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INTRODUCTION

Somatic gene fusions are a common feature of many 
human cancers and have been found prevalent in leukemia, 
sarcoma, as well as epithelial cancers such as thyroid, 
prostate, colorectal, and breast cancer [1, 2]. CSGF data 
have been well-curated and publically available through 
the Mitelman Database of Chromosome Aberrations and 
Gene Fusions in cancer [2], the COSMIC database [3], the 

TICdb [4], as well as in publications [5–7]. Genome-wide 
studies of CSGFs, especially in hematological malignant 
diseases, have considered the involvement of chromatin 
structure [8] and timing during replication [9] as putative 
genomic susceptibilities for the arising of CSGFs. 
Recently, CSGFs have been systematically identified in 
tumor samples of The Cancer Genome Atlas (TCGA) 
project [6] and in cancer cell lines [5].  These highly 
heterogeneous data have been offering an unprecedented 
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ABSTRACT
The genomic features and arising mechanisms of coding cancer somatic gene 

fusions (CSGFs) largely remain elusive. In this study, we show the gene origin 
stratification pattern of CSGF partners that fusion partners in human cancers are 
significantly enriched for genes with the gene age of Euteleostomes and with the 
gene family age of Bilateria. GC skew (a measurement of G, C nucleotide content bias, 
(G-C)/(G+C)) is a useful measurement to indicate the DNA leading strand, lagging 
strand, replication origin, and replication terminal and DNA-RNA R-loop formation. 
We find that GC skew bias at the 5 prime (5′) but not the 3 prime (3’) partners 
of CSGFs, coincident with the polarity feature of gene expression breadth that the 
5’ partners are more ubiquitous while the 3’ fusion partners are more tissue specific 
in general. We reveal distinct length and composition distributions of 5’ and 3’ of 
CSGFs, including sequence features corresponded to the 5’ untranslated regions 
(UTRs), 3’ UTRs, and the N-terminal sequences of the encoded proteins. Oncogenic 
somatic gene fusions are most enriched for the 5’ and 3’ genes’ somatic amplification 
alongside a substantial proportion of other types of combinations. At the function 
level, 5’ partners of CSGFs appear more likely to be tumour suppressor genes while 
many 3’ partners appear to be proto-oncogene. Such distinct polarities of CSGFs at 
the evolutionary, structural, genomic and functional levels indicate the heterogeneous 
arsing mechanisms of CSGFs including R-loops and suggest potential novel targeted 
therapeutics specific to CSGF functional categories.
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opportunity to study the arising mechanisms and function 
of CSGFs.

Cancers evolve by a reiterative somatic process 
of clonal expansion, genetic diversification and clonal 
selection within the adaptive landscapes of tissue 
ecosystems. [10, 11], relying on the somatic dynamics 
of genomic features and functions. Individual oncogenic 
fusions can also have inherent tumor suppression property 
[12].  Meanwhile, the natural history of genes links to 
diseases, especially for cancers [13, 14]. It appears that 
arsing mechanisms and genomic functions of CSGFs are 
highly heterogeneous [15–21]. Meanwhile, little known 
is whether there are distinct phylogenomic and genomic 
features of CSGFs involved genes. In this study, we 
sought to link the phylogenomic and genomic features 
of CSGFs involved genes to potential arsing mechanisms 
and function categories of CSGFs by leveraging the rich 
resources of omics data.

RESULTS

CSGF data sets and annotation settings

We collected six curated datasets of CSGFs 
(Table 1), including the COSMIC [22], the cancer cell 
line fusion data (Genetech) [5], TICdb [4], the ensemble 
cancer landscape fusion data  [7], Mitelman fusion data 
(Mitelman) [23], and the TCGA fusion data (TCGA) [6].  
Toward a comprehensive annotation of CSGFs involved 
genes, we also collected  a number of functional genomic 
data sets (Table 1),  including the reference human 
genomic ENSEMBL data [24], protein-protein interactions 
[25], the FANTOM expression data [26, 27], GTEX data 
[28], the standard gene expression data set [29], Illumina’s 
body map [30], the draft human proteome [31, 32], the 
gene and gene family age curation [14], the human gene 
expression atlas [33], as well as the TCGA data [34– 36].  
Of note, these data sets have been well recognized 
for their quality. Many are standard setting yet highly 
heterogeneous, raising substantial challenge for signals 
capturing in terms of the following analysis. Thus, if 
significant signal captured, it may have much implications.

Genome wide preference pattern of genes as 5ʹ 
partner (5ʹFG) or 3ʹ partner (3ʹFG) of CSGFs 

Little is known about the genome wide preference 
pattern of being 5ʹFG or 3ʹFG of CSGFs. Of the 12,849 
unique CSGFs collected from the resources listed in 
Table 1, we found 5,980 genes at 5ʹ (or N terminal at the 
protein coding level) and 7,150 genes at 3ʹ (or C-terminal at 
the protein coding level), as well as 3,357 genes observed at 
both directions. The top 20 most frequent CSGFs involved 
genes have distinct preferences of being involved in 5ʹFG 
or 3ʹFG (Figure 1A). For examples, ALK is frequently 
fused at the 3′ end while RARA is more frequently fused 

at the 5′ end (Figure 1A). The genome-wide distribution 
is shown in the Bland-Altman plot, illustrating the global 
asymmetry (n = 12,848, Kolmogorov-Smirnov test D = 
0.54, p-value < 2.2e-16) (Figure 1B).  Thus, it appears that 
being as 5ʹFG or 3ʹFG is highly asymmetric at both the 
global and individual gene levels, indicating a potential link 
of gene features to the arising of CSGFs.

Euteleostomes genes and Bilateria gene families 
are more likely to be involved in CSGFs

 To exploit phylogenomic profile of CSGFs involved 
genes, we collected three phylogenomic profile data sets, 
including the gene age database Protein historian [37], as 
well as two additional curated data sets [14, 38]. As shown 
Table 2, the origins of most recurrent fusions involved 
genes are almost of a vertebrate origin.  CSGF involved 
genes are significantly enriched of the Bilateria origin 
in terms of gene family (Figure 2A) and Euteleostomes 
origin (Figure 2B) of gene age. The 3′ portion of driver 
CSGFs set (COC3, from the COSMIC data set) is among 
the highest enriched set of genes. Consistently, CSGFs 
involved genes are more related to whole genome 
duplication events (Figure 3), but not small scale genome 
duplication events (Figure 4). These phylogenomic data 
appear to support a view that cancer is more likely a 
vertebrate-specific disease [39].

The asymmetric sequence pattern of CSGFs 
involved genes

Notably, there are at least four mechanisms by 
which how translocations arise: synthesis mediated end 
joining, breakage-fusion-bridge cycles, RAG-mediated 
translocation and AID-mediated translocation [40]. To 
gain insights into the arising mechanisms of CSGFs, we 
carried out global analysis of genomic sequence features of 
CSGFs involved genes, including the GC content defined 
as (G+C)/(T+G+C+A), the GC skew defined as the ratio 
of (G−C)/(G+C), and the AT skew defined as the ratio of 
(A−T)/(A+T)), as well as the S defined as the summary of 
GC skew and AT skew. An emerging asymmetric pattern 
of these basic sequence measurements can be utilized for 
prediction of R-loop formation [41]. R loops are three-
stranded nucleic acid structures comprised of nascent 
RNA hybridized with DNA template while leaving the 
non-template DNA single-stranded [42]. R loops are 
considered more unstable intermediates of RNA-DNA 
structure and are preferentially formed when the non-
template strand is G rich [43]. 

It appears to be AT rich in the 5′ partners of the 
CSGF driver set (COC, the COSMIC CSGF drivers) 
and GC rich in the 3′ partners (Figure 5A, scaled 
heatmap plot). Due to the highly heterogeneous nature of 
our collected data, the GC and AT skew features of CSGFs 
involved genes are highly heterogeneous (Figure 5B–5D).  
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Table 1: List of CSGF data and annotation settings
Data description Abbreviation PMID

the COSMIC database COC 25355519
the TCGA fusion data CLF 25485619
the database of translocation breakpoints in cancer TIC 17257420
the curated cancer landscape gene fusions BKF 23539594
The Mitelman gene fusion database MIF 17361217
the gene fusion in cancer cell lines TCF 25500544
Su AI expression data 2004 SAIe 15075390
the curated protein coding CPCh 24939910
the draft human proteome DHPe 24870542
protein-protein interaction network PPIn 25416956
The Cancer Genome Atlas TCGA 25109877
Ensembl ENSe 25352552
Fantom5 FANt 24670764
tissue-expression map TEMe 25613900
Illumina Body map IBMe 24217909
GTEX expression GTEx 25954003
gene age curated GACu 20492640
human gene expression atlas HGEa 20379172
somatic mutation rate and replication time SMRr 23770567

These data include six gene fusion sets and thirteen annotation data settings.

Figure 1: Genome wide preference pattern of genes as 5ʹ partner (5’FG) or 3ʹ partner (3’FG) of CSGFs. (A) The 
distributions of the top 20 frequent CSGFs involved genes in terms of preference of 5’FG or 3’FG in the fusion gene sets. (B) The 
distribution of CSGFs involved genes is illustrated with the Bland-Altman plot (n = 12848, Kolmogorov-Smirnov test D = 0.54, p-value 
< 2.2e-16).  The x-axis (average) indicates the average frequency of each involved gene in terms of 5ʹ and 3ʹ, while the y-axis (difference) 
indicates the difference between 5ʹ and 3ʹ frequency of each gene.
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However, distinct strand asymmetric patterns of 
fusion genes were still observed (kernel density plot, 
Figure 5E) by using three parameters for measuring the 
strand asymmetries, including GC skew, AT skew and S 
composition.  There is a significant GC skew towards the 
5′ fusion partners (Figure 5E, P < 2.2e-16).  Moreover, 
the AT-skew distribution shows that all fusion-involved 
genes are more AT asymmetric when compared to the 
background coding sequences (P < 2.2e- 16, Figure 5E). 
Consistently, the S composition shows a significant 
asymmetric distribution of CSGFs involved genes 
(P < 2.2e-16, Figure 5E).  

 Since the DNA breakpoint sequence of CSGFs can 
reveal distinct translocation mechanisms, we set out to 
examine the motif patterns of known CSGFs breakpoints. 
The breakpoint sequences were downloaded from TICdb 
(Release 3.3, August 2013). Of note, we first analysis 
the global pattern of these breakpoints (Supplementary 
Figure S1), indicating an asymmetric pattern of the tetra-
nucleotide distribution. Further, we performed detained 
key CSGFs analysis. As shown in Figure 6A, there is a 
direct correspondence between R-loop signature (GGG) 
with IgH class switch recombination signature (WGCW) 
(Spearman correlation coefficient ρ = 0.51, p = 1.57e-90). 
However, it is only a subset of CSGFs characterized by 
R-loops and an IgH switch signature (Figure 6B). Related 
CSGFs were listed, including Ig-MYC (Figure 6C). Thus, 

given these signals, our sequence analysis results support 
the potential of R-loops involved in arising mechanism in 
a subset of CSGFs.

Distinct genomic features including gene 
expression breath of CSGFs involved in genes

The polarity is also found in other genomic events, 
such as alternative splicing, disordered region, and the 
human-mouse non-synonymous evolution rate (dN) 
(Figure 7D). Gene expression breadth is a measurement of 
the number of tissues in which a given gene is expressed. 
Based on the Unigene reference dataset comprised of 
45 body sites, we found that fusion genes’ 5′ partners 
have greater gene expression breadth than their 3′ 
partners, independent of tissue selectivity or specificity  
(Figure 8A–8C). Therefore, fusion genes’ 3′ partners are 
more tissue –specific.

We further examined the asymmetric pattern at 
the promoter, 5′ UTR and 3′ UTR of transcripts, as well 
as encoded protein levels of the CSFGs. Core promoter 
regions, the 1.5 kb region spanning upstream 1 kb and 
downstream 0.5 kb from the transcription start site (TSS) 
of CSGFs (COSMIC driver fusions), show asymmetry 
in CpG count (Supplementary Figure S2A), TpA count 
(Supplementary Figure S2B), G4 (GGGG) counts 

Table 2: Origins of most recurrent fusions involved genes
vertebrate specific domain combination vertebrate specific duplication metazoan specific domain
SLC34A2 BCL6 RARA
MLL CHD7 ERG
RET MLL
FGFR1 IGH2
ABL1 ETV6
MYC NUP98
EML4 RUNX1
BCR PAX5
PML EWSR1
TMPRSS2 TRB2
MAGI3 IGL2
PVT1 HMGA2
MLL PDGFRB
FGFR1 ALK
ROS1 ETV1
ABL1 RSPO2
MYC ALK
NDRG1 AKT3
AF4 RSPO3
TACC1   
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(Supplementary Figure S2C), and C4 (CCCC) counts 
(Supplementary Figure S2D). The significant sequence 
features between CSGFs involved 5′ genes and 3′ genes 
(Two-sample Kolmogorov-Smirnov test p-value < 2.2e-16)  
indicate that 5′ sequence features might be related to the 
formation of CSGFs. Indeed, 5′ partners in CSGFs show 
lower overall GC content (Figure 8D, Wilcoxon rank sum 
test, W = 257,110, p-value = 1.95e- 05) but 3ʹUTR partners 
in CSGFs doesn’t show significant difference in GC 
content (Figure 8E, Wilcoxon rank sum test with continuity 
correction, W = 129,190, p-value = 0.53) and promoters 
(Figure 8F, W = 18,896, p-value = 0.94). Intriguingly, 
protein stability related motif of the N-terminal sequences 
of FG5 and FG3 reveal an asymmetric patterns the second 
to the 10 amino acid of CSGFs (COSMIC driver fusions) 5ʹ 

partners (A) (Figure 9). Since the N-terminal amino acids 
are crucial protein degradation [44], indicating protein 
stability might be another critical level of cancer gene 
fusion functions in turn cancer somatic evolution. 

The connection of somatic copy number 
alterations and CSGFs

Somatic copy number alterations (SCNAs) play 
critical roles in activating oncogenes and inactivating 
tumour suppressors via affecting a larger fraction of 
the genome in cancers than any other type of somatic 
genetic alterations [45–47].  However, little is known 
about the connection between SCNAs and CSGFs. 
Here we intersect the SCNAs and CSGFs at individual 

Figure 2: Phylogenomic profiles of cancer fusion involved genes. The gene family ages (upper) and the gene ages (lower) of the 
CSGF involved genes. The x-axis shows the distinct phylogenetic ages with corresponded the birth of distinct species. The y-axis indicates 
the proportion of each stratified phylogenetic ages. The abbreviation of each category is described to Table 1 while the ‘5’ or ‘3’ postfix 
indicates the 5ʹ or 3ʹ involved genes respectively. The “Genome” category represents the average level of genes of the human genome.
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primary tumour sample level of the 13 type of cancers 
in TCGA. Intriguingly, among the nine potential 
combinations, the amplification-amplification (A-A) type 
is significantly enriched (Figure 10, around 3.8-fold over-
representation, P = 0, binomial test. Details are presented in  
Supplementary Table S1). However, the amplification-
deletion (A-D) and deletion-amplification (D-A) types are 
significantly under-represented with 0.11 (BH adjusted P = 
7.2e-222) and 0.12 (BH adjusted P = 8e-217) fold of the 
expectations, respectively (Figure 10). The result is detailed 
in Supplementary Table S1. The finding suggests that 
CSGFs are dynamically evolved in amplification. Hence, we 
conclude that a large number of CSGFs with amplification 
are selected during somatic evolution of tumours. 

Functional exploration of CSGFs and CSGFs 
involved genes

We further examined the asymmetric patterns of 
functional combinations in CSGFs. We interrogated the 

TCGA 13-cancer data sets with known kinase (KI) genes 
[48] and transcription factors (TF) [49]. As shown in the 
Supplementary Table S2, there are a substantial number 
of combinations, yet the TF-KI combination is more 
enriched that is KI-TF (with 3.3- and 2.1-fold enrichment, 
respectively, and adjusted BH p values 5.5e-22 and 3.3e-7, 
successively). Since most kinases are related to protoncogene 
function while TFs are enriched in tumor suppressors, it is 
most likely that 5ʹ partners have higher propensity to be 
tumour suppressor while 3ʹ partners have a larger likelihood 
to be proto-oncogene. Intriguingly, we further examined the 
asymmetric pattern of FG5 and FG3 at other levels, including 
intrinsic protein disorder and cancer signalling pathways. 
As shown in Supplementary Figure S3, the F5Gs (cancer 
somatic gene fusions involved 5ʹ genes) have a higher gene 
expression breadth and higher intrinsic disorder region 
score while the F5Gs have more transcripts and longer gene 
length. Meanwhile F5Gs and F3Gs (cancer somatic gene 
fusions involved 3ʹ genes) were asymmetrically mapped to 
the key cancer gene pathways (Supplementary Figure S4).  

Figure 3: CSGFs involved genes are more related to whole genome duplications (WGD). (A) The proportion of gene origin 
involved in the WGD event. (B) The proportion of gene origin not involved in the WGD event. (C) Fold enrichment of gene origin involved 
in the WGD event. (D) Fold enrichment involved in whole genome duplication. The abbreviation of each category is described to Table 1 
while the ‘5’ or ‘3’ postfix indicates the 5ʹ or 3ʹ involved genes respectively.
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Thus, it appears to be a functional stratification of CSGFs in 
terms of F5Gs and F3Gs.

Given that most cancer deaths are due to the 
development of metastases [50, 51], we examined whether 
CSGFs involved genes are enriched metastasis genes. 
Based on PubMed search and collected gene settings, we 
curated a tumour metastasis gene set [52, 53].  As shown in 
Supplementary Figure S7, there is a 3.7-fold enrichment of 
the metastasis genes in the fusion genes setting collected 
in the COSMIC database (P < 5.4e-20, hypergeometric 
test). The 63 CSGFs involved genes are also listed in the 
Supplementary Table S3. It appears that CSGFs may have 
critical role during tumour metastasis.

Network properties of CSGF involved genes

Next we explored the network properties of 
CSGF involved genes in the human protein interaction 
networks. The centrality distribution of cancer related 
genes, including SMG (somatically mutated cancer driver 

genes), CPG (cancer predisposition genes), GCG (GWAS 
cancer associated genes), GMG (HGMD cancer genes),  
and WGG (human genome genes), are shown in 
Supplementary Figure S5.  CSGF involved genes have a 
similar distribution pattern compared to putative cancer 
genes (Supplementary Figure S5). Meanwhile, there 
is an asymmetric pattern of the centrality of 5ʹ and 3ʹ 
partners (Supplementary Figure S6) and the 5ʹ partners 
have less degree that their 3ʹ counterparts (Supplementary 
Figure S6, Kolmogorov-Smirnov test, n = 5155, D^= 0.5, 
p-value < 2.2e-16).  It is likely that those physical 
interacted pairs are susceptible to become gene fusion 
pairs. Thus, CSGFs favor gene pairs with strong physical 
interactions, suggesting a mechanism similar to evolution 
by “tinkering” [54].

DISCUSSION

Distinct phylogenomic and genomic features 
identified through evolutionary studies of the emergence 

Figure 4: CSGFs involved genes are under-presented with small scale genome duplications. (A, B) The proportion of genes 
origin involved the small scale genome duplication event and non-involved. (C, D) Fold enrichment involved in small scale duplication. 
The abbreviation of each category is described to Table 1 while the ‘5’ or ‘3’ postfix indicates the 5ʹ or 3ʹ involved genes respectively.
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Figure 5: GC and AT skew features of CSGFs involved genes. (A, B, C, and D) The GC and AT skew features of CSGF involved 
genes. GC skew, (G-C)/(G+C); AT skew, (T-A)/(A+T). Distinct strand asymmetric patterns of fusion genes are illustrated by Kernel density 
plotting of the three parameters for strand asymmetries including GC skew, AT skew and S composition. (E) The distribution patterns of 
GC-skew show the significant GC skew specific to the 5ʹ partner specific CSGFs involved genes (P < 2.2E-16). (F) The AT-skew variable 
distributions shows all fusion involved genes are more AT asymmetric compared to the background coding sequences (P < 2.2E-16).  
(G) A plot of the distribution of S composition measurement (S = GC_skew +AT_skew), show significant asymmetric distribution of 
CSFiGs (P < 2.2E-16). genome: the human genome, common: coding sequences involved as both 5ʹ partner and 3ʹ partner in the CSGF 
data sets, F3Gu: coding sequences involved as the 3ʹ partner, F5Gu: coding sequences involved as the 5ʹ partner. The vertical intersected 
lines indicate the median value of the variables of each category. 
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of cancer genes have provided mechanistic insights into 
the complexity of cancer progression in human.  However, 
less is known about CSGFs involved genes at the genome-
wide level since most existing studies focus on discovering 
novel fusions and testing individual molecular mechanisms 
[2, 40]. In this study, we show that a substantial number of 
CSGF involved genes arise from vertebrate whole genome 
duplications while the involved gene families are of bilateral 
origin. Consistently, conserved protein domain combinations 
of the cancer somatic fusion genes appear to be vertebrate 

specific. Our results provide molecular evidence supporting 
the hypothesis that the earliest cancer occurred in vertebrates 
[39]. Indeed, the earliest known unequivocal neoplastic 
case was found on the partial skeleton of a North American 
lower carboniferous (about 300 million years BP) fossil fish, 
Phanerosteon mirabile [55].

Distinct genomic features of CSGFs may have 
both theoretical and practical implications. There are 
clear patterns of the polarity of CSGFs: i) F5Gs appear 
to be less globally expressed in contrast to a recent 

Figure 6: G-clusters, which initiate R loop formation, and on the number of WGCW sites, at a subset of CSGF 
breakpoint sequences. The breakpoint sequences were downloaded from the TICdb (release 3.3: August 2013). (A) R-loop signature 
(GGG) is significantly correlated with IgH switch class recombination signature (WGCW) (Spearman correlation coefficient ρ = 0.5068, 
p = 1.57e-90). (B) The distribution of GGG and WGCW sites. (C) CSGFs are characterized by IgH class switch recombination signatures.  
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Figure 7: Illustrating distinct features of CSGF involved genes based on genome features. (A) F3Gs and F5Gs appear 
to be highly GC rich. GC, (G+C)/(A+T+C+G) for the coding strand. (B) Longer gene length (from the transcription start site to the 
poly adenalyation signal site. (C) More transcripts, indicative of more alternative splicing forms. (D) Higher non-synonymous mutation 
rate (dN) for the comparison between human and mouse othologs.(E) Lower mutation rate represented with human-mouse synonymous 
changes (dS). (F) Distinct replication origin signatures of 5ʹ or 3ʹ cancer somatic involved gene are illustrated, (G) Gene activity markers 
H3K4Me3 enrichments of different gene sets, including cancer genes (COSMIC v72 cancer genes), F3Gu (CSGFs involved 3ʹ specific 
genes), F5Gu (CSGFs 5ʹ involved specific genes), FGcommon (genes involved in 3ʹ and 5ʹ both), and Metastasis (metastasis gene set). 

Figure 8: Asymmetric patterns of gene expression pattern and GC content of UTRs of cancer somatic gene fusion 
involved genes. The expression of CSGFs involved genes show the polarity of CSGFs at the expression level. The y-axis shows tissue 
numbers in terms of gene expression with distinct threshold of reference RNA-seq data, including 5 (A), 10 (B), or 20 (C) FPKM (fragments 
per kilobase per million). (D) 5ʹUTR comparison, Wilcoxon rank sum test, W = 257,110, P = 1.95e-05. (E) 3ʹ UTR comparison, Wilcoxon 
rank sum test with continuity correction, W = 129,190, P = 0.53. (F) Promoter comparison, Wilcoxon rank sum test, W = 18896, P = 0.94.
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Figure 9: Asymmetric patterns the second to the 10 amino acid of CSGFs (COSMIC driver fusions) 5ʹ partners (A) and 
3ʹ partners (B). Two matrices based on the frequency of first ten amino acids of the encoded peptides encoded by the 5′ and 3′ involved 
genes of CSGFs are plotted with logo diagram respectively. The two diagrams depict distinct patterns of the 5′ partners (A) and 3′ partners.

Figure 10: The relationship between CSGFs and SCNAs. Both the CSGFs and SCNAs were derived from the TCGA data. 
To extract a set of high confidence CNVs, a threshold of 0.2 in segment mean value for amplifications and –0.2 for deletions were 
employed. The observed and expected nine types of combinations (A stands for amplification; N, normal; D, deletion) were plotted. Chi-
squared (X2) test, X2 = 4375, df = 8, P < 2.2e–16. The amplification-amplification (A–A) type is significantly enriched (around 3.8 fold 
ovepresentation, P = 0, binomial test).  Meanwhile, both the amplification-deletion (A–D) and deletion-amplification (D–A) types are 
significantly underrepresented with BH adjusted P = 7.22e–222 and P = 7.98e-217, respectively.
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study which showed more global expression of cancer 
genes; ii) the selection signatures of 3′ UTRs of 5′ UTRs 
are linked to an miRNA regulation network [9, 56];  
iii) at the protein level, there are functional selection 
footprints of N-terminal degradation rules [44]; iv) 
there are intrinsic disordered signatures at the joint site 
of CSGFs [56]. Such observed structure and function 
relationships not only have the potential to enable us 
to better understand the functions of CSGFs and more 
accurately predict CSGFs but also implicate novel 
therapeutics including targeting cancer somatic fused 
tyrosine kinase (TK) fusions and activating multiple 
CSGFs simultaneously [12].

DNA breakpoint signatures provide new insights 
into the mechanisms underlying CSGFs. However, most 
studies focused upon germline translocation breakpoints, 
involving four distinct mechanisms including non-
homologous end joining (NHEJ), non-allelic homologous 
recombination (NAHR), transposition, DNA replication 
mechanisms [40]. For somatic cases, especially for those 
in carcinomas, arising mechanisms have been largely 
unknown(26,28). These overrepresented motifs further 
highlight the key role of inflammation process that might 
cause genome instability. Given that genome instability 
can trigger inflammation, there may be a positive feedback 
loop between two hallmarks of cancer, genome instability 
and immune disorder [57]. Our study also revealed the 
connection of CSGFs to promoters, enhancers, H3K4me3, 
replication time, as well as fragile sites susceptible to 
rearrangements and translocations. Another important 
finding from our study is that a significant number of 
CSGFs are involved in metastasis, the core of cancer 
mortality.

Taken together, our findings underscore the 
prerequisites, causes, and consequences of CSGFs and 
further our knowledge of CSGFs at the evolutionary, 
structural and functional levels. The striking features 
uncovered by integration of phylogenomic, functional 
genomic, protein interaction data have both theoretical and 
clinical implications for further testing.

MATERIALS AND METHODS

CSGF data sets and annotations

CSGFs datasets (Table 1), including the COSMIC 
[22], Genetech cell line fusions [5], TICdb [4], Cancer 
landscape fusions [7], Mitelman fusions [23], and a 
recent curation of the TCGA fusions [6], were collected. 
Specially, the cancer landscape fusions and COSMIC 
fusions are focused on driver fusions, while other data 
settings are mixture of a variety of different somatic 
fusions found in cancer. 

Functional genomic data sets  (Table 1) including the 
reference human genomic ENSEMBL data [24], refined 

human protein coding genes (general and tissue-specific 
protein-protein interactions [25], FANTOM expression 
data [26, 27], GTEX data, the standard gene expression 
data set [29], Illumina’s body map, draft human proteome, 
gene age curation [14], human gene expression atlas [33], 
as well as the TCGA data [34, 35], were also collected. 
Gene expression data including both mRNA level and 
protein level as well as protein interaction network data 
were tabulated in Table 1.  Evolutionary data including 
gene and gene family age settings have also been listed. 

The TCGA SCNAs data set was downloaded from 
the TCGA site. For a set of high-quality and robust CNVs 
extracting, the thresholds of 0.2 and -0.2 for segment mean 
value were used to determine amplifications and deletions, 
respectively. For CSGFs breakpoint and TGCA SNCAs 
overlapping, the Granges Bioconductor class was applied 
in the hg19 reference genome [58].

Asymmetry statistics

Statistical comparisons were carried out with a non-
parameter model with R functions including Wilcoxon 
Signed Rank or Kruskal Wallis test. The Bland-Altman 
plot was employed for asymmetry analysis and signal 
capture [59]. The two-sample Kolmogorov-Smirnov test 
was used for statistically significant test with the function 
‘ks.test’.

DNA breakpoint sequence motifs analysis

Pan-cancer breakpoint sequences were 
downloaded from the TICdb (release 3.3, August 2013, 
http://www.unav.es/genetica/TICdb/) [4]. Meanwhile, 
a set of breakpoint sequences was got from literatures 
[5, 6, 60, 61], and sequences were mapped to the hg19 
human genome with GenomicAlignment [34]. Motif 
analysis library was carried out by using the method 
described in the literature [62].  The null model of 
overrepresentation was based on a Fisher’s exact test by 
using the R script.

Protein-protein interaction networks

Gene-gene connection data was downloaded from 
HumanNet V.1 [63], a probabilistic functional gene 
network of 18,714 validated protein-encoding genes 
of Homo sapiens (by NCBI March 2007). HumanNet was 
constructed by a modified Bayesian integration of 21 types 
of 'omics' data from multiple organisms, with each data 
type weighted according to how well it links genes that are 
known to function together in H. Sapiens. Protein-protein 
interaction data and tissue specific protein interaction 
data networks were downloaded from the related web 
sites [25, 64–70]. The “igraph” package [71] was used to 
compute network properties including, degree distribution, 
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betweenness centrality, associativity, closeness, short-path, 
as well as density. 
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