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ABSTRACT
Background: Ulcerative colitis (UC) is a chronic inflammatory bowel disease that 

is associated with an increased risk of colorectal cancer in 8-10 years after disease 
onset. Current colitis treatment strategies do not offer a cure for the disease, but 
only treat the symptoms with limited success and dangerous side-effects. Also, there 
is no preventive treatment for either UC or colorectal cancer. Quinacrine is an anti-
malarial drug with versatile use in the treatment of diseases involving inflammatory 
response such as rheumatoid arthritis and lupus erythematosus. It also has putative 
anti-cancer effect. Quinacrine’s anti-inflammatory, anti-oxidant properties, and anti-
tumorigenic properties make it a potential small molecule preventive agent for both 
UC and associated colorectal cancer. 

Results: There were obvious changes in the CDI, histology, and inflammatory load 
in quinacrine-treated groups in a dose and time dependent manner in both models of 
UC, induced by chemical or haptenating agent. 

Methods: We tested quinacrine at two different doses as a colitis treatment agent 
in two mouse models of UC - the dextran sulfate sodium and oxazolone. The clinical 
disease index (CDI), histological changes of the colon, levels of inflammatory markers 
(Cox-2, iNOS, p53) and overall health vitals were evaluated.

Conclusions: We demonstrate that quinacrine successfully suppresses colitis 
without any indication of toxicity or side-effects in two mouse models of UC.

INTRODUCTION

Ulcerative colitis (UC) is a chronic disease that 
causes inflammation and ulcers in the colon and the 
rectum. Colorectal cancer is the most serious complication 
of ulcerative colitis [1]. The risk of developing colorectal 
cancer increases after 8-10 years of colitis at a rate 
of 0.5 - 1% for every year of disease duration [2]. The 
severity of the disease also has a significant impact on 
the transformation of the disease into cancer [3]. Current 
medications only help in alleviating the symptoms, but for 
the most part results are modest and there are dangerous 
side effects. 

Quinacrine (IUPAC name 4-N-(6-chloro-2-
methoxyacridin-9-yl)-1-N,1-N-diethylpentane-1,4-

diamine), approved by the FDA, is a heterocyclic three-
ring compound that was widely used during World War 
II as an anti-malarial agent. Over the last half century, it 
has been used for the treatment of giardiasis, tapeworm 
infestations, and connective tissue diseases, such as 
lupus erythematosus and rheumatoid arthritis [4-8]. 
Mechanistically, it is becoming increasingly apparent 
that quinacrine targets several key players involved in 
inflammation and the inflammation-to-cancer sequence 
[9]. For example, quinacrine activates p53 and superoxide 
dismutase, and inhibits NF-κB and phospholipase A2 
[10-15]. Anti-cancer properties include the induction of 
apoptosis and cell cycle arrest in cancer cells [14-17], 
as well as the inhibition of Wnt-TCF signaling [18] and 
topoisomerase activity [19]. Quinacrine can also modify 
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the expression of microRNAs involved in carcinogenesis 
[13]. 

Recognizing these anti-cancer and anti-
inflammatory properties of quinacrine, we hypothesized 
that quinacrine can suppress colitis in mice. In this article 
we test this hypothesis in two different mouse models: a 
DSS model, and Oxazolone model of colitis, showing a 
significant decrease in the overall colonic inflammatory 
load in the quinacrine treated animals. 

RESULTS

Quinacrine downregulates iNOS in murine 
macrophages cell line

The cellular levels of nitric oxide (NO) and 
associated reactive nitrogen species (RNS) are driving 
factors of inflammation and cancers associated with 
chronic inflammation [20]. Since quinacrine has putative 
anti-inflammatory properties, we tested its ability to 

affect NO synthesis in vitro, using the ANA-1 murine 
macrophages cell line. Western blot analysis shows that 
pre-incubation of ANA-1 cells with quinacrine effectively 
attenuates the induction of iNOS for up to 24 hours 
(Figure 1A and 1B).

Quinacrine stimulates inflammatory cell apoptosis

We have previously shown that compounds that 
both: (a) suppress iNOS induction in inflammatory cells; 
and (b) induce apoptosis in inflammatory cells in vitro; 
are highly likely to suppress colitis in vivo. We have 
demonstrated this with Resveratrol, American Ginseng, a 
protein arginine deiminase inhibitor, Chlor-Amidine, and 
with a Hexane Fraction of American Ginseng [21-26]. 
Therefore, before testing the efficacy of quinacrine against 
colitis in vivo, we first asked whether quinacrine can 
induce apoptosis in inflammatory cells. Consistent with 
this understanding, Figure 1C and 1D show quinacrine 
induces apoptosis in ANA-1 mouse macrophages.

Figure 1: Quinacrine suppresses the activation of iNOS and induces apoptosis in vitro. ANA-1 mouse macrophages were 
pre-incubated for 12 h with 100 μg/ml of quinacrine B. or a vehicle (DMSO) A. Quinacrine was washed off, and then media containing 
100 μg/ml IFN-γ to stimulate cells were added. Following the indicated incubation time, cells were harvested for protein and examined 
for a response with iNOS being the inflammation marker. The positive control (C+) is ANA-1 cells not exposed to quinacrine (on panel B) 
or vehicle (on panel A) at 24h time point. The negative control (C-) corresponds to the ANA-1 cells exposed to vehicle only at 24h time 
point. GAPDH was probed for the background and loading control. For apoptosis C. D., TK6 lymphoblastoid cells were exposed to vehicle 
(DMSO) (C), or 100 ug/ml quinacrine (D) for 12 h, then assessed for apoptosis by TUNEL labeling. 
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Quinacrine suppresses colitis in DSS mouse model 
in both dose- and time- dependent manner

UC is associated with long lasting inflammation in 
the bowels. Based on our in vitro studies where quinacrine 
suppresses iNOS induction and drives apoptosis of 
inflammatory cells, we have tested it on mice to check if it 
suppressed DSS induced colitis. Quinacrine was given to 
mice ad libitum at the two doses of 50 mg/kg and 10 mg/kg 
equivalent in the water after 1 week exposure to 2% DSS. 
The mice that received no quinacrine treatment showed 
moderate to severe inflammation and mild ulceration with 
a histology score rising gradually over the exposure time 
from 7.8 ± 1.04 at 7 days to 26.2 ± 1.7 at 14 days and to 
27.11 ± 1.6 at 17 days time points. In contrast, although 
colitis did not return to that of the water-only treated 
group, the quinacrine-treated mice demonstrate mild 
inflammation and ulceration at both doses, as reflected by 
histology score of 16.5 ± 3.0 for the quinacrine dose of 10 
mg/kg and 13.1 ± 2.6 for the quinacrine dose of 50 mg/kg 
at the 14 day time point (Figure 3). Interestingly, further 
treatment with quinacrine at a dose of 50 mg/kg reduces 
inflammation score even more - to 9.9 ± 2.2 at 17 days 
time point. Multiple additional end points support this 
conclusion (Table 1). Since mouse colon length decreases 
in an inflamed state, we also used this parameter as a 
measure for inflammation severity. For the DSS-treated 
group, the average colon length was 7.0 ± 0.2 cm at day 
14, and even shorter for the 17 day time point - 6.5 ± 0.2 
cm. In contrast, the average colon length of the DSS + 
Quinacrine group was 8.4 ± 0.3 cm for 10 mg/kg and 
8.6 ± 0.3 cm for 50 mg/kg dosages at 14 days, which is 
reaching the mean colon lengths in the water-alone group 
(9.7 ± 0.3) at the same time point. The average clinical 

disease index (CDI), which reflects overall health status 
of the animals based on observed weight loss, diarrhea 
and hemoccult (blood presence in the stool), clearly shows 
therapeutic effect of quinacrine on colitis progression - 
average CDI of animals, treated with 50mg/kg dose of 
quinacrine for 10 days after colitis onset, reduced more 
than twice, from 8.9 ± 0.1 to 4.0 ± 0.8. Similarly spleen 
volumes and white blood cell counts (reflecting systemic 
inflammation), and body weight recovered with quinacrine 
treatment (Table 1). Overall, these results are consistent 
with the notion that quinacrine suppresses DSS-induced 
colitis in time- and dose- dependent manner. 

Quinacrine suppresses colitis in oxazolone mouse 
model

Although the DSS model of colitis is extremely 
useful in studying the therapeutic effects of small 
molecules against inflammation in the colon, a pitfall is 
that it is a chemically-induced model. Therefore, we have 
tested quinacrine in an alternative model - oxazolone 
model of colitis. We have followed Wirtz et al. protocol 
[27] with some modifications. While the first part of 
the animals were sacrificed in 5 days after oxazolone 
administrations (Oxazolone 5/5 groups), an additional 
dose of oxazolone was administered on day 5 to the 
second cohort of animals, which were also sacrificed in 
5 days after the last oxazolone administration (groups 
Oxazolone 5/10). Similarly to DSS model, quinacrine was 
also given to mice ad libitum at the two doses of 50 mg/
kg and 10 mg/kg equivalent in the water 8 h after an intra-
rectal exposure to oxazolone and continued to the sacrifice 
time point. Mice that did not receive any quinacrine 
treatment developed moderate colitis by experimental 

Table 1: Gross characteristics of treated groups in DSS model.  

Treatment Weight 
change, g

Colon 
Length, cm CDI Spleen, mm3 WBC Count, m/

mm3†
RBC Count, 
b/mm3††

Water 1.6 ± 0.0 9.7 ± 0.3 0.2 ± 0.1 101.5 ± 17.8 7.4 ± 0.4 9.5 ± 0.2
2%  DSS (7 days) -0.4 ± 0.5 8.0 ± 0.2 5.5 ± 0.9* 199.8 ± 19.3 8.9 ± 0.5 10.0 ± 0.2

2%  DSS (14 days) -2.1 ± 0.5 7.0 ± 0.2 6.3 ± 0.1 274.3 ± 35.5 10.6 ± 0.5 8.8 ± 0.2

2%  DSS (17 days) -2.6 ± 0.69 6.5 ± 0.21 8.9 ± 0.1 275.4  ± 14.6 8.6 ± 0.5 8.9 ± 0.2.

2% DSS + 50 mg/kg of 
Quinacrine (14 days) -0.6 ± 0.6 8.6 ± 0.3 4.2 ± 0.3* 152.4 ± 13.2 9.5 ± 0.6 9.18 ± 0.2

2% DSS + 50 mg/kg of 
Quinacrine (17 days) -1.6 ± 0.4 8.2 ± 0.3 4.0 ± 0.8* 162.7 ± 27.1 6.1 ± 0.4 9.3 ± 0.4

2% DSS + 10 mg/kg of 
Quinacrine (14 days) -1.5 ± 0.5 8.4 ± 0.3 4.9 ± 0.8* 163.9 ± 9.7 9.6 ± 0.4 8.57 ± 0.2

Values are group averages ± SE. All values are significantly different from corresponding 2% DSS only and Water groups.
WBC, white blood cells. RBC, Red Blood Cells. † Millions per cubic milliliter of blood.  †† Billions per cubic milliliter of 
blood.
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day 10 with average inflammation score of 20.8 ± 3.4 
(group Oxazolone 5/5), which progressed to a more severe 
state by experimental day 15 as indicated by average 
inflammation score of 28.5 ± 5.6 (group Oxazolone 5/10) 
(Figure 4A). In contrast, quinacrine drastically reduces 
severity of colitis in treated mice, resulting in reduction 
of inflammation scores to 5.4 ± 1.6 and 2.7 ± 0.7 for 50 
mg/kg dose in Oxazolone 5/5 and Oxazolone 5/10 groups, 
correspondingly. The lower 10 mg/kg dose of quinacrine 
was also very effective for short term experimental group 
Oxazolone 5/5, reducing inflammation scores to 5.3 ± 1.7, 
and less, but still effective, in the long term run - 8.1 ± 
1.5 for 10 mg/kg Oxazolone 5/10 groups. The substantial 
suppression of colitis in quinacrine treated mice was also 
reflected in all major parameters including colon length, 
weight change during the experiment, spleen volume and 
CDI (summarized in Table 2). For example, the CDI for 
quinacrine treated mice was almost 7 times lower for the 
dose of 50 mg/kg, and 4 times lower for the dose of 10 
mg/kg for the Oxazolone 5/10 groups. 

Overall, treatment of mice with quinacrine in 
oxazolone model of colitis leads to suppression of colitis 
in both time-and dose dependent manner, similarly to DSS 
model. 

Markers of inflammation and inflammatory stress 
are reduced in quinacrine-treated mice

To further assess the impact of quinacrine on 
inflammatory markers in vivo, we examined Cox-
2, iNOS, and p53 expression in the colon of mice. 
Immunohistochemical staining was accomplished 
by rocking slides using the Antibody AmplifierTM 
(ProHisto, LLC) to ensure even, consistent, sensitive and 
reproducible staining. Figure 2B-2D show quantification 
of each endpoint for DSS model, and 3B-D - for oxazolone 
model. Overall, Cox-2 (Figures 2B, 4B), iNOS (Figures 

2C, 4C), and p53 (Figures 2D, 4D) levels were elevated 
in both models’ mice, with most staining appearing in 
the inflammatory cells. Cox-2 and iNOS staining were 
statistically significantly reduced in the quinacrine-treated 
mice; there was also a trend to decreasing p53 levels. 
Figure 5 shows representative sections of each endpoint 
as indicated. Such results reflect a reduction in the number 
of inflammatory cells (that otherwise are expressing 
these inflammatory markers), and complement our H&E 
histopathology results.

DISCUSSION

UC is a painful disease and the complications 
of increased risk of colorectal cancer only add to the 
distress. Other than surgery, treatment available now can 
only alleviate the symptoms, giving temporary relief, but 
cannot cure the disease. Our search for a novel treatment 
for this disease led us to quinacrine; widely used as anti-
malarial and anti-protozoal drug. Since its discovery for 
use as an anti-parasitic, multiple studies have identified a 
putative anti-inflammatory mechanism for quinacrine [12, 
13, 28]. With colon inflammation as a hallmark of UC, 
we hypothesized that quinacrine can suppress colitis in a 
mouse model of UC. Results we report here are consistent 
with this hypothesis.

We present that quinacrine suppresses the induction 
of iNOS in vitro (Figure 1), and iNOS, Cox-2 and p53 
in vivo in two independent mouse models of colitis 
(Figures 2 and 3). Others have shown that quinacrine 
disrupts additional mediators of inflammation, including 
phospholipase A2, formation of prostaglandins, and 
the arachidonic acid cascade [29, 30]. Also, quinacrine 
inhibits NF-κB, TNFα, and IL-1β [14, 31]. Such results 
give insight into the potential mechanisms of quinacrine 
in suppressing UC. Importantly, anti-TNF therapy is 
a mainstream treatment for patients with moderate to 
severe inflammatory bowel disease [32]. There is also 

Table 2: Gross characteristics of treated groups in Oxazolone model.  

Treatment Weight change, g Colon Length, 
cm CDI Spleen, mm3

Water (5 days) 0.5 ± 0.1 8.9 ± 0.8 0.2 ± 0.2 141.5 ± 16.1
Water (10 days) 1.6± 0.3 9.7 ± 0.3 0.3 ± 0.1 101.5 ± 6.3
Oxozolon 5/5 -1.7 ± 1.44 7.5 ± 0.2 8.1 ± 0.6 253.2 ± 19.3
Oxozolon 5/10 -2.1 ± 1.0 7.7 ± 0.8 6.7 ± 1.3 192.1 ± 20.7
Oxazolon 5/5 + 10 mg/kg of  Quinacrine 1.41 ± 0.3 8.3 ± 0.3 1.71 ± 0.8 139.8 ± 10.9
Oxazolon 5/5 + 50 mg/kg of Quinacrine -0.5 ± 0.8 9.4 ± 0.4 2.9 ± 1.0 146.7 ± 13.2

Oxazolon 5/10 + 10 mg/kg of Quinacrine 0.1 ± 0.4 8.5 ± 0.3 2.0 ± 0.7 175.4 ± 25.8

Oxazolon 5/10 + 50 mg/kg of Quinacrine -0.5 ± 0.2 9.9 ± 0.3 1.0 ± 0.6 105.9 ± 10.2

Values are group averages ± SE.  Values are significantly different from corresponding Oxazolone only and Water groups.
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molecular evidence that iNOS, Cox-2 and p53 play a 
role in experimental colitis and human colitis [23, 33-
37]. Furthermore, IL-1β has been identified as a target for 
Inflammatory Bowel Disease treatment in multiple studies 
[38-40]. Mechanistically, IL-1β promotes innate immune 
pathology in intestinal inflammation by augmenting 
the recruitment of granulocytes and the accumulation 
and activation of innate lymphoid cells [41]. Therefore, 
suppressing IL-1β signaling has anti-inflammatory 
consequences. Finally, NF-kB signaling in myeloid cell 
appears to be critical for the development of colitis and 
colon cancer associated with colitis [42, 43].

Failure to regulate inflammatory responses in the 
intestinal or colonic mucosa leads to an inappropriate, 
sustained, and injurious immunologic reaction. A key 
mechanism for immune suppression is apoptosis of overly 
aggressive inflammatory cells and defects in inflammatory 
cell apoptosis are likely to be critical in the pathogenesis 
of colitis [44, 45]. We present evidence that quinacrine 
also induces apoptosis in inflammatory cells. In this 
context, others have also shown a pro-apoptotic impact 

of quinacrine on other cell types, including colon cells, 
as an anti-cancer mechanism [14, 17]. Such studies then 
identify an additional potential mechanism of quinacrine 
in the suppression of colon inflammation and the possible 
prevention of colon cancer.

Overall, quinacrine has a rich history as an anti-
protozoal [46], anti-malarial [47], anti-rheumatic [48], 
anti-prion [49], anti-cancer [50], and an intrapleural 
sclerosing agent [50]. Consequently, it has potential 
or proven use against malaria [47], giardiasis [6], 
pneumothorax [51], Creutzfeldt-Jakob disease [52], 
cancer [5, 53], and in particular, female sterilization [50, 
54]. Importantly, it also shows possible efficacy against 
rheumatoid arthritis [55] and lupus [56]. Because of this 
efficacy against arthritis and lupus (autoimmune diseases), 
and the ability of quinacrine to induce inflammatory cell 
apoptosis, it is not that surprising that quinacrine shows 
efficacy against another autoimmune disease: colitis. 
Future studies will determine efficacy in other models 
of colitis, and may eventually show efficacy against 
inflammatory bowel diseases in humans. 

Figure 2: Effects of the quinacrine on the colon histology score, Cox-2 immunoreactivity score, iNOS immunoreactivity 
score, and p53 immunoreactivity score in the DSS model of colitis. Values represent the average scores for each group (N = 10-
17 per group). All values are statistically significantly different (p < 0.05) from the other groups.
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Figure 3: Dynamic of inflammatory score in DSS model of colitis. 

Figure 4: Effects of the quinacrine on the colon histology score, Cox-2 immunoreactivity score, iNOS immunoreactivity 
score, and p53 immunoreactivity score in oxazolone model of colitis. Values represent the average scores for each group (N = 
6-8 per group). All values are statistically significantly different (p < 0.05) from the other groups.
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MATERIALS AND METHODS

Chemicals and reagents

Quinacrine dihydrochloride and oxazolone were 
obtained from Sigma. Dextran sulfate sodium (molecular 
weight, 36,000-50,000) was purchased from MP 
Biomedicals.

Cell lines

ANA-1 murine macrophage cells and TK6 
human lymphoblastoid cells were maintained in 
Dulbecco’s modified Eagle’s media (Hyclone, Logan, 
UT) supplemented with 10% New Born Calf serum 
(NBCS) (Biofluids, Rockville, MD), 2 mM glutamine 
(Biofluids), penicillin (10 U/ml) and streptomycin (10 
μg/ml, Biofluids) in growing suspension culture at 37°C 
in a humidified 5% CO2 atmosphere. Experiments with 
quinacrine were carried out by pre-incubating cells with 
indicated concentrations of quinacrine for specified times. 
Quinacrine was dissolved in DMEM medium (0.1% 
NBCS) containing 1% DMSO. Following a wash step, 
cells were activated by exposure to 100 U/ml interferon 
(IFN)-γ (R&D Systems, Minneapolis, MN). 

Western blot analysis and antibodies

Western blots were carried out as described 
previously [22, 57]. Antibodies used include: iNOS 
(Rabbit polyclonal, diluted 1 in 500, cat#160862; 
Cayman Chemicals, Ann Arbor, MI) and GAPDH (Rabbit 
monoclonal, diluted 1 in 1000, cat# 5174; Cell Signaling 
Technology, Danvers, MA). Horseradish peroxidase-
conjugated anti-mouse and anti-rabbit secondary 
antibodies were purchased from Amersham Biosciences 
(Piscataway, NJ). Both secondary antibodies were diluted 
at 1:2000. All antibodies were diluted in 5% milk/PBST 
(0.1% Tween 20 in PBS). The Western blot signal was 
detected by Pierce ECL Western Blotting Substrate 
(Thermo Scientific, Rockford, IL) and developed onto 
Hyperfilm (GE Healthcare Life Sciences, Pittsburgh, PA). 
Briefly, after treating blot with the chemiluminescent 
substrate (Pierce ECL) for a minute, the blot was exposed 
to the hyperfilm in the dark (Exposure time was optimized 
based on the band signal obtained) and the film was 
developed in an automatic x-ray film processor (Futura 
Classic E automatic x-ray film processor, Fisher Industry, 
Geneva, IL).

Figure 5: Representative histological and IHC sections from treated groups. A. Water; B. 2% DSS; C. 2% DSS + 50 mg/kg 
Quinacrine. 400x magnification.
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Flow-cytometric TUNEL analysis

TUNEL labeling was performed as we have done 
previously [25]. Briefly, TK6 cells were incubated in 0.1% 
NBCS supplemented RPMI-1640 media for 24 hrs. The 
media was changed and the cells were treated with vehicle 
(1% DMSO in PBS) or quinacrine (100 µg/ml). Cells were 
harvested after 12h of treatment and TUNEL assay was 
performed as described by vendor (Roche Diagnostics, 
IN). 

Animals

Male C57BL/6 mice, 8 weeks of age, weighing 20 
to 25g were obtained from The Jackson Laboratories. 
All mice were kept in dedicated and clean animal 
quarters and provided food and water. Care and use of 
animals was overseen by the Animal Resource Facility 
(ARF) of the University of South Carolina under the 
direction of a veterinarian. The ARF is fully accredited 
by the Association for Assessment and Accreditation of 
Laboratory Animal Care International, is registered with 
the U.S. Department of Agriculture (56-R-003) and has 
an active letter of Assurance of Compliance on file at the 
NIH. Animal Care and Use Committee (IACUC) of the 
University of South Carolina approved this study.

The dextran sulfate sodium (DSS) mouse model 
used here is similar to the one used previously by our 
lab [24]. Animals received either water or 2% DSS 
dissolved in water for 7 days. Seven days after the initial 
DSS treatment, and after confirming quinacrine does not 
interact directly with DSS, we initiated a daily regimen 
of 50 mg/kg/ or 10 mg/kg of quinacrine dihydrocloride 
(Sigma) delivered in the drinking water containing 1% 
DMSO (doses were calculated assuming that the average 
adult mouse consumes 5 ml of water daily). DSS treatment 
continued in indicated groups. The doses of quinacrine 
were chosen based on the recommended dose in humans 
for treating systemic lupus erythematosis and giardiasis, 
which is 1.6 mg/kg (100 mg daily, with the assumption 
the average person weighs 60 kg). The animal equivalent 
to 1.6 mg/kg in humans is 20 mg/kg [58]. Other previous 
studies have also used similar doses in mice by gavage 
[59]. Following 7 or 10 days of treatment with quinacrine, 
the mice were sacrificed and the colon was harvested for 
analysis.

For our oxazolone model of UC we used a modified 
protocol generally following the methods described by 
Wirtz et al. [27]. Briefly, on day 0, the skin of the mice was 
treated with either 150 μl of oxazolone (Sigma, St Louis, 
MO) or 150 μl of vehicle control for pre-sensitization. The 
oxazolone presensitization solution is four parts acetone to 
one part olive oil containing 3% (wt/vol) oxazolone. The 
vehicle control was four parts acetone to one part olive 
oil alone. After 5 days, mice were weighed, anesthetized 

and either 100 μl oxazolone solution or 100 μl vehicle 
control was given by rectal administration. The oxazolone 
solution was 1% oxazolone mixed into a 50% ethanol 
solution. The vehicle control was 50% ethanol solution 
alone. Mice were held in a vertical head down position 
for 60 s and then put back into their cages. For long-
term oxazolone treatment group of mice, we performed 
an additional 1% oxazolone rectal administration in 5 
days. Quinacrine treatment was started in 8h after rectal 
oxazolone administration and continued daily. In 5 
days after last 1% oxazolone administration, mice were 
euthanized and colons were processed for pathology and 
immunohistochemistry. 

Quantification of inflammation

The harvested colon was washed in PBS, Swiss-
rolled, fixed in formalin and embedded in paraffin. The 
sections were then stained with hematoxylin and eosin. 
The slides were examined by two individuals in a blind 
fashion and the histopathologic changes were recorded 
using the previously described scoring system [24]. 
Inflammation was scored based on the extent and severity 
of inflammation and also crypt damage of the colonic 
tissue. Histology score was determined by multiplying 
the range of involvement (1 - 4) for each of these three 
histologic features by the percent area of involvement (0 - 
100%) as described previously [24].

Immunohistochemical staining

For immunohistochemical staining, serial sections of 
mouse colon tissues (processed as described above) were 
incubated with antibodies against p53 (Rabbit polyclonal, 
cat# 31333, diluted 1:1000; Abcam, Cambridge, MA), 
cyclooxygenase-2 (Cox-2) (Rabbit polyclonal, cat# 
160126; diluted 1:5000; Cayman Chemical, Ann Arbor, 
MI) or inducible nitric oxide synthase (iNOS) (Rabbit 
Polyclonal, cat# 160862, diluted 1:3500; Cayman 
Chemical, Ann Arbor, MI). To ensure even staining and 
reproducible results, sections were incubated by slow 
rocking overnight in primary antibodies (4°C) using the 
Antibody Amplifier™ (ProHisto, LLC, Columbia, SC). 
Following incubation with primary antibody, sections 
were processed with EnVision+ System-HRP kits 
(DakoCytomation, Carpinteria, CA) according to the kit 
protocol. The chromogen was diaminobenzidene and 
sections were counter stained with 1% methyl green. The 
negative control was carried out without primary antibody 
incubation. 
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Quantification of immunohistochemistry

Immunohistochemistry was quantified as we 
described previously [60], with a slight modification. The 
intensity of the staining was evaluated independently by 
two blinded investigators (A.C. and E.W.). For each tissue 
section, the percentage of positive cells was scored on 
a scale of 0 to 5 for the percentage of tissue stained: 0 
(0% positive cells), 1 (<10%), 2 (11% to 25%), 3 (26% to 
50%), 4 (51% to 80%), or 5 (> 80%). Staining intensity 
was scored on a scale of 0 to 3: 0 - negative staining, 
1 - weak staining, 2 - moderate staining, or 3 - strong 
staining. The two scores were multiplied resulting in an 
immunoreactivity score (IRS) value ranging from 0 to 15.

Quantification of clinical disease index (CDI).

CDI was assessed as described previously [61]. 
Briefly, mice were observed bi-daily for clinical signs 
of disease attributed by weight loss, fecal hemoccult and 
diarrhea during all treatments and till the final day of 
experiment. Ranking for the weight loss was based on the 
following scale: 0 = 0-5% weight loss; 1 = 6-10% weight 
loss; 2 = 11-15% weight loss; 3 = 16-20% weight loss; and 
4 = >20% weight loss. The appearance of diarrhea was 
scored as: 0 = well-formed pellets, 2 = pasty and semi-
formed stools that do not adhere to the anus, 4 = liquid 
stools that adhere to the anus. Appearance of blood in 
the stools was assessed using a hemoccult kit (Beckman 
Coutler) and scored as: 0 = no blood, 2 = positive 
hemoccult, 4 = gross bleeding. The clinical score was 
then determined by totaling the weight loss, hemoccult, 
and diarrhea scores with the highest score being twelve.

Statistical analysis

With inflammation as an end point, a χ2 contingency 
table analysis was done on the DSS and DSS + Quinacrine 
groups to determine if there was a statistically significant 
difference in their inflammation scores. 
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