3K (non-selective) [308, 328] 

Afuresertib* 
(GSK2110183) Oral AKT1/2/3 (0.08/2/2.6) d 

[329, 330]; NCT02235740; 
NCT01428492; 
NCT01476137

 MK2206† Oral
                  

AKT1/2/3 (8/12/65) [107, 331] 

 Perifosine† Oral AKT (4700b)
[113, 114]; NCT00401011; 
NCT00375791; 
NCT00415064; 
NCT01002248

Triciribine IV

                                      

AKT (130c) [108, 332] 

Uprosertib* 
(GSK2141795) Oral

                     
AKT (non-selective) [329];

NCT01951495

AR-12/OSU-03012* Oral

                              

PDPK1 (5000) [118, 333, 334] 

NA = Information not available; *ATP-competitive inhibitor; †allosteric inhibitor;
aas determined in cell-free assays, unless otherwise indicated; bMM.1S cells; cPC3 cells;
dKi expressed in nM
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Table 4: PIMK and Additional mTOR Inhibitors With Anti-MM Activity

Compound Route Structure Kinase(s) Inhibited
(IC50 in nM)a 

References/
Clinical Trials

AZD8055 * Oral

                  

mTOR (0.8; 1.3)b [127, 335] 

CC-223* Oral

                       

mTORC1; mTORC2 [336];
NCT01177397 

Everolimus† Oral

  

mTOR (1.6-2.4)

[123, 337];
NCT00474929;
NCT00618345;
NCT00918333;
NCT01234974;
NCT01889420 

Sapanisertib
(INK128, 
MLN0128)*

Oral

                        

mTOR (1.4b) [126]

PP242* Oral
                      

mTOR (8) [125, 338] 

SC06 Oral

                           

mTORC1; mTORC2 [339] 

Temsirolimus† Oral

   

mTOR (1760)

[121, 340];
NCT00079456;
NCT00398515;NCT
00422656;NCT0048
3262;NCT00693433

Torin 1* Oral
                           

mTORC1 (2);
mTORC2 (10) [341, 342] 

WYE-354* Oral

                           

mTOR (5) [343, 344] 

Cnicin Oral

                      

PIMK (non-selective) [345] 

LGB321* Oral

                       

PIMK1/2/3 (1/2.1/0.8)c [346, 347] 

LGH447 (PIM447)* Oral
                      

PIMK1/2/3 (5.8/18.0/9.3)c [347]; 
NCT01456689
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into a conformation that disallows phosphatase access, 
thus maintaining AKT in an inactive hyperphosphorylated 
state [102]. Furthermore, phosphorylation of AKT at S473 
by mTORC2 leads to inactivation of BAD, a pro-apoptotic 
protein [103]. 

Afuresertib (GSK2110183), an orally active ATP-
competitive inhibitor of all three isoforms of AKT, has 
exhibited a favorable activity profile in bortezomib-
refractory MM patients [104]. The closely related pyrazole 
derivative uprosertib (GSK2141795) combined with MEK 
inhibitor trametinib is under study for patients with solid 
tumors and MM (NCT01951495) [105]. 

The high degree of homology between AKT 
isoforms, as well as with other AGC family members, 
poses a major challenge to design of isozyme-specific 
AKT inhibitors and has stimulated an allosteric approach 
to the design of AKT inhibitors. This group of inhibitors 
binds to regions of the AKT molecule distinct from the 
active site, preventing the activating phosphorylations at 
T308 and S473 by PDPK1 and mTORC2 [106]. MK-2206, 
an AKT allosteric inhibitor, which is in Phase I studies 
for solid tumors, has exhibited promising activity in 
myeloma cell lines, but as yet has not been the subject of a 
myeloma-based clinical trial [107]. In addition, both MK-
2206 and the nucleoside analog triciribine have shown 
synergistic activity against MM cells in combination 
with the farnesyltransferase inhibitor tipifarnib [108]. 
Triciribine, which is activated by intracellular conversion 
to its triphosphate, is known to target the PH domains of 
AKT1 and AKT2, thus competing with AKT for the PIP3 
binding site [109]. 

Another compound that interacts with the AKT PH 
domain to block its interaction with the plasma membrane 
is perifosine, an orally bioavailable alkylphospholipid 
[110]. Although AKT appears to be its primary target, 
perifosine also has been shown to affect other kinases, 
including the Jun N-terminal kinase (JNK), whose 
activation by the agent results in apoptosis [111]. These 
and other facets of perifosine’s mechanism of action 
have been reviewed recently by Fensterle et al. [112]. 
Perifosine has been evaluated clinically in several tumor 
types, including MM. In a Phase I study with lenalidomide 
and dexamethasone perifosine demonstrated favorable 
activity in relapsed and relapsed/refractory MM [113]. 
Phase I and II results, in combination with bortezomib 
and dexamethasone, were especially encouraging [114]; 
however, a Phase III trial of the latter combination was 
terminated when perifosine failed to provide progression-
free survival benefit compared to bortezomib and 

dexamethasone alone (NCT01002248). 
PDPK1, like its phosphorylation target AKT, 

belongs to the AGC family of kinases. PDPK1 also is 
known to phosphorylate at least 22 other proteins [98]. 
Although much evidence implicates PDPK1 in cancer 
[115], including MM [116], few specific inhibitors of this 
enzyme have been developed. The most advanced of these 
is AR-12/OSU-03012, an orally bioavailable celecoxib 
derivative devoid of cyclooxygenase-2 inhibitory activity 
and, based on promising preclinical studies [117], 
including demonstration of cytotoxicity to myeloma cells 
[118], has been the subject of a Phase I trial in patients 
with advanced solid tumors (NCT00978523). 

mTOR plays a central role in two multiprotein 
complexes of which it is a component: mTOR Complex 
1 (mTORC1), a rapamycin-sensitive complex which 
stimulates cell growth and in which mTOR associates with 
raptor, among other proteins; and rapamycin-refractory 
mTORC2, in which one of the protein partners is rictor. 
Downstream targets of mTORC1 include p70 ribosomal 
protein S6 kinase (P70S6K) and translation initiation 
regulator 4E binding protein (4E-BP1). Thus, inhibitors 
of mTORC1 would be expected to block protein synthesis 
by operating at different levels of the translational process. 

Regulation of the complex interplay of downstream 
effects of mTOR and their relationship to cancer have been 
the subject of intense study in recent years. For example, 
constitutive activation of mTORC1 by AKT is known 
to occur in a two-step process. First, phosphorylation 
by AKT of the GTPase-activating protein TSC2, causes 
inactivation of TSC2. This, in turn, leads to activation of 
RHEB (ras homolog enriched in brain), a RAS-related 
GTPase and subsequent phosphorylation of mTOR and/
or raptor at a number of sites. In addition, activation of 
mTORC1 inhibits AKT by a negative feedback mechanism 
[119].

The rapalogs everolimus and temsirolimus are 
orally-effective specific allosteric inhibitors of mTORC1 
that work by binding to the intracellular protein FKBP 
(FK506 binding protein)12. The complex thus formed 
has a strong affinity for mTORC1, blocking downstream 
signaling. Preclinical work with these agents demonstrated 
anti-MM activity [120] and prompted their employment 
in clinical trials as single agents, albeit with only modest 
results [121]. Subsequently, Ghobrial et al. [122] in a Phase 
I/II study concluded that temsirolimus in combination with 
bortezomib may have a role in the treatment of relapsed or 
refractory MM without the addition of steroids. A Phase 
I study of everolimus in combination with lenalidomide 

SGI-1776* Oral
              

PIMK1 (7) [348, 349] 

NA = Information not available; *ATP-competitive inhibitor; †allosteric inhibitor;
aas determined in cell-free assays; bKi expressed in nM; cKi expressed in pM
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Table 5: Cell Cycle Control S/TK Inhibitors With Anti-MM Activity 
Compound Route Structure Kinase(s) Inhibited (IC50 in nM)a References/ Clinical Trials

Alisertib 
(MLN8237)* Oral

             
AURKA/B (1.2/396.5) [350-353]; NCT01034553

AT9283* IV AURKA/B(3.0/3.0); JAK2/3 (1.2/1.1) [354, 355]; NCT01145989

Barasertib 
(AZD1152)* Oral AURKA/B (1368/ 0.37) [356, 357]

Danusertib 
(PHA739358)* IV AURKA/B (13/79); ABL (25); FGFR1 

(47) [358, 359]; NCT00872300

ENMD-2076 Oral

          

AURKA/B (15/290); FLT3 (1.86); 
VEGFR2 (58.2) [360-363]; NCT00806065

Tozasertib (VE-
465, VX-680, MK
0457)*

IV AURKA/B (0.6/18)b; BCR-ABL (30)b; 
FLT3 (30)b [364, 365] 

Alvocidib 
(Flavopiridol)* IV

                      

CDK1/2/4/6 (40/40/ 40/40) [366, 367] 

AT7519* Oral

 

CDK1/2/4/5/6/9 
(210/47/100/13/170/<10) [368, 369] 

Dinaciclib* IV

                         

CDK1/2/5/9 (3/1/1/4) [370, 371]; NCT01711528

LCQ195/
AT9311 NA CDK1/2/3/5/9 

(2/2/ 42/1/15) [372]

P276-00* IV
                  

CDK1/4/9 (79/63/20) [373, 374] 

Palbociclib* Oral CDK4/6 (11/16)
[375, 376];
NCT02030483;
NCT00555906 

PHA-767491* NA
              

CDK9 (34); CDC7 (10) [152, 377] 

RGB-286638 IV
CDK1/2/3/4/5/6/7/9 
(2/3/5/4/5/55/44/1); JAK2 (50); AMPK 
(41); GSK3beta (3)

[378]
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drew a similar conclusion [123]. Recently, Li et al. [124] 
extensively reviewed mTOR signaling as a therapeutic 
target in MM. 

It has been speculated that one reason for the 
generally poor clinical results seen with mTORC1 
inhibitors in MM relates to the feedback activation of 
AKT. This has spurred the development of dual mTORC1/
C2 inhibitors on the premise that prevention of AKT 
activation will remove the anti-apoptotic effect of this 
kinase [125]. For example, Maiso et al. [126] reported that 
the ATP-competitive dual inhibitor sapanisertib (INK128) 
is much more active against myeloma cell lines than is 
rapamycin alone. Another dual inhibitor, AZD8055, unlike 
rapamycin, produced apoptosis in MM cells [127]. PI3K/
AKT/mTOR pathway inhibitors that have shown anti-
myeloma activity are shown in Tables 3 and 4.

The proviral insertion site of Moloney murine 
leukemia virus (PIM) kinases recently have received 
attention as potential targets for new drug development 
in the autoimmune and cancer fields [128]. The three PIM 

kinase isoforms (PIM1, PIM2, and PIM3), which lack a 
regulatory domain are thus constitutively active, share 
a high degree of sequence homology and are important 
downstream effectors of JAK/STAT, ABL, and FLT3. They 
also have in common a feature unique among kinases - the 
presence of proline in the enzyme’s hinge region, resulting 
in a single hydrogen bond site, rather than two donor 
points, for ATP binding, a finding that offers the potential 
for designing highly selective PIM kinase inhibitors [129]. 
The PIM kinases phosphorylate a broad range of substrates 
involved in cell cycle progression and apoptosis, as well 
as in gene transcription and protein synthesis. Among the 
specific phosphorylation targets of PIM2, which is highly 
expressed in myeloma cells, is TSC2, a known modulator 
of mTORC1 whose activation promotes cell proliferation 
[130]. A number of small molecule PIM kinase inhibitors 
have demonstrated anti-tumor activity in myeloma cell 
lines (see Table 4).

Seliciclib 
(CYC202, 
R-roscovitine)*

Oral

                       

CDK2/5 (700/160) [379, 380] 

SNS-032 IV CDK2/7/9 (38/62/4) [381, 382] 

TG02 (SB1317) Oral

                        

CDK2 (13); JAK2 (73); FLT3 (56); 
ERK5 (NA) [383, 384]; NCT01204164

89S Oral
           

CDC7 (2) [153] 

BI 2536 NA PLK1/2/3 (0.83/3.5/ 9.0) [157, 158, 385]

Scytonemin NA

  

PLK1 (2000) [159, 386]

KU55933* NA
                 

ATM (12.9) [165, 387] 

AZD7762* IV
            

CHK1/2 (5/<10) [162, 388] 

NU7026* NA
                     

DNA-PKcs (230) [165, 389, 390] 

NA= Information not available; *ATP-competitive inhibitor; aas determined in cell-free assays; bKi in nM
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CELL CYCLE CONTROL S/TK

Progression through the cell cycle requires 
replication of the genome with exquisite fidelity and total 
segregation of the duplicated chromosomes between the 
two daughter cells during mitosis. The cellular machinery 
controlling sequential entry into and exit from the cycle’s 
four major phases (G1, S, G2, and M) is governed to a 
major extent by a series of kinases whose levels and 
extent of activation fluctuate as required according to 
the phase of the cycle. The relevance of several of the 
kinases described below to cell functioning in general and 
to transformed cells specifically has been reviewed by 
Malumbres [131]. 

Members of the Aurora kinase (AURK) family 
perform several functions in cell cycle regulation, 
particularly mitosis, where they coordinate events from 
G2 through to cytokinesis. The C-terminal catalytic 
domains in the family’s three members - AURKA, B, and 
C - are highly conserved while their regulatory N-termini 
exhibit little sequence homology. The ATP-binding sites 
in all three are identical [132]. AURKC is specifically 
expressed in testis where it plays a role in meiosis during 
spermatogenesis; its role in cancer development is not as 
clear as it is in the case of the other two family members, 
which are overexpressed in many different cancers, 
including hematological malignancies such as MM [133].

AURKA and B differ from each other in terms of 
their subcellular localization sites during mitosis and 
their timing of activation during the cell cycle. AURKA 
localizes to the duplicated centrosomes, as well as to the 
spindle poles during mitosis, while AURKB is found in the 
chromosome arms and inner centromeres from prophase to 
metaphase and in the central spindle in anaphase. During 
cytokinesis, both AURKA and B relocate to the spindle 
mid-zone. In addition to autophosphorylation, AURKA 
phosphorylates polo-like kinase 1 (PLK1), which, in 
turn promotes binding of AURKA to centrosomin, an 
important step in mitotic spindle assembly. AURKA also 
plays a key role in the G2/M transition by phosphorylating 
CDC (cell division cycle)25B, which is responsible for the 
activation of CDK1 (cyclin-dependent kinase1)-cyclin B1 
[133]. Other AURKA phosphorylation targets include 
TPX2 (targeting protein for Xklp2), LIM protein, p53, and 
BRCA1 [134]. AURKB, a member of the chromosomal 
passenger complex that also includes survivin, borealin, 
and inner centromere protein (INCENP) [135], assists in 
chromosome condensation, segregation and microtubule 
attachment to the kinetochore and central spindle 
assembly. Its targets include histones H3 and H2A, MCAK 
(mitotic centromere-associated kinesin), topoisomerase II, 
INCENP, survivin, centromere protein A (CENP-A), and 
MYB-binding protein 1A (MYBBP1A) [136]. A number 
of AURK inhibitors have demonstrated activity against 
MM in both preclinical and clinical studies [133, 137]. 
These agents are summarized in Table 5.

Cyclin-dependent kinases (CDKs) act in association 
with regulatory partner proteins known as cyclins. The 
latter are subject to oscillating expression at various 
points in the cell cycle to exercise regulatory control of the 
cycle. Specific CDK/cyclin complexes control progression 
through the cell cycle at five key points: G0/G1 transition 
(cyclin C/CDK3); G1 phase (cyclin D/CDK4/6), G1/S 
transition (cyclin E/CDK2), S phase (cyclin A/CDK1/2), 
and M phase (cyclin B/CDK1) [138].  Over-expression 
of CCND1, the gene that codes for cyclin D1, one of the 
three isoforms of cyclin D, is found in over 80% of MM 
cases [139], making this cyclin a favored target for anti-
myeloma drug development. Recent evidence points to 
the cyclin D1 G870A polymorphism as being associated 
with an increased risk of MM. Cyclin D1 catalyzes the 
phosphorylation of Rb, a tumor suppressor protein, which 
releases the transcription factor 2EF, thus activating 
downstream genes required for progression through the 
cell cycle. Several of the CDK inhibitors shown in Table 5 
are active by virtue of their ability to compete with ATP at 
the enzyme’s active site [140, 141]. 

Some CDK family members are atypical in that 
they are neither associated with cell cycle regulation 
nor controlled by cyclins. One such example is CDK5, 
found primarily in terminally-differentiated neurons and 
regulated by non-cyclin subunits p35 and p39 [142]. This 
kinase also has been found to play important roles in 
extra-neuronal tissues, as well as in several cancers [143]. 
Silencing CDK5 has been demonstrated to sensitize MM 
cells to treatment with bortezomib and CDK5 inhibitors, 
such as seliciclib and dinaciclib, have been shown to 
enhance bortezomib-induced cytotoxicity in myeloma 
cells [144-146]. A recent report that dinaciclib sensitizes 
MM cells to the effects of poly (ADP-ribose) polymerase 
(PARP)1/2 inhibitors discloses another possible drug 
combination opportunity [147]. Other CDK family 
members play key roles in transcription. Chief among 
these are CDK7/cyclin H and CDK9/cyclin T, which 
activate the largest subunit of RNA polymerase II through 
phosphorylation at specific serine residues [148].

Cell division cycle 7 (CDC7) is a highly conserved 
kinase that plays an important role in regulation of normal 
cell cycle progression. The activity of CDC7 is modulated 
by fluctuating levels of DBF4 and DRF1, proteins 
which bind to the kinase, enabling phosphorylation 
of several sites on the DNA helicase subunit MCM2 
(microchromosome maintenance protein 2) along with 
maintenance of replication forks, all critical events 
required for DNA synthesis, G1/S phase transition, and 
progression through the S phase [149]. CDC7 depletion 
by siRNA causes a number of tumor cell lines to undergo 
p53-independent apoptosis while normal cells experience 
cell cycle arrest with no effect on cell viability [150]. 
Moreover, upregulation of CDC7 has been observed in 
numerous cancer cell lines making this kinase an attractive 
chemotherapeutic target with potential selectivity [151]. 
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Table 6: MAPK Pathways Inhibitors with Anti-MM Activity

Compound Route Structure Kinase(s) Inhibited 
(IC50)

a
References/
Clinical Trials

Vemurafenib 
(PLX4032, 
RG7204)*

Oral

            

B-RAF V600E (31) [391, 392]

PD184352 Oral
                   

MEK1/2 (17/17) [393, 394]

PD325901 Oral
              

MEK1/2 (0.33) [394, 395]

Pimasertib 
(AS703026)† Oral

              
MEK1/2 (NA) [396] 

Selumetinib 
(AZD6244, ARRY 
142886)†

Oral

           

MEK1 (14); ERK1/2 
(10c) [397, 398] 

Trametinib† Oral
            

MEK1/2 (0.92/1.8) [105, 399]; NCT01951495

Baicalein Oral
                      

ERK1/2 (NA) [400]

BI-D1870* NA

                      

RSK1/2/3/4 
(31/24/18/15) [401, 402]

FMK‡ NA

                             

RSK2 (15) [187]

RMM46* NA
                

RSK2 (12) [403, 404] 

SL0101-1* NA

                      

RSK2 (89) [404, 405]

SP600125* NA

                       

JNK1/2/3 
(40/40/90) [406, 407]

Ralimetinib 
(LY2228820)* Oral

                       

p38alpha MAPK (7) [191, 408] 

SB202190* NA
                  

p38alpha/beta MAPK 
(50/100) (38d) [409, 410]
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However, only two reports have appeared in the literature 
concerning CDC7 inhibition in myeloma cells. In one, 
PHA-767491, an inhibitor of both CDC7 and CDK9, 
demonstrated anti-myeloma activity both in cells 
obtained from patients and in cell cultures [152]. Another 
compound, the related pyrrolopyridinone (designated 
89S), inhibited two myeloma cell lines at low micromolar 
concentrations [153].

PLK1 is a principal regulator of the cell cycle, 
promoting entry into mitosis, spindle formation, sister 
chromatid segregation, and cytokinesis [154]. In addition, 
it acts as an inhibitor of apoptosis and its overexpression 
in various tumors has been linked with poor prognosis 
[155]. Although a number of small molecule inhibitors of 
PLK1 have been studied as anticancer agents [156], until 
recently, PLK1 has received little attention as a potential 
target in the therapy of MM. The PLK1 inhibitor BI 2536 
has been reported to cause cell death in both MM cell 
lines and patient samples [157, 158]. Also, scytonemin, 
a pigment produced by cyanobacteria, has been found to 
induce cell cycle arrest and block cell growth in MM cells 
through inhibition of PLK1 [159].

An important aspect of cell cycle control is the 
ability to repair DNA damage prior to chromosome 
duplication. A number of S/TKs with possible links to 
MM play key roles in the DNA damage response (DDR). 
The ATM gene, whose mutation was originally found to 
be responsible for the autosomal recessive disease ataxia-
telangiectasia (A-T), encodes a kinase known to play a 
central role in the DDR. DNA double-strand breaks initiate 
a signaling pathway that begins with recruitment to the 
damage site of ATM or the related kinase ATR (AT and 
Rad-3 related protein) in the case of single-strand breaks 
occurring during DNA replication stress. Both ATM and 
ATR, along with DNA-dependent protein kinase catalytic 

subunit (DNA-PKcs) and mTOR, are often grouped 
together as the phosphatidylinositol 3-kinase related 
kinase (PIKK) family [160]. Phosphorylation of ATR and 
ATM activates the checkpoint kinases CHK1 and CHK2, 
respectively. Both CHK1 and CHK2 phosphorylate p53, 
which causes p53 to dissociate from its inhibitor MDM2. 
In the nucleus, the activated p53 promotes transcription 
of the p21 gene, whose protein product binds to and 
inactivates CDK complexes causing cell cycle arrest at 
G1/S and G2/M interfaces. 

Little is known concerning the roles played by these 
DDR kinases in MM. A recent study of MM patients 
found that ATM was either lost or mutated in 1.3% and 
3%, respectively, and that ATR deletions or mutations were 
present in 1.5% of samples. In all, mutations in TP53, 
ATM, and ATR were found in 17% of cases with poor 
outcomes. The inability to produce an effective apoptotic 
DDR was the most significant prognostic mutational 
indicator in this study [161]. 

A number of DDR inhibitors have been studied 
in MM as single agents, as well as for their ability 
to enhance the antitumor activity of conventional 
DNA-damaging agents, such as alkylating agents and 
topoisomerase II inhibitors [162-164]. For example, the 
ATM inhibitor KU55933 was reported to augment the 
activity of topoisomerase inhibitors in cultured myeloma 
cells [165]. Also, the CHK1 inhibitor AZD7762 was 
found to enhance the cytotoxic effects of bendamustine, 
melphalan, and doxorubicin in MM cell lines deficient 
in p53. Furthermore, AZD7762 and a set of three 
thienopyridinone-based CHK1 inhibitors potentiated 
the anti-myeloma activity of melphalan in p53-mutated 
cultured cells although they showed little effect on cell 
proliferation as single agents [162]. 

SB203580* Oral
            

p38alpha/beta MAPK 
(300-500)b [411, 412]

SD-169* Oral
                  

p38alpha/beta MAPK 
(3.2/122) [190, 413]

SD-282* Oral
           

p38alpha MAPK (1.1) [414] 

Talmapimod 
(SCIO-469)* Oral

           
p38alpha MAPK (9) [192, 414, 415]; NCT00087867

VX-745* Oral
             

p38alpha MAPK (35) [416, 417]

NA = Information not available; *ATP-competitive inhibitor; †allosteric inhibitor; ‡irreversible inhibitor; a as determined in 
cell-free assays, unless otherwise indicated; bTHP-1 cells; cMalme-3M cells; dKd in nM



Oncotarget81944www.impactjournals.com/oncotarget

ATYPICAL PROTEIN KINASE 
INHIBITORS

The protein kinase C (PKC) family is a member 
of the AGC superfamily of kinases and includes at 
least 13 isoforms, four of which are grouped together 
as the classical PKCs - PKCalpha, PKCbetaI and 
betaII (representing two alternatively spliced forms), 
and PKCgamma [166]. These conventional and other 
isoforms are calcium-dependent and are activated by 
plasma membrane-bound diacylglycerol, which is formed 
by phospholipase C cleavage of phosphatidylinositol-
4,5-bisphosphate [(PI(4,5)P2]. A number of studies have 
implicated PKC isoforms in cellular growth regulation in 
hematopoietic cancers although only a few PKC small 
molecule inhibitors have been studied in MM [167]. 
Enzastaurin (LY317615), an orally administered acyclic 
bisindolylmaleimide PKCbeta blocker, was reported to 
suppress cell proliferation in a panel of several human MM 
cell lines [168]. However, a Phase II trial (NCT00718419) 
in pre-treated MM patients found enzastaurin to be 
ineffective, although well-tolerated [169]. Midostaurin 
(PKC412), an oral multi-kinase inhibitor of PKCalpha, 
beta, and gamma isoforms and AKT, as well as of the TK 
receptors PDGFR, VEGFR, and FLT3, is known to induce 
apoptosis in human myeloma cells ([170]. Although no 
further work has been reported in MM, this agent has been 
the subject of a Phase I study with azacitidine in acute 
myeloid leukemia patients [171]. Down-regulation by 
rottlerin of PKCdelta, which is commonly expressed in 
MM, has been shown to produce apoptosis in myeloma 
cells [172]. 

  
Enzastaurin Midostaurin Rottlerin
AMP-activated protein kinase (AMPK) and its 

upstream activator, the tumor suppressor liver kinase B1 
(LKB1), are both allosterically activated - by AMP in 
the case of AMPK and by the pseudokinase STRAD and 
the adaptor protein MO25 in the case of LKB1. AMPK 
activation also may occur in response to energy and 
ATP depletion as a consequence of hypoxia and glucose 
deprivation. In this regard AMPK acts as an intracellular 
energy sensor to maintain the cell’s energy balance. 
AMPK, which has several downstream targets, plays a key 
role in the control of lipid and glucose metabolism. Among 
its effects are increased glycolysis, lipolysis, and fatty acid 
oxidation, as well as inhibition of lipogenesis, cholesterol 
formation, and protein synthesis. AMPK’s role in cancer is 
controversial, appearing to act as either a tumor promoter 
or a tumor suppressor depending on the context [173]. In 

the case of MM, AMPK activation by 5-aminoimidazole 
carboxamide riboside (AICAR) inhibited cell growth in 
myeloma cell lines [174] whereas AMPK inhibition by 
BML-275 (Compound C) induced apoptosis in these same 
cells [175]. 

Type 2 diabetes mellitus has been associated 
with increased risk of MM, as well as of other cancers 
[176]. Interestingly, the widely used antidiabetic agent 
metformin, an AMPK activator, has been associated with 
reduced risk of disease recurrence, overall mortality, 
and cancer-specific mortality in different cancer patient 
cohorts, including those with MM [177]. Zi et al. [178] 
have reported that in in vitro and in vivo xenograph models 
metformin inhibited MM cell proliferation in synergy with 
dexamethasone through induction of apoptosis and G0/G1 
cell cycle arrest, suggesting the combined use of these two 
agents as a treatment option in MM. 

   
AICAR  BML-275  Metformin
Constitutive activation of RAS, leading to 

downstream dysregulation of the mitogen-activated 
protein (MAP) kinase (RAF/MEK/ERK) pathway, is 
associated with MM (Figure 1) [179]. BRAF, cited as one 
of the most significantly mutated genes in MM [161], 
has received considerable attention in cancer treatment, 
particularly in melanoma patients harboring the V600E 
mutation. Approximately 4% of MM patients also have 
been shown to have a BRAF mutation, associated with 
an aggressive clinical course [180-182]. Significantly, 
vemurafenib, a B-RAF V600E mutation inhibitor 
approved for melanoma, also has clinical activity in MM 
[183]. Ribosomal S6 kinase 2 (RSK2), a phosphorylation 
target of ERK, is responsible for activation of additional 
downstream targets associated with cell metabolism, cell 
survival, and cell cycle regulation [184, 185]. In MM 
RSK2 signaling has been reported to be associated with 
FGFR3 (t;4,14) activation [186, 187] and a number of 
RSK2 inhibitors have been shown to have anti-myeloma 
activity (Table 6).

The S/TK p38 MAPK, which exists in four different 
isoforms, alpha, beta, gamma, and delta, and is activated 
by a number of factors, including stress and inflammation 
[188], is known to be constitutively active in MM [189]. 
Such activation has been linked to osteolytic bone 
destruction [190] in MM, as well as to anti-myeloma 
drug resistance [191]. For example, talmapimod, which 
predominately blocks the p38alpha isoform, has been 
shown to enhance bortezomib-induced apoptosis in MM 
cells [192]. 



Oncotarget81945www.impactjournals.com/oncotarget

OTHER INHIBITORS OF RELATIVELY 
UNDERSTUDIED KINASES

The NFkappaB family of transcription factors 
plays an important role in hematological malignancies, 
including MM in which it is overexpressed [193, 194]. 
Two NFkappaB pathways have been described in 
many cell types, including plasma cells (Figure 2). The 
canonical pathway is activated by stimulation of, among 
others, TNFalpha receptors leading to phosphorylation 
of IkappaB kinase (IKK), an intracellular complex 
comprised of two kinase subunits, alpha and beta, along 
with a regulatory subunit NEMO (NFkappaB essential 
modulator). IKKbeta phosphorylates IkappaB(inhibitor 
of kappa B), which in turn, leads to the ubiquitination 
and proteasomal degradation of IkappaB, causing its 
release from binding to NFkappaB, which is thereby freed 
to form dimers that translocate into the nucleus where 

transcription of genes participating in cell growth and 
adhesion, immune and inflammatory responses, and anti-
apoptosis, are activated. In the non-canonical pathway 
NFkappaB is activated through a different set of receptors, 
such as CD40 ligand and B-cell activating factor (BAFF), 
is dependent on homodimeric IKKalpha and independent 
of IKKbeta and NEMO, and is regulated upstream of 
IKK by NFkappaB-inducing kinase (NIK). Blockage of 
the proteosomal degradation of IkappaB is believed to 
play a major role in the mechanism of bortezomib in MM 
therapy. The roles of and complex interactions between 
the two pathways in MM have been reviewed by Staudt 
[195] and by Gardam and Beyaert [196]. Although many 
IKKbeta inhibitors have been studied, none has reached 
clinical development because of liver toxicity concerns 
observed in knockout mice. A number of IKK and NIK 
blockers that have shown activity against MM cells are 
shown in Table 7. 

Glycogen synthase kinase (GSK) exists in two 

Table 7: IKK and NIK Inhibitors as Anti-MM Agents
Compound Route Structure Kinase(s) Inhibited

(IC50 in nM)a
References

Angelicin* 
(AS602868)

Oral

                       

IKKbeta (20) [418, 419]  

BAY 11-7082‡ NA

             

IKKalpha/beta (10000 c) [420] 

BAY 11-7085‡ NA

             

IKKalpha/beta (10000 c) [194, 421] 

BMS-345541† Oral

          

IKKbeta (300) [193, 422] 

DETT Oral

                        

IKKalpha/beta (NA) [423]

MLN 120B* Oral

               

IKKbeta (45b) [424]

PS-1145* Oral

                       

IKKbeta (88) [193, 425]

AM-0216* NA

        

NIK (2b) [426] 

AM-0561* NA

          

NIK (0.3b) [426] 

NA = Information unavailable; *ATP-competitive inhibitor; †allosteric inhibitor; ‡irreversible inhibitor; aas determined in cell-
free assays, unless otherwise indicated; bKi in nM; chuman umbilical vein endothelial cells (HUVEC)
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different isoforms - alpha and beta, which have 98% 
sequence identity in their kinase domains but only 38% 
in their carboxyl termini. Although originally identified 
as playing an important role in glycogen synthesis by 
phosphorylating and inactivating glycogen synthase, this 
kinase now has been implicated in a number of human 
diseases, including cancer, neurological disorders, 
diabetes, and cardiovascular disease. The multiple 
physiological roles in diverse signaling pathways played 
by this kinase, as well as its potential as a target for cancer 
treatment has recently been reviewed by McCubrey et al. 
[197]. In a specific focus on MM, Piazza, et al. [198] cited 
a number of studies implicating both GSK isoforms as 
pro-survival kinases in malignant plasma cells and MM-
associated bone disease. SB-216763 and SB-415286, 
maleimide-derived (and closely related to enzastaurin) 
ATP-competitive inhibitors of both GSK isoforms, have 
been shown to activate the intrinsic apoptotic pathway 
in both MM cell lines and in patient-derived cells and 
to enhance bortezomib-induced cytotoxicity [199]. 

Moreover, the osteoprotective effect of the beta-selective 
GSK inhibitor 6-bromoindirubin-3’-oxime (BIO) has been 
cited as a potentially feasible approach to adjunct therapy 
of MM [200]. 

  
 SB216763  SB415286 BIO
Casein kinase 2 (CK2) is involved in the 

phosphorylation of numerous cellular targets important 
to hematopoietic cell survival signaling pathways and is 
constitutively expressed in many cell types even under 
normal conditions. It is among the most pleiotropic of all 
S/TKs in the cell, accounting for the generation of about 
20% of the human phosphoproteome [201]. The enzyme is 
comprised of two catalytic subunits (alpha and alpha’) and 
two regulatory beta subunits. In normal cells the enzyme 
is ubiquitously located in both the cytoplasm and the 
nucleus, shifting to primarily the nuclear compartment in 

Figure 2: Putative sites of action of representative NFkappaB kinase inhibitors with anti-myeloma activity. Both 
canonical and non-canonical pathways resulting in NFkappaB activation are shown. The former results from stimulation by cytokines, such 
as tumor necrosis factor alpha (TNFalpha), leading to phosphorylation of the beta subunit of inhibitor of kappa B kinase (IKK), which in 
addition to an alpha subunit contains a regulatory subunit, NEMO (NFkappaB essential modifier). Subsequent phosphorylation of IkappaB 
by IKKbeta leads to ubiquitination and proteasome degradation of IkappaB, releasing the p50-RelA heterodimer, an NFkappaB family 
member, which translocates to the nucleus to activate the transcription of target genes. In the non-canonical pathway activation results from 
a different set of receptors, such as CD40 (shown here) and B-cell activating factor (BAFF), causing activation of NFkappaB-inducing 
kinase (NIK), which forms a complex with IKKalpha, p100, p52, and RelB. IKKalpha phosphorylation, ubiquitination, and proteasomal 
degradation of p100 frees the p52-RelB dimer, another NFkappaB family member, to enter the nucleus to activate its own set of target 
genes.
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cancer cells. CK2 overexpression has been found in many 
hematological cancers, including MM, and is associated 
with poor prognosis [202]. Silmitasertib (CX-4945), an 
orally bioavailable ATP-competitive inhibitor of both 
catalytic subunits of CK2 [203], currently is the subject of 
a Phase I study (NCT01199718) in patients with relapsed 
or refractory MM [202]. Another CK2 inhibitor that has 
shown anti-myeloma activity is the flavonoid apigenin, 
which additionally targets HSP90 and the co-chaperone 
CDC37 to induce apoptosis in MM cells [204].

  
 Silmitasertib Apigenin
Integrin-linked kinase (ILK) is found in focal 

adhesions. It also serves as an adapter protein interacting 
with integrin subunits to transmit extracellular signals 
from integrins and growth factors to the cell interior. 
ILK plays a role in regulating cell survival, cell cycle 
progression, angiogenesis, and PI3K-dependent signaling 
pathways. Overexpression of ILK is associated with 
several malignancies and correlates with poor prognosis 
[205]. Wang et al. [206] reported ILK expressed in 
myeloma cell lines could be inhibited by QLT0267, 
reducing invasiveness as well as VEGF and IL-6 secretion 
in co-cultured bone marrow stem cells.

Sphingosine kinase (SPHK), which catalyzes the 
phosphorylation of the primary OH of sphingosine to 
yield sphingosine-1-phosphate (S1P), exists as two distinct 
isoforms - SPHK1 and SPHK2. Although these isozymes 
share 80% similarity in their amino acid sequences, 
there are substantial differences in their biological roles 
and cellular localization [207]. Activation of any of five 
different extracellular G-protein-coupled receptors by 
S1P stimulates a number of cancer-promoting processes, 
such as cell proliferation, angiogenesis, and apoptosis 
blockade [208]. Several literature reports have suggested 
that SPHK1 regulates a rheostat balancing the effects 
of proapoptotic ceramide and sphingosine with those 
of the antiapoptotic S1P [209]. Numerous studies have 
demonstrated overexpression of SPHK1 in several cancers 
[210, 211]; however, associations with MM are less well 
documented. Tsukamoto et al. [212] recently reported a 
marked increase in SPHK1 in both patient and human cell 
line myeloma cells. The role played by SPHK2 in cancer 
is not well characterized and contradictory functions 
have been proposed for this isoform [213]. Significantly, 
fingolimod (FTY720) and ABC294640, specific inhibitors 
of SPHK1 and SPHK2, respectively, have been shown to 
induce apoptosis in MM cells [207, 214]. Fingolimod has 
been approved in the U.S for the treatment of multiple 
sclerosis.

 Fingolimod  ABC294640
Activation of protein kinase RNA-like endoplasmic 

reticulum kinase (PERK) results in phosphorylation of 
eukaryotic translation-initiation factor 2 (eIF2)alpha 
and general reduction of translation activity, decreasing 
the load of proteins translocated into the endoplasmic 
reticulum (ER) in an effort to lessen the stress. If the 
abundance of misfolded proteins in the ER greatly exceeds 
ER capacity, the resulting stress causes the unfolded 
protein response (UPR) to switch from pro-survival mode 
to stimulation of apoptosis [215].

Sunitinib has been shown to inhibit both the kinase 
and ribonuclease activities of inositol-requiring enzyme-
1alpha (IRE1alpha) in myeloma cell lines [216] and 
Newbatt et al. [217] have developed a high-throughput 
screening assay to identify inhibitors of IRE1alpha 
autophosphorylation as potential anti-myeloma agents. 
The screen identified JNJ7706621, a previously known 
kinase inhibitor, as one compound active at submicromolar 
concentrations. GSK2656157 [218] and GSK2606414 
[219] have been reported as orally available PERK 
inhibitors with anti-MM activity.

  
JNJ7706621 GSK2656157 GSK2606414 

CONCLUSIONS

This review has focused on the role of the kinase 
family of enzymes in driving the malignant state in MM 
and efforts to design and develop small molecule kinase 
inhibitors to treat the disease. Therapeutic efforts aimed 
at combatting MM have been bolstered considerably 
in the past several years as new drug classes, including 
immunomodulators, proteasome inhibitors, HDAC 
inhibitors, and monoclonal antibodies, in conjunction 
with bone marrow transplantation, have entered 
clinical practice. Although five-year survival rates have 
approximately doubled to the 50% range over the past 
three decades, MM is still regarded as incurable and 
resistance continues to account for most patient setbacks. 

Preclinical exploration of the kinome for possible 
therapeutic targets with the potential to combat MM has 
yielded much in the way of tangible results even though 
no kinase inhibitors have received FDA approval for MM 
therapy. While a number of kinase inhibitors are or have 
been included in MM clinical trials, at present no agent of 
this drug class appears to be on the verge of approval. This 
stands in contrast to the successes realized in developing 
small molecule protein kinase inhibitors to treat a number 
of other malignancies, including melanomas, renal cell 
carcinoma, chronic myelogenous leukemia, and cancers 
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of the lung and thyroid. 
In a recent analysis of the druggable genome Rask-

Andersen and colleagues [220] identified 93 (64.1%) out 
of 145 different protein kinases - the largest category of 
targets - among the gene-encoded targets of agents in 
clinical trials for all disease categories but unrepresented 
in currently marketed pharmaceuticals. Most of these 
novel targets belong to the S/TK group with lesser 
numbers comprising TKs. Their study also revealed that 
a substantial majority of the 518 protein kinases known to 
be encoded in the human genome remain unexplored as 
possible candidate targets for new drug development. The 
problem of narrowing the field of potential targets for MM 
new drug development has been facilitated by the recent 
work of Tiedemann et al. [13] in which 57 genes were 
cataloged as potent MM survival genes with druggable 
potential. Included in this number were the genes for six 
kinases: PLK1, AURKB, CDK11A, CDK11B, TYK2, and 
unc-51-like kinase 3 (ULK3). As described in this review, 
inhibitors of half of these (PLK1, TYK2 and AURKB) 
have been studied to one degree or another as potential 
targets in MM while the other three represent fertile 
ground for new anti-myeloma development. 

Combination chemotherapy to overcome drug 
resistance is a mainstay in the approach to MM [221, 
222]. A review of the clinical trials.gov website identified 
a total of 51 recently initiated, ongoing, or completed MM 
studies in either Phase I/II or Phase II that include at least 
one kinase inhibitor in various combinations. Published 
results from most of these trials reveals that, although the 
agents with some exceptions are well-tolerated, in most 
cases they fail to demonstrate significant clinical benefit 
in MM. One exception to this result is a published report 
[223] of a Phase II trial in which the CDK4/6 inhibitor 
palbociclib demonstrated efficacy in 20% of patients. 
A few clinical studies combining two kinase inhibitors 
working by different mechanisms in MM have been 
initiated. These include simultaneous blockade of PIMK 
and PI3K using LGH447 and BYL719, respectively 
(NCT02144038); however, results of this completed 
trial have yet to be reported. In March 2016, participant 
recruitment for a Phase II study (NCT01951495) in 
relapsing/recurring MM patients employing AKT inhibitor 
GSK2141795 and MET blocker trametinib was suspended 
without explanation. To date, only two kinase inhibitors 
have been advanced to Phase III trials for the disease. 
One such study (NCT01002248) combining perifosine 
with bortezomib and dexamethasone was terminated 
because of failure to demonstrate efficacy [224], in spite 
of encouraging results seen in an earlier Phase II trial 
(NCT00401011). No published results are available for the 
second study (NCT01470131) involving dexamethasone 
and bortezomib with and without the oral agent masitinib 
in patients with relapsing MM. 

As noted in Tables 1-7, a number of the kinase 
inhibitors with anti-myeloma activity compete with 

ATP, the common substrate for all protein kinases, for 
the enzyme’s active site. The observation that these sites 
are quite similar structurally, not to mention the high 
intracellular concentration of ATP relative to inhibitor, 
might appear to be a daunting challenge to target-
specific design. However, the fact that a number of small 
molecule kinase inhibitors that take advantage of subtle 
ATP binding site differences have been developed and are 
used clinically [225], albeit often accompanied by off-
target effects, to treat a number of different cancers lends 
credence to the validity of the use of ATP-competitive 
inhibitors in cancer treatment. On the other hand, 
design of small molecule ATP-non-competitive kinase 
inhibitors, acting either allosterically, irreversibly through 
covalent attachment, tight-binding within the active 
site, or by blocking critical upstream kinase-activating 
protein-protein interactions, have been advocated as 
valid approaches to kinase inhibitor design applicable 
to the treatment of cancer and other diseases wherein 
kinases play key roles [30, 225-230]. As the viability 
of these strategies to new drug design and development 
gains traction in the future and the underlying molecular 
mechanisms and critical biomarkers for the disease are 
identified, MM may yet be added to the list of diseases 
treatable with this class of drugs.
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