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Metabotyping human endometrioid endometrial adenocarcinoma 
reveals an implication of endocannabinoid metabolism
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ABSTRACT

Metabolomics, an essential technique in precision medicine, contributes to the 
molecular fingerprinting of tumours, further helping to understand their pathogenesis. 
In this work, using a LC-ESI-QTOF-MS/MS platform, we demonstrated the existence 
of a specific metabolomic signature which could define endometrioid endometrial 
carcinoma (EEC), arising the endocannabinoid system as a potential pathway involved 
in EC pathogenesis. Metabolomics could also shed light in the processes involved in 
myometrial invasion, proposing new targets for possible therapeutic intervention. 
Consequently, we also described a different metabolomic profile in surface 
endometrioid carcinoma and myometrial invasive front. We validated pathways 
disclosed by metabolomics by immunohistochemistry. Specifically, endocannabinoid 
and purine metabolism could be involved in tumor myometrial invasion.

INTRODUCTION

Endometrial cancer (EC) is the most common 
cancer of the female genital tract [1] and overall the fourth 
most common cancer in developed regions [2]. There are 
different histologic types with different morphological 
features, behavior and molecular background. The most 
characteristic of them are endometrioid (EEC) and 
serous (SC) carcinomas. EEC is the most frequent type. 
It accounts for 80% of EC, and it is usually associated 
with good prognosis, although 20 % of them recur or 
metastasize [3]. Prognosis relies on a subset of parameters 
including histological grade, stage, and presence of 
lympho-vascular invasion. However, it is still difficult 
to predict behavior based on the microscopic appearance 
of the tumors; and there is a subset of low-grade EEC, 
apparently indolent, that may progress.

Next generation sequencing studies provide a more 
accurate description of the molecular background of EC. 

The Cancer Genome Atlas Research Network (TCGA) has 
recently performed an integrating genomic characterization 
of EC [4]. Exome sequence analysis revealed four groups 
of tumors. Group 1, with EEC with mutations in POLE, 
associated with good prognosis. Group 2, including EEC 
with microsatellite instability and group 3 tumors including 
EEC with low copy number alterations, both showing 
similar progression-free survival rates. Group 4 (Serous-
like) showed p53 mutations, worse prognosis, and was 
composed of most (but not all) SC, but also some EEC 
(many EEC3, but also some EEC1-2). The TCGA study 
has shown that a small percentage of tumors that are 
microscopically EEC, show molecular features of SC, and 
vice versa. These results emphasize the existence of tumors 
that microscopically and molecularly are located in the grey 
zone between EEC and SC, and they stress the need for 
identifying biomarkers of bad prognosis in EEC.

It has been recently suggested that intra-tumor 
heterogeneity may be important in tumor progression 
[5–7]. Under the selective pressure of the environment, 
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some tumor clones may overgrowth in competition with 
other tumor cell subpopulations, and this is particularly 
important at the invasive front of the tumor. For that 
reason, understanding the molecular events that occur at 
the invasive front may provide important information to 
understand the mechanisms of EC tumor progression.

Recent technological and bioinformatics advances 
have contributed to “omic” techniques development [8]. 
Genetics, transcriptomics, proteomics and metabolomics 
are essential in biomarker research in cancer. 
Metabolomics allows monitoring the changes in the whole 
metabolism. The resulting molecules, metabolites are the 
end-products of gene expression and their levels mirror 
genomic, transcriptomic, and proteomic fluctuations 
[9]. Although many metabolomic approaches have been 
previously used in cancer biomarker discovery, the 
metabolomic profile of EC is currently unknown.

Recently, metabolomics has been applied to better 
understand physiopathological processes involved in 
cancer progression and propose novel biomarkers [10–12]. 
Based on these premises, in this study, we aimed to 
characterize potential metabolomic differences between 
EEC and normal endometrial tissues, and also between 
different locations in EEC (invasive front and superficial 
zone). The results show the identification of potential 
biomarkers of tumor development and progression, as well 
as metabolic pathways for EEC personalized medicine.

RESULTS

Endometrioid carcinoma shows a characteristic 
metabolomic pattern with endocannabinoid 
system as a relevant pathway

The first aim of this work was to analyze 
metabolomic differences between EEC (considering 
together surface endometrial carcinoma (SEC) 
and myometrial invasive front (MIF)) and normal 
endometrium NE samples. To do this, we applied a non-
targeted metabolomics approach focusing on the profiles 
of low molecular weight (m/z < 3000) ionizable molecules 
and we detected 717 molecular features, according to the 
parameters described in the materials and methods section. 
In order to analyze whole metabolome we selected 
those molecules which were present at least in 50 % of 
the samples in any group. Heatmap analyses suggested 
differences in metabolomic profiles between NE and 
EEC samples, both in positive and in negative ionization 
modes (Figure 1A). Then, we applied Partial Least Square 
Discriminating Analysis (PLS-DA) and the differences 
were confirmed (Figure 1B) indicating the existence of 
a specific metabolomic signature for each condition. In 
order to control overfitting we employed two different 
techniques: we evaluated permutation tests for validation 
of PLS-DA and we used an alternative technique for 
multivariate analyses, random forest analyses. The 

existence of a metabolomics signature was supported by 
both analyses, which lead to a significant permutation 
test (p<0.02) for negative ionized molecules and an 
overall error of 0.22 (Supplementary Figure S1A) in 
both cases for random forest analyses. Finally, univariate 
statistics (Student T Test) was applied and we found 53 
statistically different molecules (p<0.05) (Supplementary 
DataSet1). Among them, we could identify (based on 
exact mass, retention time, isotopic distribution and/or 
MS/MS spectrum) stearamide, monoolein, hypoxanthine 
and 1,2-dihexadecanoyl-sn-glycerol. Two of them act as 
endocannabinoids (stearamide and monoolein) and their 
levels are increased in EEC samples (Figure 2A and 2B). 
Then, in order to define the capacity of these molecules 
as biomarkers, receiver operating characteristic (ROC) 
curves were performed using metabolites present in at 
least 50% of the samples in the same group (NE and EEC) 
and stearamide arose as one with best scores (Figure 2C).

Endocannabinoid system regulates cell proliferation, 
differentiation and cell survival of different cell types, 
and it has been described that modulates migration of 
endometrial cells [13, 14]. So, to further validate the 
potential implication of endocannabionoid system in EEC 
we analyzed, using immunohistochemistry, the levels of 
CR1 and CR2. The results showed that the CR1 levels 
were increased in EEC comparing to NE (Figure 2D), 
in contrast to CR2 expression (Figure 2E). Interestingly, 
when immunoexpression was analyzed taking into account 
EEC stages both CR1 and CR2 were increased in samples 
from stages III-IV, suggesting a relationship between 
endocannabinoids and aggressive behavior (Figure 2F and 
3G). Another parameter highly associated with aggressive 
behavior is the EEC histological grade, which is based 
on the amount of solid architectural pattern. In this line, 
whole metabolomics differences were studied discovering 
different signatures for low grade (EEC grade 1 and 2) and 
high grade (EEC grade 3), although not good permutation 
test was obtained (p≥0.05) (Figure 2H). Further, the 
out of bag error obtained from random forest analyses 
classification was 0.36 for positive and 0.43 for negative 
ionization modes (Supplementary Figure S1C). Among 
statistically different molecules found between low and 
high grade we could identified (basing on exact mass, 
retention time and isotopic distribution) the taurine and 
erythritol (decreased in grade III) and oleamide (increased 
in grade III) and (DataSet1). Interestingly, oleamide is an 
amide of the fatty acid oleic acid which has the ability to 
bind to the endocannabinoid receptor CR1.

Surface endometrioid carcinoma and 
myometrial invasive front differ in 
metabolomic profile

Due to the potential differences in cell metabolism 
related to tumor invasion, we analyzed whether changes 
observed in endocannabinoid metabolism were influenced 
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Figure 1: Specific metabolomics profile of normal endometrium (NE) and endometrioid endometrial carcinoma (ECC 
or EC). A. Heat map showing the molecular features (see main text for definition) found in NE and EEC in metabolomic analysis. 
Individual scale maps for heat intensity are shown below each sample type. B. PLS-DA graphs demonstrating different metabolomic 
profiles. Red spots represents samples of normal endometrium and green spots from endometrioid endometrial carcinoma. PLS-DA model 
out of bag error is 0.221 for positive and 0.232 for negative ionization.
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Figure 2: Implication of endocannabinoid pathway in endometrioid endometrial carcinoma (EEC) progression. 
Levels of cannabinoid related metabolites, the stearamide A. and the monoolein B. are increased in EEC samples. C. Predictive power of 
stearamide in EEC determination. * P<0.05 D. The levels of cannabinoid receptor 1 (CR1) are increased in ECC tissue samples whereas 
there are not differences in CR2 levels E. Increased levels of CR1 F. and CR2 G. in stages III-IV of EEC. H. PLS-DA graphs demonstrating 
different metabolomic profiles in EEC, grades 1-2 and 3. Blue spots represents normal endometrium samples (NE), red spots endometrioid 
endometrial carcinoma grades 1 and 2 and green spots from endometrioid endometrial carcinoma grade 3. * P<0.05
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by this. So, the levels of the two endocannabinoids 
disclosed in the previous approach as well as CR1 
expression were analyzed. We found higher levels of 
stearamide in MIF but higher levels of monoolein in 
SEC tissue (Figure 3A and 3B). No differences in CR1 
immunoexpression were found when we compared 
superficial tumor tissue and myoinvasive front (p=0.5; 
Fold Change=1.04). Due to sharp differences observed 
between SEC and MIF we analyzed whole metabolome 
and a characteristic metabolite profiling was observed 
(Figure 3C and 3D).

The same approximation explained before was 
used to identify metabolomic differences between SEC 
and MIF samples. Using a non-targeted approach and 
focusing on the metabolite profiles of low molecular 
weight (m/z < 3000) ionizable molecules we detected 
2777 molecules. Multivariate analyses confirmed that 
changes in the metabolomic profile were associated 
with myometrial invasion (Figure 3C and 3D and 
Supplementary Figure S2). As above, robustness of 
models was evaluated by permutation test (p=0.069 for 
negative ionized molecules) and random-forest analyses 
(overall error 0.22 for positive and 0.37 for negative 
ionization) (Supplementary Figure S1B). Further, and 
using only those molecules which have potential identity 
(based on exact mass, retention time, isotopic distribution 
and/or MS/MS spectrum), we performed a correlational 
analyses comparing those metabolites levels in MIF 
and SEC (Figure 4). This demonstrated that most of 
these metabolites did not show a significant correlation, 
reinforcing the idea of independent metabolism depending 
on the tumor’s depth.

Then, we performed a paired T-Student Test and 
found 135 statistically different molecules between SEC 
and MIF. Apart from stearamide and monoolein, we could 
identify 11 molecules (Supplementary DataSet1). Among 
them, 7 were increased (xanthine, lactamide, alpha-D-
Fucose, 3-mercaptopyruvate, ribitol, phosphocholine 
(32:0) and eicosapentaenoic) and 5 decreased (inosine, 
deoxycytidine, hypoxanthine, CDP-ethanolamine and 
5’-methylthioadenosine) in MIF respect SEC location. 
Because most of these metabolites belong to purine 
metabolism we wanted to further explore the implication 
of this pathway in tumor myometrial invasion. Thus, 
we focused in the study of two different enzymes which 
regulate levels of xanthine, hypoxanthine and inosine. 
Specifically, we analyzed, using immunohistochemistry, 
xanthine oxidase and purine nucleoside phosphorylase 
levels of these samples but no changes were observed 
(data not shown).

DISCUSSION

During endometrial tumorigenesis, cancer cells have 
to remodel cellular metabolism to cover their demands 
of growth and proliferation. Although many of the 

metabolic changes are analogous to those seen in normal 
proliferative cells, studies over the past years have shown 
that many features of transformed tumors cell metabolism 
lie directly downstream of several tumor suppressors and 
oncogenes [15]. However, altered tumor metabolism is not 
the simply result of some combination of cell-autonomous 
genetic alterations. Tumor microenvironment parameters, 
such hypoxia, have to be considered as a component in the 
equation that influences changes in tumoral metabolism 
[16]. Knowledge of these metabolic signatures can enable 
identification of novel therapeutic targets and more 
important, can reveal the metabolic pathways and specific 
targets in which intervention could be more effective in 
patient therapeutic approaches. Based on that, the first 
aim of the present work was the study of metabolomic 
differences between EEC and NE. Heatmap analyses 
showed that carcinogenic process defined a specific 
metabolomics profile. In order to better characterize these 
changes, we applied multivariate statistics, specifically 
partial least square discriminant analyses (PLS-DA). 
Multivariate statistic such as principal component analyses 
(PCA), PLS-DA or hierarchical clustering analyses are 
commonly used for interpretation and better visualization 
of complex data [17,18]. PLS-DA analyses reinforced 
the idea of profile of endometrial cancer, obtaining 
an out of bag error of 0,2. Then, we applied univariate 
statistics trying to describe novel metabolites and 
pathways potentially involved in this pathogenic process. 
Specifically, we could identify four metabolites, two of 
them related to endocannabinoid metabolism.

The endocannabinoid system is implicated in a variety 
of physiological and pathological conditions (inflammation, 
immunomodulation, analgesia, cancer and others). 
Endocannabinoids are endogenous lipid-signaling molecules 
generated in the cell membrane from phospholipid 
precursors and which produce its effects through activation 
of CR1 and CR2 receptors [13]. In tumor cells, several 
studies have described alterations in endocannabinoid 
system; however it remains unclear if the endocannabinoid 
system has an anti- or protumoral role [19, 20]. In agreement 
with other published results in other cancer types such as 
breast, prostate or colorectal cancers [21–23], our results 
suggest an implication of endocannabinoid pathway in 
endometrial cancer progression, because we demonstrate 
that the endocannabinoid-like ligands, such as stearamide 
and monoolein are increased in EC samples. Previous data 
in humans reveal that stearamide levels are increased in 
serum from cyrrothic patients (either considering alcohol or 
hepatitis B virus caused ones) [24]. This was attributed to 
an increased activation of sterol-regulatory-element- binding 
protein 1, a key regulator of lipogenic genes. Since this 
protein has been involved in the proliferation inhibition and 
apoptosis in endometrial cancer [25], it may be hypothesized 
that increased stearamide could be a response towards EC 
by healthy cells. In this line, EC cells could take profit by 
increasing endocanabinoid receptors.
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Figure 3: Specific metabolomic profile of tumor cells at the invasive front (MIF) and the cells that are located in the 
surface of the tumor (SEC). Differential levels of stearamide A. and monoolein B. according to tumor depth. *P<0.05 C. PLS-DA 
graphs demonstrating different metabolomic profiles. Red spots represents normal endometrium samples, blue spots samples from surface 
endometrioid carcinoma and green spots from myometrial invasive front.PLS-DA model out of bag error is 0.261 for positive and 0.377 
for negative ionization D. Heat map showing the molecular features (see main text for definition) found myometrial invasive front (MIF) 
and surface endometrioid carcinoma (SEC) in metabolomic analysis. Individual scale maps for heat intensity are shown below each sample 
type.
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Previous studies in a small series of EC have 
shown higher CR2 levels [26]. In our series (60 normal 
tissue, 62 EEC), expression of endocannabinoid receptor 
1 is significantly raised in endometrial carcinoma. 
Furthermore, CR2 shows a higher expression in III and 
IV stages, suggesting that endocannabinoid receptor 2 
expression could be associated with poor prognosis. In 
this context, the potential disturbance of endocannabinoid 
metabolism in cell differentiation, growth and migration 
related to EC etiopathogenesis needs to be further studied.

Histological grade is a good predictor of aggressive 
behavior. Grade 3 EEC is an aggressive tumor, with 

increased frequency of lymph node metastasis. It 
represents 15% of EEC, but accounts for 27% of 
cancer deaths. In our study, we have identified different 
metabolomic signature depending on EEC grade arising 
an endocannabinoid (oleamide) as potential biomarkers of 
tumor aggressive behavior. Future studies are needed to 
disclose the importance of endocannabinoid metabolism 
in tumor aggressive behavior.

There are increasing evidences that tumors are 
composed of subpopulations of cells with distinct genomic 
alterations. With the advent of last generation sequencing 
techniques, the extent and prevalence of intra-tumor 

Figure 4: Integration of metabolic correlations of of tumor cells at the invasive front (MIF) and the cells that are 
located in the surface of the tumor (SEC). The pixel maps were derived from correlation analyses between different identified 
metabolites. The cutoff value of 0.6 was applied to the absolute PC value for displaying the correlations between metabolites, shown as a 
color-coded pixel map (gradient of red colors for positive values and gradient of blue colors for negative values).
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heterogeneity is becoming acknowledged. It is now clear 
that there is a competition between microclones of cancer 
cells, which have differential molecular features and tumor 
stromal interaction capability [6]. Intratumor heterogeneity 
is also seen when comparing tumor cells at the invasive 
front with cells located in tumor surface. Previously, our 
group compared samples from the surface area and the 
myoinvasive front of EEC in order to investigate whether 
the EMT (epithelial mesenchymal transition) program 
is activated in early stages of EC. We found increases 
in SLUG, ZEB1, and HMGA2 mRNA expression in the 
myoinvasive front of tumor samples, indicating the role 
of these transcriptional factors in endometrial tumor 
progression and invasion [6]. Also related to EMT, 
ETS transcription factors have been associated with the 
activation of matrix-degrading proteases. Specifically, 
up-regulation of ERM/ETV5, a member of the ETS 
transcription factors, has been recently associated with 
initial steps of myometrial invasion in EC, in correlation 
with increased matrix metalloproteinase (MMP) [27]. 
Furthermore, our group used a proteomic approach to 
characterize specific components of the invasive front by 
comparing the invasive area of a tumor with pure tumor 
and normal tissue from the same patients. Of interest 
resulted the identification of different enzymes involved in 
homeostasis of oxidative stress such as SOD1 or BLVRB2 
[28]. Interestingly, oxidative stress target downstream 
molecules to trigger tumor progression, and are expected 
to have consequences in tumor metabolism [29, 30]. 
Consequently, changes in metabolism of tumoral cells, 
as well as its heterogeneity could be important in tumor 
prognosis, accounting responses to different oxygen and 
nutrient requirements.

The present results reveal the existence of intratumor 
heterogeneity, also at the metabolic level, when comparing 
tumor cells at the invasive front with the cells that are 
located in the surface of the tumor. Both multivariate 
and univariate statistics indicated that there is a specific 
metabolomic signature of invasive front when it is compared 
with the surface. So, using metabolomics we could define 
not only a specific signature for EEC in comparison with 
NE, but also discriminate EEC depending on the invasion 
(SEC, MIF), or grade. Interestingly, monoolein also 
arose as a potential biomarker of MIF zone. To further 
explore whether cannabinoid metabolism was implicated 
in myometrial invasion, we evaluated stearamide and 
monoolein levels comparing 3 groups (NE, SEC and MIF). 
Surprisingly, the two endocannabinoid-like metabolites 
presented different tendency in MIF, having higher levels 
of stearamide but lower levels of monoolein. Again, these 
results suggest an implication of endocannabinoid system 
in EC pathogenesis, although its effects are still unclear. 
Pathway analyses revealed different levels of metabolites 
belonging to purine metabolism when invasive front 
and surface zone were compared. The deregulation of 
purine metabolism in cancer has been widely described 

in human samples and cell lines [9, 31], but in this paper 
we described for the first time 3 metabolites belonging to 
purine metabolism (inosine, xanthine, hypoxanthine) which 
are increased at the invasive front in EEC.

In conclusion, metabolomics technique could 
contribute to further understand the pathogenesis of EC 
but also could shed light in the processes involved in 
myometrial invasion, proposing new targets for possible 
therapeutic intervention.

MATERIALS AND METHODS

Patient selection and sample collection

For metabolomics fresh-frozen tissue samples were 
obtained, corresponding to 15 normal endometrium (NE) 
(10 proliferative and 5 secretory) and 27 EEC (6 grade 1, 
13 grade 2, 8 grade 3). For each of these EEC cases, two 
different samples were dissected, one from SEC and one 
from MIF. For immunohistochemical analysis, formalin-
fixed, paraffin-embedded (FFPE) tissue samples were 
obtained including 60 samples of NE (38 proliferative, 22 
secretory), and 62 cases of EEC (21 grade 1, 35 grade 2, 
and 6 grade 3). Fifty tumors were stage I, 8 tumors stage 
II, 2 tumors stage III and 2 tumors stage IV. FFPE sections 
were microscopically reviewed and representative areas of 
the tumors were selected in the corresponding blocks. A 
Tissue Arrayer device (Beecher Instruments, Sun Prairie, 
WI, USA) was used. Two selected cylinders (0.6mm in 
largest diameter) were identified in each one of the 62 
tumors (124 samples), which, in 28 of them, were known 
to be obtained from tumor surface and deep myoinvasive 
front, respectively. All samples were obtained from the 
surgical pathology files of Hospital Universitari Arnau de 
Vilanova de Lleida, and the biobank of IRBLLEIDA. A 
specific informed consent was obtained from each patient 
in both groups, and the study was approved by the ethical 
committee of the Universitari Hospital Arnau de Vilanova 
(Lleida, Spain).

Metabolite extraction

Tissue samples were homogenized in a buffer 
containing 180 mM KCl, 5mM 3-[N-morpholino]
propanesulfonic acid, 2 mM ethylenediaminetetraacetic 
acid (EDTA), 1 mM diethylenetriaminepentaacetic acid 
and 1 mM butylated hydroxyl toluene, 10 mg/ml aprotinin, 
1 mM phenylmethylsulfonyl fluoride, pH 7.3 with a 
Potter– Eljeveim device at 4ºC. Protein concentration was 
measured using the Lowry assay (Bio-Rad Laboratories, 
München, Germany) with bovine serum albumin used 
as a standard. 100 µg of each sample was resuspended 
in a total of 30µl of homogenizing buffer and vortexed 
for one minute. In order to extract metabolites from tissue 
homogenates, 90 µL of ice cold methanol was added to 
each sample, incubated at -20ºC for 1h and centrifuged 
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at 12000g for 3 min at room temperature, as described 
elsewhere [32]. The supernatant were recovered, 
evaporated using a Speed Vac (Thermo Fisher Scientific, 
Barcelona, Spain) and resuspended in water containing 
0.4% acetic acid and 2 ng/ml of deuterium labelled 
docosahexaenoic acid (d4-DHA) in methanol as internal 
standard (1:1, v/v).

Metabolome analysis

For the metabolomic studies, an Agilent 1290 LC 
system coupled to an ESI-Q-TOF MS/MS 6520 instrument 
(Agilent Technologies, Barcelona, Spain) was used. In 
all cases, 2 μL of extracted sample was applied onto a 
reversed-phase column (Zorbax SB-Aq 1.8 µm 2.1 X 50 
mm; Agilent Technologies, Barcelona, Spain) equipped 
with a precolumn (Zorba-SB-C8 Rapid Resolution 
Cartridge 2.1 X 30mm 3.5 µm; Agilent Technologies, 
Barcelona, Spain) with a column temperature of 60ºC. 
The flow rate was 0.6 mL/min. Solvent A was composed 
of water containing 0.2% acetic acid and solvent B was 
composed of methanol 0.2% acetic acid. The gradient 
started in 2% B and increased to 98% B in 13 min and 
hold at 98% B during 6 min. Pot-time was established in 
5 min.

Data were collected in positive and negative 
electrospray mode TOF operated in full-scan mode at 
50–1600 m/z in an extended dynamic range (2 GHz), 
using N2 as the nebulizer gas (10 L/min, 350 °C). The 
capillary voltage was 4000 V with a scan rate of 1.5 
scan/s. The ESI source used a separate nebulizer for the 
continuous, low-level (10 L/min) introduction of reference 
mass compounds: 121.050873, 922.009798 (positive ion 
mode) and 119.036320, 966.000725 (negative ion mode), 
which were used for continuous, online mass calibration. 
The MassHunter Data Analysis Software (Agilent 
Technologies, Barcelona, Spain) was used to collect the 
results, and the MassHunter Qualitative Analysis Software 
(Agilent Technologies, Barcelona, Spain) was used to 
obtain the molecular features of the samples, representing 
different, comigrating ionic species of a given molecular 
entity using the Molecular Feature Extractor (MFE) 
algorithm (Agilent Technologies, Barcelona, Spain), as 
described [33, 34]. Finally, the MassHunter Mass Profiler 
Professional Software (Agilent Technologies, Barcelona, 
Spain) was used to perform a nontargeted metabolomic 
analysis of the extracted features. We selected samples 
with a minimum of 2 ions. Multiple charge states were 
not considered. Compounds from different samples were 
aligned using a RT window of 0.1% ± 0.25 min and a 
mass window of 20.0 ppm ± 2.0 mDa. Only common 
features found in at least 50% of the samples of the same 
condition were considered, correcting for individual 
bias.. The masses with significant differences (T-Test, 
p< 0.05) in abundance were searched against METLIN 
Metabolite PCD/PCDL (Agilent Technologies, Barcelona, 
Spain). Identities of metabolites were attributed based on 

an ortogonal approach: both identical chromatographic 
behaviour (RT+- 0.5 min) and identical m/z (<10 ppm) 
with those molecules present in the PCDL database. 
After that, we confirmed the proposed identities proposed 
based on MS/MS spectrum obtained in independent runs. 
All abundances were adjusted to the internal standard, 
ionisable in both positive and negative mode (d4-DHA). 
Partial least discriminant analyses (PLS-DA), receiver 
operating characteristics analyses and random forest 
analyses were done using Metaboanalyst Software [35].

Immunohistochemistry

To validate the obtained results, we analyzed tissue 
microarray blocks, which were sectioned at a thickness 
of 3 mm, dried for 1 h at 65°C before pre-treatment 
procedure of deparaffinization, rehydration and epitope 
retrieval in the Pre-Treatment Module, PT-LINK (DAKO) 
at 95 °C for 20 min in 50x Tris/EDTA buffer, pH 9. Before 
staining the sections, endogenous peroxidase was blocked. 
Antibodies used were: cannabinoid receptor 1 (CR1) 
(1:100 dilution; LSBio), CR2 (1:100 dilution; Thermo 
Scientific), Human Purine Nucleoside Phosphorylase 
(1:1000 dilution; R&D Systems), Anti Xanthine Oxidase 
(1:100 dilution; Abcam). After incubation, the reaction was 
visualized with the EnVision Detection Kit (DAKO) using 
diaminobenzidine chromogen as a substrate. Sections were 
counterstained with hematoxylin. Appropriate positive and 
negative controls were also tested. Immunohistochemical 
results were evaluated by two pathologists, by following 
uniform preestablished criteria. Immunoexpression was 
graded semiquantitatively by considering the percentage 
and intensity of the staining. A histological score was 
obtained from each sample, which ranged from 0 (no 
immunoreaction) to 300 (maximum immunoreactivity). 
The score was obtained by applying the following formula: 
Histoscore= 1 x (% light staining) + 2 x (% moderate 
staining) + 3 x (% strong staining). The reliability of such 
score for interpretation of immunohistochemical staining 
in EC TMAs has been shown previously [36].

Statistics

Statistical analyses for nontargeted metabolomics 
were done using the Mass Profiler Professional 
Software (Agilent Technologies, Barcelona, Spain). 
Otherwise, statistics calculations were performed using 
the SPSS software (SPSS, Chicago, IL) or the Stata 11 
statistics package (StataCorp, College Station, TX). 
Normal distribution of the variables was checked by 
the Kolmogorov–Smirnoff test. Correlation between 
molecular features was evaluated by the Pearson 
correlation (PC) coefficient. Differences between different 
groups were analyzed by the Student’s t test, ANOVA, 
Mann-Whitney or the Fisher test in the case of correlation 
matrixes. A p < 0.05 level was selected as the point of 
minimal statistical significance in every comparison.
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