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AbstrAct
Transcriptional profiling of lung adenocarcinomas has identified numerous gene 

expression phenotype (GEP) and risk prediction (RP) signatures associated with 
patient outcome. However, classification agreement between signatures, underlying 
transcriptional programs, and independent signature validation are less studied. We 
classified 2395 transcriptional adenocarcinoma profiles, assembled from 17 public 
cohorts, using 11 GEP and seven RP signatures, finding that 16 signatures were 
associated with patient survival in the total cohort and in multiple individual cohorts. 
For significant signatures, total cohort hazard ratios were ~2 in univariate analyses 
(mean=1.95, range=1.4-2.6). Strong classification agreement between signatures 
was observed, especially for predicted low-risk patients by adenocarcinoma-derived 
signatures. Expression of proliferation-related genes correlated strongly with GEP 
subtype classifications and RP scores, driving the gene signature association with 
prognosis. A three-group consensus definition of samples across 10 GEP classifiers 
demonstrated aggregation of samples with specific smoking patterns, gender, and 
EGFR/KRAS mutations, while survival differences were only significant when patients 
were divided into low- or high-risk. In summary, our study demonstrates a consensus 
between GEPs and RPs in lung adenocarcinoma through a common underlying 
transcriptional program. This consensus generalizes reported problems with current 
signatures in a clinical context, stressing development of new adenocarcinoma-
specific single sample predictors for clinical use.

IntroductIon

Lung cancer is the leading cause of cancer 
death worldwide, with adenocarcinoma as the largest 
histological subtype [1, 2]. During the last decade, 
significant advances have been made in understanding 
the molecular characteristics of lung adenocarcinoma. 
Some of these discoveries have been translated into 
new therapeutic options, with targeted treatments for 
patients with tumors harboring EGFR mutations or ALK 
gene fusions representing success stories. Unfortunately, 
while the new gene targeted treatments initially show 
an often-dramatic patient benefit, patients eventually 
relapse. The tumor-node-metastasis (TNM) staging 
system currently represents the best prognostic factor for 

non-small cell lung cancer (NSCLC) patients in clinical 
use. However, even for NSCLC patients with the best 
prognosis, resectable stage I disease, approximately 
30% will relapse with a 5-year survival rate of 58-73% 
[3]. This heterogeneity in the clinical course of patients 
with the same tumor stage stresses the need for additional 
biomarkers that can improve prognostication and 
prediction of response to therapy in lung adenocarcinoma.

Gene expression profiling has been used 
extensively to divide early stage lung adenocarcinoma 
into different gene expression phenotypes (GEPs), each 
comprising of two or more subtypes, associated with 
clinicopathological characteristics such as smoking, 
tumor stage and mutational patterns, and to derive 
prognostic and/or predictive risk predictors (RPs) (see 
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e.g. [4-14] and [15, 16] for review). Such gene signatures 
hold promise for clinically useful and molecularly driven 
disease stratification independent of current prognostic 
variables, provided adequate validation. However, in 
lung adenocarcinoma considerable challenges remain 
before such gene signatures are ready for clinical 
use (see e.g. [17] for review). First, only a few of the 
reported prognostic/predictive signatures are available 
as single sample predictors (SSPs) that can be used 
for independent validations. Notably, only a few 
studies reporting prognostic/predictive signatures have 
attempted to reproduce previously reported signatures 
for comparison, often with hardship and focused only on 
prognostic performance as evaluation criteria (see e.g. [9, 
17]). Consequently, most GEP and RP signatures in lung 
adenocarcinoma have not been carefully investigated for 
classification robustness, prognostic value, and treatment 
predictive value in large multicohort analyses. For one 
lung cancer GEP [5] and one RP [9] signature it has 
recently been shown in multicohort analyses that the 
common usage of a gene-centering / data normalization 
step in the classification procedures can effect robustness 
in subtype assignment or risk score calculation, 
respectively [18, 19]. Second, the agreement between 
different adenocarcinoma gene signatures in terms of 
subtype and risk prediction classification has not been 
systematically investigated. It has been hypothesized that 
across different GEPs there is a main division of tumors 
into a terminal respiratory unit (TRU) like subtype with 
better patient outcome and a second non-TRU subgroup 
with a poorer patient outcome [20]. The TRU subgroup 
is enriched for female gender, never-smokers, and tumors 
that express the TITF-1 transcription factor and surfactant 
proteins, and show morphological similarity to type II 
pneumocytes, Clara cells, and nonciliated bronchioles 
[20].

To address the questions of classification consensus, 
common underlying transcriptional programs, and 
associations with patient outcome for different GEPs 
and RPs in lung adenocarcinoma, we conducted a pan-
signature consensus analysis of 18 reported GEPs and 
risk stratification signatures in 17 cohorts comprising 
2395 transcriptional profiles. We show that the majority 
of signatures represent a relevant prognostic patient 
stratification in lung adenocarcinoma, and that significant 
classification agreement exists between signatures, 
especially in the group of patients for whom better 
outcome is predicted. Expression of proliferation-related 
genes was identified as the main biological process 
associated with the agreement between low- and high-
risk groups predicted by the majority of gene signatures. 
Together, our results provide a general insight into the 
nature and agreement of GEP and RP signatures in primary 
lung adenocarcinoma, important for the understanding of 
their prognostic value.

results

GEP and RP classification of lung adenocarcinoma

The clinical characteristics of the 2395 
adenocarcinoma patients are shown in Tables 1, and S1 and 
have been reported previously [18]. We classified the 2395 
tumors according to 18 lung adenocarcinoma GEP and 
RP signatures, and one in silico derived 155-gene breast 
cancer proliferation signature (Table 2 and Supplementary 
Methods for explicit details). The latter signature was used 
to correlate classification results from lung cancer derived 
signatures to a classification based on proliferation-
related genes displaying highly correlated expression 
unrelated to lung tissue. For several GEP signatures, 
only lists of significant/predictive genes discriminating 
subtypes were readily available from original studies and 
not specific predictive models including weights and cut-
points (e.g. Park et al. [21]) (see Supplementary Methods 
for detailed information about each signature). For these 
signatures we used a classification approach including 
consensus clustering or k-means clustering to assign 
samples to signature subtypes. We acknowledge that our 
implementation of some described signatures may thus not 
be identical for every individual sample as in the original 
studies. Despite these potential differences in classification 
of individual samples, the approach taken provides a way 
of systematically comparing signatures for analysis of 
broader patterns and associations. 

To investigate the accuracy of our classification 
approach compared to the original studies, we performed 
univariate survival analysis (including patients of all 
stages) using patient overall survival as endpoint for each 
signature in both the total and each individual cohort. 
We observed that 16 out of 18 GEPs and RPs were 
significantly associated with patient overall survival in the 
entire cohort (p < 0.05), as well as in several individual 
cohorts, in a way consistent with claims in the original 
studies (Figure 1). Hazard ratios (HR) for the significant 
signatures in the total cohort ranged between 1.4-2.6, with 
average HR = 1.95±0.3 (standard deviation). For one of 
the signatures not associated with outcome in the total 
cohort, the AC1/AC2 signature previously reported by our 
group [12], the insignificant result is consistent with this 
signature being reported to be associated with smoking 
status, a variable related to outcome in only one of the 
included public cohorts with available data (see ref [18]). 
While association with patient outcome was observed in 
several individual cohorts for different signatures, no GEP 
or RP signature was associated with patient outcome in 
the Botling et al. [22], Hou et al. [23], or Zhu et al. [9] 
cohorts. In addition, in the CLCGP [24] and Fouret et al. 
[25] cohorts only one and two signatures, respectively, 
showed univariate significance (p < 0.05) (Figure 1).
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All investigated signatures showed a strong 
similarity in the proportions of signature subtypes 
across individual cohorts (Figure 2A and Supplemental 
Figure S1 for more explicit details). For all RPs, except 
Lau et al. [26], the similar proportions are expected, as 
the classification set-up by default divides cohorts into 
equally sized groups. For the GEP signatures that divided 
tumors into two groups based on centroid prediction or 
consensus clustering, subtype proportions were generally 
quite balanced (50/50% split). For GEP signatures with 
>2 subtypes (the Wilkerson, Garber and Bhattacharjee 
signatures), proportional differences between subtypes 
were larger, i.e., not apparently balanced (e.g., a 
33/33/33% split) (Figure 2A). However, across cohorts 
the standard deviations in individual subtype proportions 
for all GEP signatures were fairly low, meaning that equal 
proportions of samples were assigned to the individual 
subtypes of a signature, irrespective of cohort size or 
composition (Figure 2A and Supplementary Figure S1 
for details). Notably, these observations are consistent 
with findings from our recent study, based on the same 
patient cohort, investigating classification robustness of 
the Wilkerson et al. GEP signature [18]. Importantly, these 
results support others and our observations that current 
SSPs tend to predict subtypes in similar proportions across 
cohorts [18, 19, 27]. Together, these findings show that 

the majority of signatures, based on original classification 
schemes, represent a relevant prognostic division of 
adenocarcinoma in a general context.

Gene signature consensus in lung adenocarcinoma

To investigate whether agreement exists between 
the classifications of the samples obtained with the 18 
signatures, we first overlaid the classifications from 
all signatures together with a breast cancer derived 
proliferation classifier (Figure 2B). We observed strong 
agreement between the classification of the different 
good outcome / low-risk groups, especially for the GEP 
signatures and the Tang et al. [28] RP signature, as 
illustrated in Figure 2B by the consistent classification 
agreement of each signature with the Wilkerson et al. 
[5] TRU subtype (a proposed low-risk group) signature 
selected as a visualization baseline. Consequently, poor 
outcome / high-risk or moderate-risk patients were 
predominantly classified as non-TRU (i.e., Proximal-
proliferative or Proximal-inflammatory) by the Wilkerson 
et al. centroid classifier. Interestingly, the consensus in 
prediction of a low-risk group between GEPs and RPs 
that were derived specifically from adenocarcinoma 
samples (refs [11, 28, 29], Table 2) appeared to be better 

Table 1: Clinical characteristics of the total cohort of patients with adenocarcinoma
Total cohort*

Number of patients 2395
Number of cohorts 17
Stage
                                                                                                  I 63%
                                                                                                  II 20%
                                                                                                  III 15%
                                                                                                  IV 2%
Sex
                                                                                                  Female 53%
                                                                                                  Male 47%
Age, median (range) 64 (21-91)
Smoking status
                                                                            Never-smoker 24%
                                                                                                  Smoker 76%
Mutation status
                                                                                                  EGFR 29%
                                                                                                  KRAS 23%
Number of patients with adjuvant chemotherapy** (%) 176 (7.3%)
Outcome
                                          Overall survival (OS), median (years) 2.94
                                   OS number of events (% of all patients) 38%
        Distant metastasis-free survival (DMFS), median (years) 3
         DMFS number events (% of all cases with DMFS data) 42%

* Characteristics are presented as percentages of all cases with available annotations.
** According to original studies, including only patients with available outcome data.
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than between GEPs and RPs derived from NSCLC cohorts 
(like the Lau and Hsu et al. [26, 30] RP signatures). 
Moreover, while there is strong agreement in classification 
between the two-group GEP signatures for all outcome 
subgroups, there seems to be less agreement for subgroups 
with poorer outcome between GEP signatures with >2 
subtypes (such as the Wilkerson et al. [5], Garber et al. 
[8] and Bhattacharjee et al. [31] signatures). To further 
substantiate these observations we performed an extensive 
analysis of signature pair classification overlap (Figure 
3). First, we transformed all signatures into two-class 
signatures of good and poor outcome using reported 
class annotations from original studies and calculated the 
overlap between each signature pair (see Figure 3A for 

details regarding the transformation of three- and four-
class signatures). Notably, for the majority of signatures 
derived in adenocarcinoma (GEPs and RPs) we observed 
an agreement above 70%, and even >85% for a set of 
signatures, while classification overlap was poorer for 
RP signatures derived in NSCLC cohorts (Figure 3A). 
Next, we analyzed the overlap for three- and four-class 
signatures specifically. Here the mapping between different 
classes is more difficult. For this analysis we renamed the 
classes with reported best outcome as “good” similar to 
the previous analysis and compared classification overlap 
between all class combinations (Figure 3B). Notably, the 
class combinations with the best classification overlap 
between different signatures were often the good outcome 

Table 2: Investigated adenocarcinoma gene expression phenotype signatures / risk prediction models.

Gene expression 
signature Ref Origin A Signature type b Number genes/

probes Signature subtypes

Wilkerson et al. [5] AC GEP: Centroid 
classifier 506 TRU, Proximal-proliferative*, & 

Proximal-inflammatory*

Staaf et al. [12] AC GEP: Centroid 
classifier 176 AC1 & AC2

Planck et al. [13] AC GEP: Centroid 
classifier 746 EGFR mut low-risk &  EGFR mut 

high-risk*

Planck et al. [13] AC GEP: Centroid 
classifier 871 EGFR & KRAS wt low-risk &  

EGFR & KRAS wt high-risk*

Takeuchi et al. [4] AC GEP: Gene 
signature 293 TRU & non-TRU-like*

Cheung et al. [37] AC GEP: Gene 
signature 249 Alveolar & distal airway stem cell 

(DASC)-like*

Shibata et al. [38] AC GEP: Gene 
signature 78 Alveolar & bronchiolar*

Fukui et al. [36] AC GEP: Gene 
signature 1829 BC-low & BC-high*

Park et al. [21] AC GEP: Gene 
signature 193 S_C1 & F_C2*

Garber et al. [8] AC GEP: Gene 
signature 146 AC1, AC2, & AC3*

Bhattacharjee et al. [31] AC GEP: Gene 
signature 100 C1, C2*, C3, & C4 

Shedden et al., 
method A [11] AC Risk predictor 13830 Low-risk, moderate-risk, high-risk*

Tang et al. [28] AC Risk predictor 18 Low-risk, high-risk*
Okayama et al. [29] AC Risk predictor 4 Low-risk, moderate-risk, high-risk*
Sun et al. [39] AC Risk predictor 50 Low-risk, high-risk*
Zhu et al. [9] NSCLC Risk predictor 15 Low-risk, high-risk*
Lau et al. [26] NSCLC Risk predictor 3 Low-risk, high-risk*
Hsu et al. [30] NSCLC Risk predictor 4 Low-risk, high-risk*

A Origin of the signature. AC: adenocarcinoma, NSCLC: NSCLC.
B Explicit details on classification procedures are described in Supplementary Methods. GEP: Gene expression phenotype 
signature. 
* Denoted as high-risk / poor outcome group(s) in original studies.
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groups, often showing >70% overlap. For remaining 
classes, less agreement compared to the two-class case 
was observed (compare Figure 3A and 3B).

Next, we compared classification results of the 
different lung cancer signatures with the breast cancer 
derived proliferation signature, with the aim to investigate 
the agreement between lung cancer subtype and risk 
prediction groups with a classification based solely on 
expression of proliferation-related genes derived from 
another tumor disease. Notably, a clear agreement of 
the lung adenocarcinoma classifications with the breast 
cancer proliferation classification was observed (Figure 
2B), suggesting that the main transcriptional driver of 
classification for the lung signatures is associated with 

expression of proliferation-related genes. Specifically, 
low-risk groups seem to be characterized by lower 
expression of proliferation-related genes than in the poor 
outcome / high-risk groups. This was further substantiated 
in the comprehensive signature pair classification overlap 
analysis, demonstrating a powerful consistency in 
classification into groups of better or worse prognosis with 
the expression of proliferation-related genes (the breast 
cancer proliferation classification) (Figure 3A). Finally, we 
compared the expression of the breast cancer proliferation 
signature to that of other reported proliferation signatures, 
like the CIN70 by Carter et al. [32], and the cell cycle 
progression (CCP) signature originally derived in prostate 
cancer [33] and later validated in lung adenocarcinoma 

Figure 1: Association of gene expression signature classifications with patient outcome in lung adenocarcinoma. 
2395 tumors across 17 cohorts were classified according to 18 different gene expression phenotypes or risk predictors. Association of 
classifications with patient outcome was investigated using univariate analysis with overall survival as the endpoint and included patients 
of all stages of disease. Bars for each cohort and subtype represent hazard ratios with 95% confidence intervals. For Wilkerson et al. 
[5], phenotype analysis was restricted to TRU versus non-TRU classified tumors (merged group of Proximal-proliferative and Proximal-
inflammatory). For other multiclass signatures, such as Garber et al. [8], hazard ratios are shown for the subtype with the most prominent 
poor outcome association. With the exception of the Staaf et al. AC2 subgroup and the Bhattacharjee et al. C1 subgroup, all subtypes 
displayed represent high-risk groups from the original studies. For all subtypes, the reference group is the original low-risk group (see Table 
2). † indicates a significant p-value (p < 0.05) in the univariate analysis. TRU: terminal respiratory unit, DASC: distal airway stem cell.
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Figure 2: Consensus of gene expression phenotype and risk predictor classification of lung adenocarcinoma. 2395 tumors 
across 17 cohorts were classified according to 18 different lung cancer gene expression phenotypes (GEPs) and risk predictor (RPs) models 
and one breast cancer proliferation signature. A. Proportions of each lung cancer GEP and RP subtype are shown across the 17 cohorts. 
Bars represent the mean of subtype proportions for each signature with standard deviations across all cohorts. A low standard deviation 
implies that similar subtype proportions were observed across cohorts. Subtype names, as in the original reference, are shown along the 
top of the panel. B. Consensus of GEP and RP classifications for the total cohort. Signature subtypes (right legend) were overlaid for each 
signature (row) across samples (columns), and ordered according to the Wilkerson et al. [5] signature as an illustration of classifications 
performed. Classification according to a breast cancer proliferation signature is also shown to demonstrate agreement of classification with 
a division based on expression of proliferation-related genes. A * indicates a good outcome group as reported in the original reference. 
C. Corresponding expression of metagene scores from five gene expression metagenes representing different biological processes [35] in 
the total cohort. Sample ordering (columns) corresponds to panel B, with the top bar representing the Wilkerson et al. classification for 
comparison with panel B. Metagene scores are shown as Z-transformed values. Transformation was performed within each cohort prior to 
combining all samples. ECM: extra cellular matrix.
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[34]. For the 2395 samples we observed Pearson 
correlations ≥0.97 between the three signature scores, 
implying that any associations made for the breast 
signature is also valid for the other signatures.

Taken together, these results suggest that 
investigated signatures, especially if derived in 
adenocarcinoma cohorts, generally agree on whether an 
adenocarcinoma should be classified as low-risk or not, 
coinciding with its expression of proliferation-related 
genes.

Underlying transcriptional processes behind GEP 
and RP consensus

To compare the analyzed gene signatures we 
first analyzed the overlap of unique genes between the 
signatures (Supplementary Figure S2). This comparison 
demonstrated a low gene overlap between the majority 
of signature combinations (< 25%), excluding Shedden 
et al. [11] (the largest signature, n = 9591 genes), and 
a stronger overlap found between the two Planck et al. 
[13] signatures with the Park et al. [21] and Tang et al. 
[28] signatures (50-75%), and between Park et al. and 
Wilkerson et al. To substantiate our hypothesis that 
proliferation is a key component in the consensus between 
the GEP and RP signatures, and is a likely explanation 
of their association with prognosis, we analyzed the 
expression of five lung cancer derived transcriptional 
metagenes representing different biological processes [35], 
versus the signature classifications in the 2395 samples. 
This analysis demonstrated that tumors classified as low-
risk across the GEP and RP signatures typically show 
less expression of proliferation-related genes (Figure 2C 
compared with 2B). However, as we recently demonstrated 
in our analysis of the Wilkerson et al. GEP signature [18], 
expression of proliferation-related genes, approximated 
by the proliferation metagene, resembles a unimodal 
distribution of continuous values in adenocarcinoma 
making associations with GEP and RP subtypes dependent 
on arbitrary cut-offs. 

We next asked how specific gene signatures (or 
reported subcomponents of gene signatures) from all 
gene signature based GEPs (n = 7, excluding centroid-
based signatures) and all RPs (n = 7) correlated with 
the five metagenes [4, 8, 9, 11, 21, 26, 28-31, 36-39] 
(Figure 4A and 4B). The strongest positive correlations 
for the analyzed gene signatures were observed for 
the proliferation metagene. For RP signatures this 
positive correlation means that an increasing risk 
score correlate with an increasing proliferation. The 
strongest negative correlations were observed for the 
Napsin A / surfactant metagene, which by itself is anti-
correlated with the proliferation metagene (see ref [35]). 
Moreover, all analyzed GEP signatures seemed to carry 
a proliferation-related component, and all RPs, except 

Hsu et al. [30], showed correlation between risk scores 
and the proliferation metagene (Figure 4B). While a few 
additional strong correlations with other metagenes were 
observed, such as the correlation between the Shibata et 
al. [38] signature and the basal / squamous metagene, 
the fit of a linear regression model (represented by the 
R2 value) for these correlations was notably poorer than 
for the proliferation and Napsin A / surfactant metagene 
correlations (Figures 4C and Supplementary Figure S3). 
This indicates that the associations for these relationships 
are less linear than for the proliferation metagene, and that 
the observed agreement between different GEPs and RPs 
can be explained by, at least one, common transcriptional 
program, i.e., expression of proliferation-related genes. 

Molecular and clinicopathological characteristics 
of GEP consensus groups

To investigate if our consensus analysis of different 
GEP classifiers could refine existing transcriptional 
adenocarcinoma subgroups regarding important 
clinicopathological and mutational variables, we defined 
consensus groups comprising of samples with high 
classification agreement across multiple GEP signatures. 
Due to the focus on patient outcome for these new/
refined groups we excluded the AC1/AC2 classifier by 
Staaf et al. [12], as this signature was not associated 
with overall survival in the total cohort. Based on rules 
of subtype classification relationships for the remaining 
10 GEP classifiers and the assumption of three groups 
(CONSENSUS_1, CONSENSUS_2, CONSENSUS_3), 
we identified samples (n = 1727 in total, 72%) with 
consensus for ≥8 classifiers (Figure 5A and Supplementary 
Methods). Division into three consensus groups implies 
additional stratification of analyzed two-class signatures. 
This stratification divided the high-risk groups in these 
signatures into two subgroups (see legend Figure 5A). A 
high degree of consistency was observed in the fraction 
of cases assigned to each consensus group within an 
individual cohort, with an overall median fraction across 
all cohorts of 47.5% for CONSENSUS_1 (standard 
deviation (SD) = 4%, interquartile range (IQR) = 4.8%), 
22.5% for CONSENSUS_2 (SD = 5.7%, IQR = 6.4%), 
and 30.5% for CONSENSUS_3 (SD = 5.9%, IQR = 
7.2%). 

The consensus groups were characterized by 
notable differences in expression of the five metagenes 
representing different biological processes [35], consistent 
with the previous analyses (Figure 5B). Specifically, the 
CONSENSUS_1 group was characterized by lower 
expression of proliferation-related genes and higher 
expression of Napsin A / surfactant genes, while the 
opposite pattern occurred in the CONSENSUS_2 and 
CONSENSUS_3 groups. Moreover, CONSENSUS_3 
was characterized by higher expression of stromal / ECM, 
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Figure 3: Classification agreement between GEP and RP signatures across 2395 adenocarcinomas. A. Classification 
overlap analysis for 18 GEP and RP signatures transformed into two classes of putative “good” and “poor” outcome. For original two-
class signatures the annotations in Figure 2B was used for the 2395 patients. For three- or four-class signatures the “good” class was 
the class originally reported as having best patient outcome (see Figure 2B), while the “poor” class comprised of the remaining classes. 
Colored cells indicate the agreement in classification (%) between pairs of signatures based on a 2x2 contingency table. B. Agreement in 
classification between three- and four class signatures specifically. Each colored cell displays a percentage of agreement between signature 
pairs. Frequencies are calculated column-wise, i.e. the sum of patients with a column class is used as denominator for each signature pair 
comparison. E.g. nearly all (>85%) C2 classified cases by Bhattacharjee et al. [31] (column), are classified as proximal-proliferative, (PP), 
by Wilkerson et al. [5] (row). Reported good outcome / low-risk groups are highlighted.
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Figure 4: Association of gene expression phenotypes and risk predictor scores with transcriptional metagenes 
representing different biological processes. A. Example of correlation between expression of a GEP signature metagene (Cheung et 
al. [37]) versus the expression of the proliferation metagene from Karlsson et al. [35] (left), and correlation between risk scores from a lung 
adenocarcinoma derived RP signature (Tang et al. [28]) and the proliferation metagene (right) across the 2395 adenocarcinomas (points). 
Red line shows the fit of a linear regression model, together with the calculated R2 value. Displayed data values represent Z-transformed 
expression values or risk scores to account for variability across cohorts. B. Pearson correlation of gene expression signatures with 
expression of five lung cancer transcriptional metagenes representing different biological processes [35] across 2395 adenocarcinomas in 
17 cohorts. For each cohort and signature / process, a metagene expression value was calculated for the signature or process as described 
in Supplementary Methods and transformed to a Z-score. For risk predictors, risk scores were Z-transformed. Pearson correlation was 
calculated for the total cohort for each gene signature / predictor versus the biological processes. Some gene signatures are comprised of 
multiple subset signatures from the original studies. C. The fit (represented by the the R2 value) of a linear regression of Z-score values 
from gene signatures versus the biological processes, as exemplified in panel A, shows the strength of the linear relationship between 
signatures (or subcomponents of signatures) and expression of metagenes. ECM: extra cellular matrix.
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Figure 5: Characteristics of consensus samples across lung adenocarcinoma gene expression phenotypes. A. Definition 
of three consensus groups across 10 reported lung adenocarcinoma GEP signatures. Rows represent individual signatures and columns 
represent samples. Consensus groups (bottom row) were defined as specified in the figure, and required a consensus classification in 
≥8 of the 10 signatures. In total, 72% (n = 1727) of samples in the total cohort were assigned to a consensus group. B. Corresponding 
expression of metagene scores from five expression metagenes representing different biological processes [35]. Sample ordering (columns) 
corresponds to that shown in panel A. Metagene scores are shown as Z-transformed values. Z-score transformation was performed within 
each cohort prior to combining all samples. The top bar indicates the consensus groups according to that shown in panel A. C. Distribution 
of tumor stage (data for n = 1545 cases), age (n = 1567 cases), smoking status (n = 1374 cases), gender (n = 1646 cases), EGFR mutations 
(n = 822 cases with mutation status yes/no), and KRAS mutations (n = 885 cases with mutation status yes/no) for the three consensus 
groups. D. Kaplan-Meier survival plots of consensus groups for all consensus cases using overall survival (left) or distant metastasis-free 
survival (DMFS) (right) as endpoints. E. Kaplan-Meier survival plots of consensus groups for consensus cases with stage I disease using 
overall survival (left) or DMFS (right) as endpoints. TRU: terminal respiratory unit, PP: Proximal-proliferative, PI: Proximal-inflammatory, 
DASC: distal airway stem cell, NS: never-smoker, S: smoker, F: female, M: male.
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immune response associated genes and basal / squamous 
like genes. Finally, CONSENSUS_2 had generally the 
lowest expression of immune response associated genes 
and stromal / ECM associated genes. These findings 
suggest that CONSENSUS_2 tumors may harbor less, and 
CONSENSUS_3 more, infiltrating non-malignant cells, 
as the expression of these immune response associated 
and stromal / ECM metagenes typically correlate 
with infiltration of lymphocytic and stromal cells. To 
substantiate this hypothesis we analyzed pathological 
tumor purity estimates for 158 included cases from The 
Cancer Genome Atlas (TCGA) study [14]. Accordingly, 
CONSENSUS_3 samples showed lower tumor purity 
estimates than the other groups (Kruskal-Wallis test p = 
0.001). 

Next, we examined the consensus groups for 
trends in clinicopathological characteristics. The 
CONSENSUS_1 group showed an enrichment of lower 
stage tumors (Chi-square test p = 1x10-20), never-smokers 
(p = 9x10-22), female patients (p = 3x10-14), and EGFR 
mutations (p = 2x10-12) (Figure 5C). While the enrichment 
of EGFR mutations in a subgroup comprising of many 
never-smokers is in line with the literature, the observed 
frequency of ~40% EGFR mutations in CONSENSUS_1 
is partly driven (skewed) by a high mutation rate in 
two included cohorts, Okayama et al. [40] and Fouret 
et al. [25] (56% and 49% mutation rate, respectively). 
However, for the 158 cases included in the TCGA study 
[14] nearly 75% of CONSENSUS_1 cases were referred 
to as oncogene-positive in the TCGA study, meaning 
that they harbored a known activating RTK/RAS/RAF 
pathway somatic event. These associations suggest that 
the CONSENSUS_1 tumors could be more dependent 
on oncogene activation than tumors in the other groups. 
Together, the characteristics of the CONSENSUS_1 
group are well in line with a proposed TRU-like subtype 
of adenocarcinoma reported previously (Chi-square test p 
= 0.005) [4, 5, 14].

The CONSENSUS_2 group is characterized by 
slightly younger patients (Kruskal-Wallis test p = 2x10-5) 
and a higher frequency of KRAS mutations (Chi-square 
test p = 0.0007) (Figure 5C). Summarized mutational 
data obtained from the TCGA study [14] and Karlsson 
et al. [41] revealed that CONSENSUS_2 and 3 cases 
showed significantly more mutations overall (Kruskal-
Wallis test p = 2x10-11), more nonsilent mutations per mb 
sequence (Kruskal-Wallis test p = 5x10-5), and a higher 
frequency of C>A mutation transversions (a smoking-
related mutation signature [42], Kruskal-Wallis test p= 
8x10-5) than CONSENSUS_1 cases. Together, these 
mutational characteristics are consistent with a higher 
fraction of smokers in the CONSENSUS_2 and 3 groups 
[14, 42], again consistent with previous reports about the 
characteristics of a non-TRU like adenocarcinoma subtype 
[4, 5, 14].

Regarding patient outcome, the main difference 

was between CONSENSUS_1 versus 2 and 3, with the 
former representing a low-risk group and the latter two 
representing high-risk groups in the total cohort when 
using either overall survival or distant metastasis-free 
survival as endpoints (Figure 5D). The same results were 
observed also for patients with stage I disease specifically 
(Figure 5E). No significant difference in overall survival 
between CONSENSUS_2 and CONSENSUS_3 cases 
was observed in the total cohort (log-rank p = 0.74), or 
in stage I disease specifically (p = 0.43). This finding is 
consistent with similar findings of no difference in patient 
survival between proximal-proliferative and proximal 
inflammatory subtypes based on the Wilkerson classifier 
(see [18]).

In summary, these analyses suggest that while 
multiple subgroups defined by consensus-classified 
cases across multiple GEP signatures to some extent 
share clinicopathological traits and prognosis, a relevant 
prognostic division can be made already between a TRU-
like and a non-TRU like subgroup.

dIscussIon

Improved molecular characterization and 
stratification of lung adenocarcinoma is important for 
prognostication and identification of new predictors of 
treatment response in order to improve patient outcome. 
Although gene expression profiling studies since more 
than a decade have identified numerous molecular 
phenotypes and prognostic and/or chemotherapy 
predictive signatures in adenocarcinoma (see e.g. [15, 16] 
for a review), a thorough consensus analysis of a large 
number of reported GEP and RP signatures has not been 
performed. We performed a comprehensive multicohort 
pan-signature analysis of 18 GEP and RP signatures 
in 2395 patients, showing that: i) the majority of 
signatures represent a relevant prognostic division of lung 
adenocarcinoma based on original classification schemes, 
ii) signatures generally display a low gene overlap in line 
with previous reports (see, e.g., [9, 26, 43]), iii) there 
is overall good agreement between many signatures in 
defining a low-risk group of patients with molecular and 
clinicopathological characteristics similar to those reported 
for TRU-like adenocarcinoma, iv) signatures derived in 
adenocarcinoma generally display better classification 
agreement than signatures derived in mixed NSCLC 
cohorts, v) expression of proliferation-related genes is 
one of the key components behind prognostic associations 
and classification agreement in almost all GEP and 
RP signatures (especially for adenocarcinoma derived 
signatures), and vi) a low-risk TRU and a high-risk non-
TRU division of adenocarcinoma seems to be the most 
prognostically relevant division by molecular phenotype 
based on consensus agreement between signatures. Taken 
together, our results provide increased understanding of 
GEP and RP gene signatures performance, consensus, and 
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prognostic values in lung adenocarcinoma.
Comparison of classifications from the 18 GEPs and 

RPs demonstrated significant agreement between many 
signatures, especially in assignment of cases to low-risk 
subgroups (Figures 2B and 3). Cases classified as low-
risk by different GEP and RP signatures showed lower 
expression of proliferation-related genes, and coincided 
well with a 50/50% split of cases by a breast cancer 
derived proliferation score, or as we also demonstrated 
with proliferation signatures derived in other diseases 
[32, 33]. Moreover, nearly all investigated signatures/
classifiers included a proliferation component or correlated 
strongly with the expression of proliferation-related genes 
(Figure 4), despite a generally low gene signature overlap 
(Supplementary Figure S2). The latter observation is in 
perfect agreement with previous reports in lung cancer [9, 
26, 43] and analysis of published and random prognostic 
gene signatures in breast cancer [44]. Together, these 
results pinpoint that proliferation is the main driving 
force behind this major split of subtype classifications 
in lung adenocarcinoma, affecting also patient outcome. 
Provocatively, this conclusion also suggests that random 
gene signatures with high prognostic value can be defined 
in lung adenocarcinoma, as long as the signature genes 
correlate with expression of a few proliferation-related 
genes, similar to what has been described in breast cancer 
[44]. Our identification of a low-risk consensus group 
across 10 different GEP signatures further show that low-
risk adenocarcinomas typically have higher expression 
of surfactant proteins and Napsin A, and are associated 
with clinicopathological characteristics such as lower 
tumor stage, never-smoking, female gender and oncogene 
activation (including EGFR mutations) (Figure 5). It 
should be noted that while our identification of consensus 
groups across many different signatures may render 
general patient groups that are potentially a bit more 
robust compared to individual classifiers, this analysis is 
still affected by the problems of data centering noted by 
us and others [18, 19, 27] (as it is a mere summarization 
of individual classifications). Overall, these results are in 
excellent agreement with the literature, and the hypothesis 
by Yatabe et al. [20] of a main division of adenocarcinoma 
into a TRU-like subtype and a non-TRU subgroup with a 
worse patient outcome, a terminology also used for the 
subtypes defined by the Wilkerson et al. [14] and Takeuchi 
et al. [4] GEP signatures. However, whether reported GEP 
and RP signatures also represent significant predictors 
of prognosis or treatment response in patients with non-
operable disease (accounting for 66-75% of all lung cancer 
cases) remains to be determined, partly because of the 
scarcity of gene expression studies based on advanced 
stage lung adenocarcinoma.

Less agreement was observed for non-TRU samples 
classified to different high-risk subtypes by GEP [5, 8, 
31] and RP [11, 29] classifiers with >2 subtypes/classes 
(Figures 2B, 3 and 5A). For the GEP signatures, the 

poorer agreement may be due to that other (potentially 
signature specific) expression programs, besides a 
generally higher expression of proliferation-related genes, 
define non-TRU subtypes in these signatures. For the two 
RP signatures, subgroups are formed based on arbitrary 
cut-offs in a continuous variable, i.e. the risk score, or 
by association; expression of proliferation-related genes. 
Consequently, selection of different (and more optimized) 
quantile cut-offs could easily improve overlap with 
different GEP signatures, and potentially also improve the 
prognostic association. Interestingly, while our consensus 
analysis defined groups of adenocarcinomas with high 
classification agreement across high-risk GEP subtypes, 
these consensus groups did not differ in outcome, 
consistent with our recent findings for the Wilkerson et al. 
non-TRU subtypes specifically [18]. While not specifically 
addressed in this study, the question of the number and 
nature of reproducible gene expression phenotypes in lung 
adenocarcinoma clearly remains to be resolved.

The GEP signatures in the current study have 
been derived through different types of unsupervised 
analyses (typically hierarchical clustering of genes with 
large differences in expression across analyzed tumors). 
Ideally, this type of analysis defines molecular subgroups 
based on distinct transcriptional programs, thereby making 
the molecular subgroups powerful explainers of the 
observed transcriptional variation across sets of tumors. 
Unsupervised clustering of mRNA expression levels in 
NSCLC tumors represents a powerful example, resolving 
the histological subgroups as different transcriptional 
clusters (see e.g. [8, 22, 24, 31]). Acknowledging the 
type of analyses performed in the original GEP studies 
has two implications for the broader interpretation 
of our findings. First, it may provide insight into the 
somewhat poorer agreement and prognostic performance 
we observed for RP signatures originally developed 
in NSCLC cohorts [9, 26, 30] compared to signatures 
derived strictly in adenocarcinoma. Specifically, NSCLC 
derived RP signatures may not capture the dominating 
prognostic transcriptional component in adenocarcinoma 
(proliferation) equally well as signatures derived strictly 
in adenocarcinoma. This is because training and feature 
selection (genes whose expression are associated with 
patient outcome by, e.g., regression analysis) is performed 
in cohorts with mixed transcriptional characteristics 
(different tumor histologies) driving the feature selection 
towards different gene sets. This hypothesis is supported 
by: i) several adenocarcinoma derived RPs that have 
a strong proliferative component/association are not 
prognostic in squamous cell carcinoma (see e.g. [28, 
29, 45]), ii) reports of overall higher expression of 
proliferation-related genes in squamous cell carcinoma 
than adenocarcinoma [13], and iii) weaker associations 
of risk scores from NSCLC derived signatures with 
expression of proliferation-related genes (Figure 4). 
Consequently, prognostic gene signatures may be more 
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successful if derived and applied separately within 
histological subtypes. Second, while our identified 
consensus groups across different GEP signatures were 
associated with key clinicopathological and molecular 
variables in adenocarcinoma, such as smoking status, 
tumor stage, gender, and mutational patterns of EGFR and 
KRAS, we observed heterogeneity for all these traits across 
consensus groups (Figure 5). This observed heterogeneity 
suggests that these variables do not represent/define 
strong independent gene expression phenotypes, and 
therefore only explain part of the general transcriptional 
heterogeneity in adenocarcinoma (as they would 
otherwise have been detected as their own molecular 
subtypes). Importantly, this hypothesis is consistent with 
findings in gene expression studies performed on specific 
clinicopathological (smoking) or mutation subgroups 
(EGFR/KRAS) in lung adenocarcinoma [41, 46, 47].

  We observed association with patient outcome 
for 16 out of the 18 signatures studied in the total cohort 
based on original signature classification schemes. While 
the approach used in the present study provides an 
independent implementation and multicohort validation 
of several GEP and RP signatures in a large number 
of retrospective cohorts, the design does not enable a 
decision on which is the best prognostic signature, as exact 
implementation and reproducibility of some signature 
classifiers was difficult (as also noted by Subramanian 
et al. [17]). In addition, some classifiers were derived 
from and/or trained in certain cohorts also included in 
this study, which compromised cohort independence. 
Moreover, we acknowledge that additional signatures 
could have been investigated. However, we hypothesize 
that many such signatures, especially those with strong 
prognostic power in lung adenocarcinoma and including 
a proliferative component, or at least correlating with 
expression of proliferation-related genes, would also 
agree on the definition of a low-risk patient group similar 
to the signatures in the current study. Across individual 
cohorts we observed considerable variation regarding 
prognostic value for all investigated signatures (Figure 
1). Several explanations are conceivable, including 
cohort or patient characteristics, such as small cohort 
sizes, potential treatment differences, insufficient patient 
follow-up time, and/or biased sample selection. However, 
both the variation in prognostic value across cohorts, 
and the low variability in subtype proportions across 
studied cohorts (Figure 2A), is strikingly consistent with 
our recent study on the prognostic and chemotherapy 
predictive value of the Wilkerson et al. GEP signature 
specifically [18]. In that study, we demonstrated that the 
methodological set-up of the classifier itself was biased 
towards keeping the proportions of the subtypes similar 
in each cohort, more or less irrespectively of the sample 
composition [18]. Similar bias in estimation of risk 
prediction scores for the Zhu et al. [9] RP signature was 
recently described by Qi et al. [19], stating that this type of 

signature is unsuitable for direct application to individual 
samples. Notably, the majority of current RP signatures 
in lung adenocarcinoma performs risk stratification in a 
similar manner, as demonstrated in Figure 2A. Moreover, 
the instability of conventional hierarchical clustering of 
microarray data to gene centering and variation in linkage 
and distance metric methods is well known. Considering 
all these different pieces of information, we believe the 
present study provides strong evidence for extending the 
critical findings about classifier robustness from previous 
single signature studies into a general context of current 
gene signatures in lung adenocarcinoma, as well as other 
histological lung cancer groups. Specifically, we believe 
the greatest issue with current prognostic and predictive 
gene signatures lies in the inability to predict samples truly 
independent of each other, which causes risk assessments 
to be cohort dependent. As demonstrated previously by 
both us [18] and Qi et al. [19], classification of cohorts 
with skewed sample compositions already at baseline can 
infer proportionally similar high-risk classification calls in 
a cohort with low intrinsic patient risk as in a intrinsically 
high-risk patient cohort (see Qi et al. for an example [19]). 
Thus, in a general context it matters less which GEP or 
RP signature that is being used, as they all more or less 
identify a common group of low-risk adenocarcinoma 
patients (especially in the two-class setting). However, 
on the individual patient level risk predictions appear 
more variable between signatures (caused by for instance 
different methodological dependencies/limitations and 
arbitrary non-optimized cut-offs), and, importantly, 
may actually be disconnected from the intrinsic patient 
risk. Importantly, these findings likely also apply to 
forthcoming SSPs in lung cancer that do not address the 
main classification problem, i.e., to be able to predict cases 
truly independent of other tumors. Taken together, these 
critical limitations question the current signatures clinical 
usefulness, and calls for development of new signatures 
and algorithms to circumvent the problem.

While different GEP and RP signatures themselves 
have been reported to provide independent prognostic 
information in addition to current clinical variables 
(mainly tumor stage), it has been shown in both lung 
cancer and other tumor malignancies that mixed risk 
predictors may have even stronger prognostic value [11, 
48, 49]. As a synopsis of our findings, our results suggest 
that an optimal RP signature for lung adenocarcinoma 
should be: i) histology specific, ii) constructed around 
a proxy estimate of proliferation (a continuous value to 
accommodate the unimodal distribution) in combination 
with clinicopathological variables like tumor stage, 
iii) derived and validated in concordance with a 
proposed baseline set of guidelines for gene signature 
development, validation, and reporting (see ref [17]), 
and iv) independent from other tumors in a cohort in 
terms of sample predictions (i.e., a true single sample 
predictor). Notably, our suggestion of histology specific 
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RP signatures appearing more favorable is consistent 
with the current therapeutic strategy for treatment of lung 
cancer, which accounts for histology due to different 
therapeutic responses and treatment regimens between 
histological subtypes. In addition to the points made 
above, a clinically useful gene signature needs to be: 
i) implementable in clinical laboratories according to 
regulatory body approved protocols such as the Clinical 
Laboratory Improvement Amendments (CLIA), which 
may favor focused gene expression methods able to 
analyze formalin-fixed and paraffin-embedded (FFPE) 
tissue, and ii) preferably also predictive of chemotherapy 
response in order to guide adjuvant treatment (see [16] for 
discussion). The latter point is highly relevant in operable 
disease, potentially requiring a different approach in RP 
signature development. For instance, it may be clinically 
more relevant to optimize RP cut-offs to identify a smaller 
group of patients with very low risk of recurrence (e.g., a 
five year 90-95% recurrence-free survival) that could be 
spared adjuvant chemotherapy, instead of using arbitrary 
cut-offs that maximizes hazard ratio scores or separation of 
Kaplan-Meier survival curves. Such signature optimization 
could also take into account existing clinicopathological 
variables, for instance tumor size, age, and stage, to further 
enhance signature performance, similar to the commercial 
Prosigna assay in breast cancer (see e.g. ref [50]). 

In summary, by providing this consensus of current 
GEPs and RPs in lung adenocarcinoma we have connected 
molecular phenotypes, risk predictions, patient outcome 
and underlying transcriptional programs of the different 
classifier types not previously demonstrated. Our results 
provide a general insight into the nature and agreement of 
GEP and RP signatures in the disease, and their prognostic 
value. 

MAterIAls And Methods

Gene expression cohorts

Published transcriptional profiles from 17 cohorts 
comprising 2395 lung adenocarcinomas with available 
patient outcome data were collected from authors’ 
websites or public repositories as described in the 
original studies and summarized as described by Ringnér 
et al. [18]. Included studies were performed in both 
western and Asian countries, were limited to surgically 
resected patients, and were reported since 2001. Overall 
patient characteristics are summarized in Table 1, and 
available in detail for each cohort in Supplementary 
Table S1. Concerning chemotherapy, four cohorts had 
adjuvant chemotherapy data (treatment / no treatment) 
available, including 322 cases from Shedden et al. [11] 
(chemotherapy type not explicitly specified), 133 cases 
from Sato et al. [51] (UT Lung SPORE randomized trial, 

combination of mainly carboplatin plus taxanes, see also 
Supplementary Methods), 85 cases from Fouret et al. [25] 
(cisplatin-based chemotherapy), and 28 adenocarcinomas 
from Zhu et al. [9] (JBR.10 randomized trial, combination 
of cisplatin/vinorelbine chemotherapy) as outlined by 
Ringnér et al. [18]. Specific data on treatment cycles, 
treatment duration, and chemotherapy doses were not 
available. In total, 562 patients from these cohorts had 
associated outcome data (overall survival), and 176 of 
these patients received adjuvant chemotherapy (Table 1).

Gene expression analyses

Affymetrix and non-Affymetrix gene expression 
cohorts were normalized on a per cohort basis as 
described by Ringnér et al. [18]. Tumors were classified 
according to 18 different GEPs or RPs [4, 5, 8, 9, 11-13, 
21, 26, 28-31, 36-39] derived from microarray analysis 
of lung adenocarcinoma or NSCLC cohorts, using 
reported original classification schemes or consensus 
clustering [52] of gene signatures on a per cohort basis 
if not otherwise specified (Table 2, Supplementary 
Table S1, and Supplementary Methods). Specifically, 
consensus clustering was used when a GEP SSP was 
not readily available from the original studies. The 
typical case was when a GEP signature comprised 
of only a list of significant genes defining the GEP 
subtypes. Consensus clustering was chosen to improve 
the robustness of the classifications with respect to 
sampling variability by using repeated subsampling and 
clustering to provide quantitative evidence of the cluster 
stability. To independently assess the connection between 
classifications by the lung cancer derived signatures and 
classification by expression of proliferation-related genes 
only, we derived a 155-gene breast cancer proliferation 
signature as described in Fredlund et al. [53] using the 
online GOBO tool [54], and classified all tumors as low-
proliferative (average expression of the 155-genes < 
median) or high-proliferative. Tumors were also scored 
according to five reported expression metagenes in lung 
cancer representing different biological processes [35]; 
proliferation, immune response, basal / squamous, stroma 
/ extra cellular matrix (ECM), and expression of Napsin 
A / surfactants on a per cohort basis. Here, a metagene 
represents a set of genes associated with a specific 
biological process, for which the average expression 
is determined (considering direction of expression for 
individual genes) and taken as a measurement of process 
activity. The purpose of the five metagene scoring was 
to contrast GEP and RP classifications with estimates of 
different biological processes in lung adenocarcinoma, 
not to use them as classification signatures. In addition, 
we calculated similar metagene scores for seven GEP 
signatures [4, 8, 21, 31, 36-38] that were only available as 
gene lists from the original studies to study the correlation 
between these metagene scores and the metagenes 
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representing biological processes. Detailed explanation 
of the classification, metagene construction, and scoring 
procedures used are available in the Supplementary 
Methods. 

Survival analyses

Survival analyses were performed in R using 
the survival package with overall survival or distant 
metastasis-free survival as endpoints. Survival curves 
were compared using Kaplan-Meier estimates and the log-
rank test. Hazard ratios were calculated through univariate 
Cox regression. Due to differences in patient follow-up 
time between cohorts, a five-year censoring was used in 
all analyses.
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