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Abnormal organization of white matter networks in patients 
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ABSTRACT
Network analysis has been widely used in studying Alzheimer’s disease (AD). 

However, how the white matter network changes in cognitive impaired patients with 
subjective cognitive decline (SCD) (a symptom emerging during early stage of AD) 
and amnestic mild cognitive impairment (aMCI) (a pre-dementia stage of AD) is still 
unclear. Here, structural networks were constructed respectively based on FA and 
FN for 36 normal controls, 21 SCD patients, and 33 aMCI patients by diffusion tensor 
imaging and graph theory. Significantly lower efficiency was found in aMCI patients 
than normal controls (NC). Though not significant, the values in those with SCD were 
intermediate between aMCI and NC. In addition, our results showed significantly 
altered betweenness centrality located in right precuneus, calcarine, putamen, and 
left anterior cingulate in aMCI patients. Furthermore, association was found between 
network metrics and cognitive impairment. Our study suggests that the structural 
network properties might be preserved in SCD stage and disrupted in aMCI stage, 
which may provide novel insights into pathological mechanisms of AD.

INTRODUCTION 

Alzheimer’s disease (AD), a progressive 
neurodegenerative disease characterized by memory or 
other cognitive domain impairments, is the most common 
type of dementia. Mild cognitive impairment (MCI) is 
a transient stage between dementia and normal aging. 
Amnestic MCI (aMCI), a sub-type of MCI, is regarded 
as a prodromal state of AD with a dementia conversion 
rate of 10-15% [1]. Unfortunately, there is no therapeutic 
drug to stop or reverse disease progression, but early 
intervention may slow down the progression of the disease 
[2]. 

Subjective cognitive decline (SCD) refers to those 
who have complains about decline in memory or other 

cognitive functions, but perform normally on cognitive 
screening [3]. Recent investigations also demonstrated 
that SCD patients show a greater risk developing into 
MCI or dementia and could predict AD independently 
[4-7]. Amyloid deposition and cerebrospinal fluid AD 
profile have been found in SCD patients, indicating that 
AD accounts for a major of SCD. Similar structural or 
functional alterations have been found in SCD as AD or 
MCI patients [8-16]. Thus, people with SCD are at higher 
risk of AD and might be important in the study and early 
diagnosis for AD.

Diffusion tensor imaging (DTI) is able to non-
invasively measure white matter integrity and fiber 
connectivity in vivo. Previous studies demonstrated 
widespread white matter impairment (including frontal, 
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parietal, temporal lobes, the corpus callosum) in both MCI 
and SCD patients [12, 17-21]. While a growing body of 
evidence emerging from various techniques suggested that 
AD is a disconnection syndrome and a failure of dynamic 
network [22-24]. Network analysis based on the white 
matter network in AD have suggested that both patients 
and controls present small-world characteristics with high 
local inter-connectivity and small path lengths, but implied 
a weakening small-worldness with either abnormal 
local efficiency or global efficiency in patients [25-30]. 
Disrupted topological properties of structural network 
was also found in preclinical AD as compared to normal 
controls [31]. While how small-word properties change in 
SCD and aMCI patients as well as the correlation between 
the alterations and behavior are not clear.

Here, we used DTI tractography and graph theory 
to construct weighted structural networks for the NC, 
SCD, and aMCI groups respectively. Then, both global 
and nodal parameters were compared among these three 
groups. We hypothesized that network topographical 
structure might have been disrupted in SCD stage and 
become more severe in aMCI stage. We hope to provide 
new insights into AD pathological mechanism and early 
diagnosis.

RESULTS

Demographics and neuropsychological test results

Thirty-six normal controls, 21 SCD patients, and 
33 aMCI patients were finally included in this study. 
4aMCI, 2SCD and 4 normal controls were excluded due 
to the failure of image registration from T1-weighted 
image to MNI template. There were no differences in 
age, education, and gender among the three groups (all 
P>0.05). The Mini-Mental State Examination (MMSE) 

and Montreal Cognitive Assessment (MoCA) scores were 
significantly lower in the aMCI group than normal controls 
(NC) or the SCD group. The group effects in Auditory 
Verbal Learning Test (AVLT) scores were significant, with 
the best performance in NC, intermediate performance in 
SCD patients, and worst performance in aMCI patients. 
(Table 1)

Global topology of the white matter connectome

All three groups presented small-world organization 
(Figure 1). ANCOVAs showed significant group effects 
on characteristic path length, global efficiency, and local 
efficiency, with significant decreased global (P=0.002) and 
local (P=0.007) efficiency, and increased characteristic 
path length (P=0.002) between aMCI patients and NC, 
but not between NC and SCD patients or SCD patients 
and aMCI patients. In addition, there was a linear trend 
of these altered network properties across three groups 
(Figure 1). 

Hub regions

The hub regions are shown in Figure 2. Nine hubs 
were identified in each groups with six regions in common 
( bilateral supplementary motor area ( SMA), putamen 
(PUT) and thalamus (THA)). The three other regions in 
NC were the right pecuneus (PCUN), superior frontal 
gyrus and dorsolateral ( SFGdor) and caudate nucleus 
(CAU), in SCD were the right PCUN, the left superior 
parietal gyrus (SPG) and cuneus (CUN) , and in aMCI 
were the bilateral CAU and the right gyrus rectus (REC).

Table 1: results of demographic characteristics and neuropsychological test
Characteristic NC(n=36) SCD(n=21) aMCI(n=33) Test statistic P value
Age(y) 61.8±7.5 62.9±9.2 64.3±9.7 F=0.72 0.488
Education(y) 11.3±4.4 10.7±4.1 9.3±3.7 F=1.97 0.145
Sex(M/F) 12/24 6/15 16/17 x2=2.80 0.246
MMSE 28.1±1.9 27.9+1.5 25.0±3.0 F=18.36 <0.001 bc
MoCA 26.7±2.7 26.0±2.0 19.8±3.8 F=50.64 <0.001 bc
AVLT-I 8.9±1.5 7.8±1.9 5.7±1.5 F=33.84 <0.001abc
AVLT-D 10.3±2.4 7.9±2.4 3.9±2.4 F=61.25 <0.001abc
AVLT-R 12.5±2.1 10.4±2.2 7.9±4.1 F=20.72 <0.001abc

Values are given as mean ±SD
a MCI: amnestic mild cognitive impairment; SCD: subjective cognitive decline; NC:normal control; MMSE: Mini-Mental 
State Examination; MoCA: Montreal Cognitive Assessment; AVLT: Auditory Verbal Learning Test;
a normal control group and SCD group showed significant differences (P < 0.05)
B normal control group and aMCI group showed significant differences (P < 0.05)
c SCD group and aMCI group showed significant differences (P < 0.05)
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Differences in betweenness centrality

We further localized the nodes with changed 
betweenness centrality among the three groups (Figure 
3). Regions with significant differences across the three 
groups were located in right PCUN, PUT, calcarine fissure 
and surrounding cortex (CAL) and left Anterior cingulate 
(ACG). Post hoc test showed decrease in PCUN and 
increase in CAL and PUT in aMCI group than NC group. 
In addition, decrease in PCUN and increase in ACG and 
PUT were also found in aMCI as compared to the SCD 
patients.

Relationship between network metrics and 
cognition

We further examined the correlation between 
network metrics and behavior performance (Figure 3). In 
SCD patients, no correlation between network properties 
and neuropsychological tests was found. In the aMCI 
group, the left ACG was positively correlated with scores 
of MoCA (r=0.37, P=0.044) and AVLT delayed recall 
(r=0.453, P=0.012). While negative correlation was found 
between AVLT delayed recall and right PUT in aMCI 
groups.

DISCUSSION

We investigated the architecture of white matter 
networks in patients with SCD and aMCI. The main 
findings in our study were as follow: 1) small-world 
topology in both the normal controls and patients, which 
is in agreement with previous studies [25-30]; 2) increased 
path length and decreased efficiency in patients; 3) 
alterations in regional centrality in patients; 4) correlation 
between network metrics and behavior.

We demonstrated a lower efficiency in aMCI 
patients compared to NC, which indicates a less optimal 
organization on patients. A lower global efficiency as 
well as a higher Lp found in aMCI patients is in line with 
previous studies [25-29], which indicates the loss of ability 
to transmit specialized information rapidly among distant 
brain regions [32]. While the inconsistency observed 
between Cp and local efficiency as found in previous 
studies might be due to the influence of connection 
strength on Cp [33-35]. The loss of nodes and a more-
diffuse impairment pattern would lead to a higher Cp[25, 
36]. So both the increment in Cp and reduction in local 
efficiency indicated inefficient/ineffective information 
transmission in aMCI patients. A novel finding of this 
study was that SCD patients had values intermediate to 
aMCI and NC, suggesting a similar damage pattern of 
structure network in SCD but milder than aMCI patients. 
Such tendency has been found repeatedly in other studies 

Figure 1: Differences in global measures among the three groups. Significant group effects were observed in characteristic path 
length, global efficiency and local efficiency. Bars and error bars represent mean values and standard deviations, respectively. *P<0.05. 
**P<0.01. NC, normal controls. Eg, global efficiency. Eloc, local efficiency.
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by Tract-Based Spatial Statistics [13]. 
Recent researches have shown that hubs like the 

precuneus, the medial frontal cortex, the middle occipital 
and the cingulated gyrus are more vulnerable [37, 38]. We 
found two hubs (right PCUN and putamen) in our study 
presented significant alterations in centrality with disease 

prognosis, especially the right PCUN, which was no more 
a hub in aMCI patients. The PCUN located in medial 
posterior parietal cortex is a functional core of default 
mode network (DMN) and involved in various cognitive 
process like visual-spatial, self-processing, consciousness 
and episodic memory[39-40]. Decreased nodal strength 

Figure 2: The global network hubs with high betweenness centrality in the normal controls, SCD, and aMCI group. 
The regions were mapped at a lateral view. SMA, supplementary motor area. PUT, putamen. THA, thalamus. PCUN, precuneus. SFGdor, 
superior frontal gyrus, dorsolateral. CAU, caudate nucleus. SPG, superior parietal gyrus. CUN, cuneus. REC, gyrus rectus. NC, normal 
controls.
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was also found in PCUN in previous studies[41]. Evidence 
also have shown lower FA in PCUN in SCD patients 
and persons converting to MCI [12, 42]. It may provide 
implication for memory impairment in patients. 

The sub-cortical putamen has been found lower 
nodal strength in aMCI patients in previous studies 
[41], but showed an increase in centrality in our study 
conversely. Such alterations were also found in two 
non-hubs (ACG and calcarine). Betweenness centrality, 
measuring the importance of the node for information 

transmission, is not in parallel with node degree [43]. 
Previous studies have found non-monotonic changes 
in AD with higher betweenness centrality in aMCI 
and mild AD dementia than prior stages. Increased 
centrality was also found in lingual gyrus, cingulate and 
lateral occipitotemporal gyrus by sMRI and fMRI[44-
45]. We speculated the increase of these nodes might 
be compensatory for the reduced centrality in PCUN. 
Further, we found that the centrality in ACG and PUT was 
correlated with behavior, which indicates the potential 

Figure 4: Scatter plots of betweenness centrality and memory performances in aMCI patients.

Figure 3: Regions with significant differences in betweenness centrality among the three groups. The node size represents 
the significance of between-group differences. For each node, the bar and error bar indicate the mean value and standard error, respectively. 
Post hoc tests showed reduced centrality in PCUN and increased centrality in CAL and PUT in aMCI group versus the NC group. Lower 
centrality was found in PCUN and higher centrality was found in ACG and PUT in aMCI as compared to the SCD patients. *P<0.05. 
**P<0.01. PCUN, precuneus. CAL, calcarine fissure and surrounding cortex. PUT, putamen. ACG: anterior cingulate and paracingulate 
gyri. NC, normal controls.
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of centrality for early diagnosis. While the correlation in 
ACG was positive, but in PUT was negative. One possible 
suppose for the discrepancy is that the compensatory 
mechanism is reserved in PUT with disease progressing 
but failed for ACG. Despite the aforementioned results, 
we failed to find any significant difference found between 
SCD and NC groups, which might because SCD is an 
earlier stage and the dysfunction is compensatory or 
because of the limited sample. 

We noted that there are still some limitations in our 
study. First, we employed deterministic tractography to 
reconstruct structural connectivity as several previous 
researches [25-27]. While it cannot map out all the 
fibers accurately, a limitation of tracking crossing fibers 
and long-distance fibers exists. Second, this study is 
lack of pathological evidence with PIB-PET or CSF 
biomarker. Though all subjects went through a series 
of neuropsychological tests and MRI to exclude other 
diseases like depression, brain trauma, and vascular 
dementia, we could not completely ensure that no 
patients had mixed pathology. Third, this study is cross-
sectional and a longitudinal study would be valuable to 
further explore the network properties of AD. Finally, 
the sample size now is limited and the results need to 
be replicated in large samples. In conclusion, our results 
verified that AD is a disconnection syndrome again. Our 
findings indicated that white matter network was gradually 
disrupted as cognitive decline and it has the potential for 
early diagnosis.

MATERIALS AND METHODS

Subjects

A total of 100 right-handed subjects (40 normal 
controls, 23 SCD, 37 aMCI) were recruited at the memory 
clinic of Beijing XuanWu Hospital of Capital Medical 
University in China from January 2011 to March 2015. 
This study was approved by the Medical Research Ethics 
Committee and Institutional Review Board of XuanWu 
Hospital (ClinicalTrials.gov Identifier: NCT02353845) 
and informed consent was obtained from all subjects.

The patients with aMCI were diagnosed according 
to Petersen’s criteria [1] and National Institute on Aging-
Alzheimer’s Association criteria for MCI due to AD 
[46]as following: (a) memory complaint; (b) objective 
memory impairment - MMSE, MoCA [47], AVLT; (c) 
near-normal performance on general cognition and 
preserved daily life activities; (d) the Clinical Dementia 
Rating (CDR) score of 0.5; (e) failure to meet the criteria 
for dementia according to the Diagnostic and Statistical 
Manual of Mental Disorders, fourth edition, revised 
(DSM-IV)[48]; (f) hippocampal atrophy observed and 
(h) the Han nationality, right-handed (the Edinburgh 

handedness scale score > 40 points).The patients with 
SCD were included as following based on the research 
criteria for subjective cognitive decline [3]: a) self-
experienced decline in memory compared to previous 
statue (within the last 5 years), which could be confirmed 
by informants; and (b) normal performances on objective 
cognitive tests and CDR score = 0. The normal controls 
were cognitively normal and had a Clinical Dementia 
Rating (CDR) of 0. Subjects were excluded if they met 
the following clinical characteristics: (a) those who 
have a clear history of stroke (Hachinski Ischemic Scale 
score (HIS)> 7 points); (b) severe depression (Hamilton 
Depression Rating Scale score (HAMD) > 24 points); (c) 
cognitive impairment caused by traumatic brain injury; 
(d) other nervous system diseases, which could cause 
cognitive impairment; (e) systemic diseases, which could 
cause cognitive impairment; (f) a history of psychosis 
or congenital mental growth retardation; and (g) those 
who cannot corporate with neuropsychological tests or 
have any contraindication to MRI (Magnetic Resonance 
Imaging). All of subjects underwent MMSE, MoCA, 
AVLT, Activity of Daily Living (ADL), HIS, HAMD, and 
CDR. And all participants underwent a brain MRI. 

MRI Acquisition

The MR images of all patients and normal 
controls were acquired by a Siemens 3T TrioTim MRI 
system. T1-weighted MR images were obtained by a 3D 
magnetization-prepared rapid gradient echo (MPRAGE) 
with following parameters : Slices = 176, TR = 1900 
ms, TE = 2.2 ms, inversion time (TI) = 900 ms, FA =9°, 
field of view (FOV) = 256×256 mm, acquisition matrix = 
256×256, and thickness = 1 mm. DTI data was collected 
using an echo planar imaging (EPI) sequence with 
following parameters for three times: in 32 independent, 
non-collinear directions of a b-value = 1000 s/mm2 and 
one additional image with no diffusion weighting(b = 0), 
slices = 60, TR= 11000 ms, TE =98 ms, FA =90°, FOV 
= 256 mm×256 mm, acquisition matrix= 128×128, and 
thickness= 2 mm. 

Image Pre-processing and Network Construction

Image pre-processing steps contains: Format 
conversion of original data (DICOM); The extraction of 
brain tissue and structure; Realignment; Eddy current and 
motion artifact correction of diffusion-tensor imaging 
data; Fractional anisotropy calculation; Diffusion tensor 
tractography. Tractography was conducted to produce 3-D 
streamlines representing fiber tract connectivity [49]. 

WM connectivity was modeled as an weighted 
network containing 90 nodes, defined by automated 
anatomic labeling [50]. Each AAL brain region was 
deemed a node of the brain network. With the usage of 
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PANDA software, we completed the WM deterministic 
fiber tracking with a FA threshold of 0.2 and turning 
angle threshold of 45 degrees of FACT algorithm [49, 
51].To limit false positive connections, pairs of nodes 
were linked if they were interconnected through a certain 
number of streamlines. In our study, we chose 3 for the 
threshold value for the streamline number, as in several 
previous studies [27, 52]. We validated the results setting 
the threshold ranged from 1 to 5 and found the threshold 
did not significantly effect the results (see Supplementary 
Materials). 

We computed the weight of each effective 
connection between two nodes (i and j) as the product 
of the connecting fiber number (FN) and mean fractional 
anisotropy (FA) of the connecting fiber, normalized by the 
average volume of the two connecting regions to offset 
the deviation where larger cortical regions are more likely 

to contain more ‘false’ fibers ( i jw FN * FA / vol ume=

). This weighting method have been employed in several 
previous diffusion brain network studies [53-54]. Finally, 
we obtained a symmetric 90 × 90 matrix for each 
participant from their DTI data. This part of work were 
done by PANDA toolbox [55], which is on the base of 
FSL[56] (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki).

Network parameter calculation

Several network topological properties were used 
to characterize WM structure network derived from 
each participant, including: clustering coefficient (Cp), 
characteristic path length (Lp), small-worldness(Sigma), 
local efficiency (Eloc), global efficiency (Eg) and nodal 
betweenness (Bnod) [32]. In this study, we calculated all 
these parameter metrics using GRETNA v1.2 (http://www.
nitrc.org/projects/gretna), which is a graph-theorectical 
network analysis toolkit. 

For a given network G with N nodes, the clustering 
coefficient(Cp) and the characteristic path length(Lp) were 
defined by Watts and Strogatz [57] as:

 
i

i G nod nod

1 ECp( G) =
N D (i ) ( D (i ) 1)/ 2∈ −∑

 
Where Dnod(i) is the degree of a node i. Ei is the 

number of edges in Gi, which is the subgraph composed 
of the adjacent nodes of a node i. 

j i G i j

1Lp( G) =
1 1( )

N( N 1) L≠ ∈− ∑
 

Where Lij is the shortest path length between nodes 
i and j. To figure out the small-worldness parameter, the 
values of Cp and Lp were normalized by compared with 

those of 100 random networks(
r eal r andCp / Cpg = and

r eal r andLp / Lpl = , Si gma= /g l ).
A network is said to have small-worldness, if it has 

similar Lp but higher Cp than random networks. In other 

words, a small-word network has a normalized clustering 
coefficient ( 1g ≈ ) and a normalized path length ( 1l > ).

The global efficiency and local efficiency of G were 
defined by Latora and Marchiori[58] as:
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Where iEg( G) is the global efficiency of  Gi , which is 
the subgraph consisting of the adjacent nodes of a node i.

The nodal matrices measure the importance of all 
nodes in the network. Betweenness centrality evaluates 
the contribution of a node on the communication for other 
nodes. The betweenness centrality of a node i was defined 
by Freeman [59] as:

 

j k
nod

j i k G j k

(i )
B (i )

d
d≠ ≠ ∈

= ∑
 

Where j kd is the number of shortest paths from a 
node j to a node k, and j k(i )d  is the number of shortest 
paths from a node j to a node k via a node i within the 
network G.

The top 10% hubs of nodal betweenness were 
depicted by Brainnet Viewer toolbox [60].

Statistical Analysis

Statistical analysis was performed with software 
SPSS v20.0. Group differences in age, years of education 
and neuropsychological scores were examined with one-
way ANOVA. Post hoc pairwise t test with Bonferroni 
correction for multiple comparison was performed if 
ANOVA yielded significant results (P <0.05). Sex data 
were examined with a Pearson chi-square test. For 
group effects in global and regional network measures 
, comparisons were performed among 3 groups using 
one-way ANOVA with post hoc pairwise t tests with 
Bonferroni correction, when P <0.05. 

Finally, we investigated the relationship between 
network metrics and behavior by partial correlation 
analysis with age, gender and education as covariates. 
To identify the correlation between neuropsychological 
test scores with specific brain regions, the nodes with 
significant group differences were performed.
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