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ABSTRACT

Peripheral blood mononuclear cell (PBMC)-derived gene signatures were 
investigated for their potential use in the early detection of non-small cell lung cancer 
(NSCLC). In our study, 187 patients with NSCLC and 310 age- and gender-matched 
controls, and an independent set containing 29 patients for validation were included. 
Eight significant NSCLC-associated genes were identified, including DUSP6, EIF2S3, 
GRB2, MDM2, NF1, POLDIP2, RNF4, and WEE1. The logistic model containing these 
significant markers was able to distinguish subjects with NSCLC from controls with 
an excellent performance, 80.7% sensitivity, 90.6% specificity, and an area under 
the receiver operating characteristic curve (AUC) of 0.924. Repeated random sub-
sampling for 100 times was used to validate the performance of classification training 
models with an average AUC of 0.92. Additional cross-validation using the independent 
set resulted in the sensitivity 75.86%. Furthermore, six age/gender-dependent genes: 
CPEB4, EIF2S3, GRB2, MCM4, RNF4, and STAT2 were identified using age and gender 
stratification approach. STAT2 and WEE1 were explored as stage-dependent using 
stage-stratified subpopulation. We conclude that these logistic models using different 
signatures for total and stratified samples are potential complementary tools for 
assessing the risk of NSCLC.

INTRODUCTION

Lung cancer is one of the leading causes of cancer 
mortality worldwide, with an overall 5-year survival 
rate of only 13% in Europe [1] and 17% in the US [2]. 
Although the lung cancer death rate is decreasing in the US, 
it has been increasing in some Asian countries such as China 
[3]. In 2015, an estimated 221,200 new cases and 158,040 

deaths of lung cancer are expected in the US. Symptoms do 
not usually occur until the cancer is in the advanced stages, 
and more than 60% and 80% of patients with lung cancer 
were found to have locally advanced or distant metastasis 
at initial diagnosis in the US and Taiwan, respectively [4, 
5]. Although new-generation chemotherapeutic agents 
and targeted therapies have been introduced, the 5-year 
overall survival rates are still unsatisfactory, at 9–24% for 
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stage IIIB and 1–4% for stage IV [6]. These rates highlight 
the importance of early detection to improve the overall 
survival for patients with lung cancer. Annual screening by 
low-dose chest computed tomography (LDCT) is currently 
undergoing a lot of flux and has shown a 20% reduction in 
the mortality rate [7]. However, the specificity of LDCT for 
the detection of lung cancer was 73.4% in screening centers 
with experienced staffs [8]. The application of lung cancer 
biomarkers could provide an easier and routine method for 
early detection of lung cancer. Previous studies on cancer 
biomarkers have shifted from the analysis of mutations [9], 
gene copy number variations [10], expression alterations 
and epigenetic regulation [11] to the analysis of gene or 
protein signatures.

Gene expression profiling of lung tumors and their 
adjacent normal tissues for early detection, monitoring 
and prognosis has resulted in a new perspective in 
recent decades [12]. Particularly, nucleic acid-based 
biomarkers and their changes in the peripheral blood 
have been studied for their usefulness in the early 
detection of lung cancer. A few previous studies have 
focused on the expression of single or multiple genes in 
peripheral blood; however, most of these studies resulted 
in unsatisfactory diagnostic performance [13–15]. Single 
marker-based assays generally have low sensitivities 
(30%–64%) [13–16]. The use of multiple markers could 
improve test sensitivity by up to 72%–85% [16, 17], 
and have become popular in the development of cancer 
diagnostic and prognostic assays [17, 18]. In addition, 
lung cancer incidence increases markedly after the age 
of 45–54 years, peaking among those aged >75 years for 
both sexes [19]; however, samples from healthy controls 
in published reports are generally limited in terms of 
information on age, gender, and smoking history as well 
as other demographic factors.

We focused on the discovery of specific nucleic 
acid-based markers in peripheral blood mononuclear cell 
(PBMC) fractions from patients with non-small cell lung 
cancer (NSCLC). The clinical utilities of the expression of 
the investigated genes were evaluated in newly diagnosed 
patients with NSCLC and age- and gender-matched non-
cancer controls. Several multiple logistic models for total 
sample, age and gender-, and clinical stage-stratified 
subpopulations were conducted to explore demographic- 
and stage-dependent markers.

RESULTS

The present case–control study was conducted on 
blood samples from 187 patients with NSCLC and 310 
gender- and age-matched non-cancer controls. Among 
all the participants, 58.27% were male, 57.48% were 
≥66 years of age and 39.17% were smokers. There were 
no statistically significant differences in gender or age 
between the NSCLC cases and non-cancer controls. 
However, participants who smoked were more likely to 

be in the case group (55.08%) than in the control group 
(29.68%) (p < 0.0001) (Table 1).

Identification of differentially expressed genes 
between NSCLC cases and controls

The bivariate associations between the mean relative 
expression of 15 investigated genes and cancer are shown 
in Table 2. Statistically significant differences were 
found in 11 of the 15 genes between NSCLC cases and 
non-cancer controls in this study. In particular, the mean 
relative expression levels of the EIF2S3, EXT2, RNF4, and 
WEE1 genes for NSCLC cases were significantly lower 
than those for non-cancer controls, whereas the mean 
relative expression levels of seven genes, namely CPEB4, 
DUSP6, GRB2, MCM4, MDM2, MMD, and STAT2, were 
significantly higher for NSCLC cases than for non-cancer 
controls.

NSCLC-associated molecular markers in 
PBMC-derived fractions and classification model

Logistic regression analysis was applied to construct 
a lung cancer molecular (LCM) model containing all 15 
of the investigated genes with controlling for age, gender 
and smoking history to assess the participants’ risk 
for developing lung cancer. In this model, the relative 
expression levels of eight genes were significantly 
associated with lung cancer after controlling for basic 
demographics (Table 3). Interestingly, the NF1 and 
POLDIP2 genes were found to be significant factors in 
the logistic model but not in the marginal analysis based 
on the independent two-sample t-test.

According to the LCM model, participants who 
had relative higher expression of the DUSP6, GRB2, and 
MDM2 genes and relative lower expression levels of the 
EIF2S3, NF1, POLDIP2, RNF4, and WEE1 genes were 
more likely to be in the case group. For each unit increase 
in the relative expression of the DUSP6, GRB2, and 
MDM2 genes, the odds of having lung cancer increased by 
7.71, 7.41 and 5.36, respectively. Each unit increase in the 
relative expression of the EIF2S3, POLDIP2, and RNF4 
genes showed protective effects, with odds of having lung 
cancer decreased by 78%, 84%, and 78%, respectively. 
In addition, each unit increase in the relative expressions 
of the NF1 and WEE1 genes presented slightly weaker 
protection, with the odds decreased by 65% and 53%, 
respectively. Overall, expression of DUSP6 gene had the 
strongest effect on the prediction of lung cancer based 
on the absolute value of the standardized coefficients 
(StdEst).

The C statistic was excellent for the LCM model for 
classification of patients with NSCLC in all clinical stages 
and non-cancer controls (area under the curve, AUC = 
0.924; Supplementary Figure S1). Particularly, the model 
yielded 80.7% sensitivity and 90.6% specificity if a cutoff 
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Table 2: Analysis of bivariate association of the relative mean expression of 15 investigated genes between NSCLC cases 
and non-cancer controls

Gene Total Sample NSCLC Cases Non-cancer Controls p§

Mean SD Mean SD Mean SD

Significant Lower Mean Expression in NSCLC Cases

EIF2S3 3.56 0.53 3.46 0.65 3.61 0.43 0.0028***

EXT2 -0.71 0.65 -0.83 0.74 -0.63 0.58 0.0008***

RNF4 2.03 0.58 1.92 0.58 2.09 0.57 0.0017***

WEE1 -0.59 0.67 -0.86 0.71 -0.42 0.59 0.0000***

Significant Higher Mean Expression in NSCLC Cases

CPEB4 0.75 1.03 1.14 1.13 0.51 0.88 0.0000***

DUSP6 1.93 0.81 2.47 0.79 1.61 0.63 0.0000***

GRB2 2.16 0.79 2.44 0.84 1.99 0.71 0.0000***

MCM4 -1.84 0.68 -1.73 0.72 -1.90 0.65 0.0093***

MDM2 -0.76 0.64 -0.49 0.72 -0.92 0.52 0.0000***

MMD 1.61 1.06 1.79 1.22 1.50 0.93 0.0034***

STAT2 1.88 0.59 1.99 0.68 1.81 0.52 0.0008***

No Significant Difference of Mean Expression Between Two Groups

IRF4 0.23 0.69 0.23 0.72 0.23 0.67 0.9488

NF1 0.86 0.47 0.82 0.57 0.88 0.40 0.2078

POLDIP2 2.42 0.70 2.46 0.74 2.40 0.67 0.4122

ZNF264 -2.33 0.58 -2.29 0.62 -2.36 0.54 0.1998

§The p value was obtained from the independent two-sample t-test.
***: The gene expression level between NSCLC cases and non-cancer controls was significantly different (p < 0.05).

Table 1: Characteristics of the study sample (N = 497)

NSCLC Cases Non-cancer Control Total Sample p§

n % n % n %

Sample size 187 37.63 310 62.37 497 100.00

Gender

 Female 73 39.04 134 43.23 212 41.73 0.3588

 Male 114 60.96 176 56.77 296 58.27

Age

 36-65 81 43.32 127 40.97 216 42.52 0.6073

 66-95 106 56.68 183 59.03 292 57.48

Smoking status*

 No 84 44.92 218 70.32 309 60.83 <0.0001

 Yes 103 55.08 92 29.68 199 39.17

§The p value was obtained from the chi-square test.
*Smoking status: No: non-smoker, Yes: current smoker and ever smoker.
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(risk score; probability of developing NSCLC) value of 
0.434 was chosen (Table 3). A histogram of risk scores 
by samples clearly showed the very good performance of 
classification (Figure 1). The sensitivity was 83.6% and 
69.5% for patients with advanced stage (IIIB-IV) and for 
patients with early stage (I-IIIA), respectively, if a risk 
score of 0.434 was chosen as cutoff. As expected, most of 
control subjects (76.5%) had very low risk score ranged 
0-0.2.

Cross-validation of classification model

We applied repeated random sub-sampling method 
to evaluate how well the classification model generalized 
and verify the performance of our results. Among 15 genes, 
six genes (DUSP6, EIF2S3, GRB2, MDM2, POLDIP2, 
and RNF4) were identified as the most significant factors 
(p values < 0.001) for all training models constructed 
from 100 random samples. In addition, NF1 and WEE1 
were also identified as significant factors in 86% and 
69% of 100 training models, respectively. These results 
demonstrated that these eight markers showing significant 
association with NSCLC were consistent with the LCM 
model (Table 3) using the total sample. Moreover, each 
training model was tested using testing data (N = 50) for 
each random sub-sampling. There were a total of 5000 
testing data after 100 times sub-sampling. The average 
AUC from 100 samples was excellent (0.92), as was the 
classification model using the total sample. In addition, 

the performances of training models were evaluated with 
five cutoff values, including 0.622, 0.5, 0.434, 0.321, and 
0.226 (Supplementary Table S1). The average sensitivity 
ranged from 73.1% to 86.5%, and the average specificity 
was between 90.8% and 76.6%, corresponding to these 
five cutoff values. The predictive accuracy was over 80% 
(81.9–84.1%). In summary, the overall performance of 
training models for cross-validation was very good.

An independent sample was additionally included 
for validation. This validation set contained 29 cases 
with early stage (I-II) of NSCLC disease. There were 
19 (65.52%) female, 14 (48.28%) cases younger than 65 
years old, and 10 (34.48%) smokers. The sensitivity for 
this independent validation set was 75.86% based on the 
classification model for total sample (Table 3), when the 
cutoff value set at 0.434.

Age- and gender-dependent NSCLC-associated 
molecular markers

We further stratified participants into four 
subpopulations to explore age- and gender-dependent 
molecular markers of lung cancer. Groups based on 
different genders (men and women) and ages with the 
cut-off at 65 years were analyzed separately. Four logistic 
models after controlling for smoking history resulted in 
four different gene signatures on the basis of 11 NSCLC-
associated markers (Table 4). Overall, three significant 
markers, the CPEB4, MCM4, and STAT2 genes, were 

Table 3: Multivariate analysis and selection of significant NSCLC-associated molecular markers in the total sample 
(N = 497). #* 

Gene OR 95%CI of OR p StdEst

DUSP6 7.71 4.20 14.13 0.0000 0.91

GRB2 7.41 3.63 15.13 0.0000 0.87

MDM2 5.36 2.47 11.65 0.0000 0.59

EIF2S3 0.22 0.10 0.48 0.0002 -0.45

NF1 0.35 0.14 0.88 0.0255 -0.27

POLDIP2 0.16 0.07 0.35 0.0000 -0.71

RNF4 0.22 0.09 0.55 0.0014 -0.49

WEE1 0.47 0.25 0.86 0.0150 -0.28

C statistic 0.924

OR: odds ratio; CI: confidence interval; StdEst: standardized coefficients;
# The multiple logistic model contains 15 expressed genes, with controlling for age, gender and smoking status. The other 
seven molecular markers (CPEB4, EXT2, IRF4, MCM4, MMD, STAT2 and ZNF264) were not significantly associated with 
NSCLC.
* The performance of this model is presented as the sensitivity and specificity depending on the cut-off value chosen, for 
instance:
Cut-off value = 0.434, sensitivity = 0.807, specificity = 0.906
Cut-off value = 0.321, sensitivity = 0.861, specificity = 0.855
Cut-off value = 0.226, sensitivity = 0.904, specificity = 0.774
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selected in addition to those for the LCM model. The 
expression of DUSP6 gene was the only common factor 
showing significant associations with NSCLC in all four 
subpopulation models. The other 10 significant markers 
included three age-dependent markers (MDM2, NF1, and 
WEE1), one male-dependent marker (POLDIP2), and six 
age/gender-dependent markers (CPEB4, EIF2S3, GRB2, 
MCM4, RNF4, and STAT2) (Table 4). The C statistic 
showed excellent performance (AUC > 0.9) for the three 
age/gender-dependent models based on female and old 
men subpopulations. The model for the younger men 
subpopulation was almost excellent (AUC = 0.895).

The influence of the expression of DUSP6 gene, 
was stronger in the older populations in terms of the odds 
of having lung cancer. The odds ratio increased from 

4.25 to 13.64 and from 4.13 to 34.21 for women and 
men, respectively, for every unit increase in the relative 
expression of the DUSP6 gene. Moreover, the DUSP6 
gene was the most important factor in the model for the 
older women (StdEst = 1.29).

Among the three age-dependent markers, an 
increased relative expression of NF1 and WEE1 genes 
had a protective effect on subjects, whereas an increased 
relative expression of MDM2 gene was a risk factor for 
developing lung cancer. In particular, the expression of 
NF1 gene presented as a significant and strong protective 
predictor only for the elderly in our analysis. For every 
unit increase in the relative expression of NF1 gene, the 
odds of having lung cancer dropped by approximately 
90% (OR = 0.1). Relative expression levels of the WEE1 

Figure 1: Histogram of risk score of samples (Proportion): A. Controls; B. Cases with early stage disease and C. Cases with 
advanced stage disease. The risk score is calculated using LCM classification model (Table 3).
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and MDM2 genes were common significant predictors for 
the younger groups but had different effects depending 
on the gender. An increased relative expression of WEE1 
gene decreased the odds of having lung cancer by 74% for 
younger men and by 93% for younger women. In addition, 
an increased relative expression of MDM2 gene was a 
stronger risk factor for younger men (OR = 7.34) than for 
younger women (OR = 4.81). The expression of WEE1 
gene (StdEst = −0.96) was the most important predictor in 
the model for the younger women, whereas the expression 
of MDM2 gene (StdEst = 0.73) was the most important 
predictor in the model for the younger men.

The only significant gender-dependent predictor was 
the expression of POLDIP2 gene in men and its effect was 
stronger in the older group. For each unit increase in the 
relative expression of POLDIP2 gene, the odds of having 
lung cancer decreased by 72% and 99% for younger and 
older men, respectively. Furthermore, the POLDIP2 gene 
was the most influential predictor in the model for older 
men (StdEst = −1.77).

The other six significant age/gender-dependent 
NSCLC-associated markers found had particular 
specificities for each stratified sample. In terms of logistic 
models for the female subpopulations, the expression of 
STAT2 gene for younger women was significant, whereas 
the MCM4 and RNF4 genes were included in the model 
for older women. For every unit increase in the relative 
expression of STAT2 and RNF4 genes, the odds of having 
lung cancer dropped by 74% and 84%, respectively. In 

contrast, the higher the relative expression of MCM4 gene 
in older women, the more likely they were to have lung 
cancer (OR = 6.31).

Logistic models for the male subpopulations showed 
that the expression of CPEB4, EIF2S3, and GRB2 genes 
was additional age-dependent. EIF2S3 gene expression 
was a significant protector in the model for younger men, 
with the odds of having lung cancer decreasing by 79%. 
Finally, higher relative expression levels of the CPEB4 
gene (OR = 5.00; StdEst = 0.97) and GRB2 gene (OR = 
20.33; StdEst = 1.37) presented significant risk for the 
development of NSCLC in older men.

Cross-validation for logistic models using age/
gender-stratified samples

Leave-one-out validation resulted in the selection 
of identical gene signature for each stratified sample. For 
older subjects, both men and women, all selected markers 
were 100% significant in all leave-one-out training 
models. For younger subjects, both men and women, 
three markers showed slight difference in significance in 
leave-one-out training models in comparison with original 
stratification models: (a) For younger women, STAT2 was 
selected as significant for 90% of training models. (b) For 
younger men, POLDIP2 and EIF2S3 were significant for 
98.1% and 81.5% of training models, respectively.

The average AUC for leave-one-out training models 
for each stratified sample (younger women, older women, 

Table 4: Multivariate analysis and selection of NSCLC-associated molecular markers based on age- and gender-stratified 
subpopulations. # 

N(Case)
N(Control)

Younger women N=100 Older women N=107 Younger men N=108 Older men N=182

39
61

34
73

42
66

72
110

Gene OR 95% CI StdEst OR 95% CI StdEst OR 95% CI StdEst OR 95% CI StdEst

CPEB4 5.00 2.09 11.97 0.97

DUSP6 4.25 1.69 10.65 0.66 13.64 4.23 44.06 1.29 4.13 1.74 9.79 0.63 34.21 6.67 175.39 1.46

GRB2 20.33 4.99 82.77 1.37

MCM4 6.31 1.83 21.84 0.70

MDM2 4.81 1.30 17.82 0.51 7.34 1.99 27.05 0.73

EIF2S3 0.21 0.05 0.97 -0.45

NF1 0.10 0.02 0.47 -0.55 0.10 0.02 0.46 -0.63

POLDIP2 0.28 0.09 0.86 -0.49 0.01 0.00 0.08 -1.77

RNF4 0.16 0.04 0.64 -0.54

STAT2 0.26 0.07 0.94 -0.39

WEE1 0.07 0.02 0.27 -0.96 0.26 0.09 0.76 -0.51

C statistic 0.907 0.930 0.895 0.970

OR: odds ratio; CI: confidence interval; StdEst: standardized coefficients
# Each multiple logistic model contains significant genes with controlling for smoking status.
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younger men, and older men) was excellent (0.907, 
0.930, 0.896, and 0.970, respectively). The corresponding 
standard errors were very small, ranging from 0.003 to 
0.019. For each age/gender-stratified sample, three or 
four cutoff values were chosen to evaluate the predicative 
accuracy of leave-one-out training models (Supplementary 
Table S2). We took the cutoff value 0.5 to illustrate our 
findings. For women and younger men, the average 
sensitivity was higher than 76% and higher than 82%, 
respectively, while the average specificity was 90% and 
83%, respectively. The average accuracy was 85% for 
women and younger men. Finally, all three indices were 
higher than 85% for the older men.

Stage-dependent NSCLC-associated molecular 
markers

Two case–control subpopulations, including early-
stage cases (stage I–IIIA) vs. all non-cancer controls 
and advanced stages (stage IIIB–IV) vs. all non-cancer 
controls, were investigated. The logistic models resulted 
in the selection of six and eight significant NSCLC-
associated markers in the early-stage (Table 5) and 
advanced-stage (Table 6) subpopulations, respectively. 
Particularly, six genes identified in the early-stage model 
were also included in the advanced-stage model and 
the LCM model (Table 3). Although the trend for the 
classification was similar for the two stage-dependent 
models, the magnitudes of the expression of DUSP6, 
GRB2, and MDM2 genes were very different on the basis 
of their odds ratios. For every unit increase in the relative 

expression of DUSP6 and GRB2 genes, the odds of early-
stage disease increased by 5.43 and 5.52, whereas the 
odds of advanced-stage disease increased by 12.49 and 
20.48, respectively. Moreover, for every unit increase in 
the relative expression of MDM2 gene, the odds of having 
early-stage lung cancer increased by 12.36 and 4.43 for 
advanced-stage disease. In addition, the expression of 
MDM2 gene had the strongest effect for the early-stage 
model (StdEst = 0.76, p < 0.0001), whereas the expression 
of GRB2 gene was the most significant factor for the 
advanced-stage model (StdEst = 1.29, p < 0.0001).

Moreover, the STAT2 (OR = 0.32) and WEE1 
genes (OR = 0.29) were identified as NSCLC-significant 
protective markers for the advanced-stage model, but 
not for the early-stage model. Finally we noticed that 
the expression of STAT2 gene became significant in the 
advanced-stage model rather than the transcript of the NF1 
gene for the LCM model.

Detection of the risk of developing lung cancer by 
stage-dependent models (early stage and advanced stage) 
achieved the performance with AUC of 0.883 and 0.953, 
respectively (Tables 5 and 6).

DISCUSSION

Early detection improves the survival of patients 
with lung cancer. Several biomarkers have been identified 
by analyzing tumor specimens obtained by biopsy or 
surgical resection during initial diagnosis [12]; however, 
in clinical practice, blood samples are more feasible for 
biomarker evaluation. Assessment of gene expression from 

Table 5: Multivariate analysis of NSCLC-associated molecular markers based on stage-stratified subpopulations 
containing early-stage (I–IIIA) NSCLC cases (n = 59) and all non-cancer controls (n = 310). #*

Variable OR 95%CI of OR p StdEst

DUSP6 5.43 2.46 12.01 0.0000 0.67

GRB2 5.52 2.28 13.36 0.0002 0.70

MDM2 12.36 4.01 38.09 0.0000 0.76

EIF2S3 0.19 0.07 0.57 0.0028 -0.42

POLDIP2 0.16 0.06 0.44 0.0004 -0.68

RNF4 0.21 0.06 0.74 0.0149 -0.49

C statistic 0.883

OR: odds ratio; CI: confidence interval; StdEst: standardized coefficients;
# The multiple logistic model contains 15 expressed genes, with controlling for age, gender, and smoking status. The other 
seven molecular markers (CPEB4, EXT2, IRF4, MCM4, MMD, NF1, STAT2, WEE1, and ZNF264) were not significantly 
associated.
* The performance of this model is presented as the sensitivity and specificity depending on the cut-off value chosen:
cut-off value =0.391, Sensitivity = 0.661, Specificity = 0.952
cut-off value =0.224, Sensitivity = 0.763, Specificity = 0.900
cut-off value =0.172, Sensitivity = 0.763, Specificity = 0.855
cut-off value =0.127, Sensitivity = 0.797, Specificity = 0.800
cut-off value =0.100, Sensitivity = 0.847, Specificity = 0.735
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whole blood or PBMCs has been documented as a valuable 
method for lung cancer diagnosis and prognosis [20–24]. 
Several mRNA markers in the peripheral blood of patients 
with NSCLC were tested by PCR with limited sensitivity 
[13–18, 25]. Those that were more representative NSCLC 
classifiers, such as the PBMC-based 29-gene panel and 
the whole blood-based 484 NSCLC-specific features, were 
able to distinguish patients with NSCLC from individuals 
with non-malignant lung disease [20, 23].

We identified 11 quantitative PCR-based NSCLC-
associated markers using logistic regression analyses in 
our age- and gender-matched case–control study; these 
included CPEB4, DUSP6, EIF2S3, GRB2, MCM4, 
MDM2, NF1, POLDIP2, RNF4, STAT2, and WEE1. 
These statistically significant markers in our study were 
very different from those of other blood-based studies. 
One major reason may be the use of lung tumor tissue 
as the initial screening for candidate genes. In general, in 
tumor tissue, cancer cells are more abundant than immune 
cells; thus, those preselected candidate genes were more 
likely to be direct cancer-associated markers in our PBMC 
study. In contrast, immune cells are the dominant cell type 
for gene expression profiling when the whole blood or 
PBMC fractions are used as the initial screening material. 
Cancer-related immune responses are expected to be the 
predominantly detected signals. Previously identified 
NSCLC classifiers using PBMC and whole blood as initial 
screening materials were enriched in immune-associated 
genes [20, 23]. The authors assumed that cancer cells 
secreted cytokines and/or immune factors and that the 

communication between immune and cancer cells led 
to the altered gene signatures in patients with NSCLC 
compared with the normal subjects.

In contrast to findings of other blood-based studies, 
we found at least four NSCLC-associated markers 
that were involved in Ras/MAP kinase and cell growth 
control pathways highly relevant to cancer: DUSP6, 
GRB2, MDM2, and NF1 [26–30]. Of the rest, CPEB4, 
MCM4, RNF4, STAT2, and WEE1 were also shown to 
correlate with a number of cancer types [12, 31–41]. 
In addition, five of the genes that we identified in this 
study, CPEB4, DUSP6, NF1, RNF4, and STAT2, were 
previously proposed as prognostic markers for NSCLC 
[12, 39], whereas changes in the expression of MCM4 and 
WEE1 were associated with lung cancer development [33, 
41]. Notably, while several aspects in the study design, 
including the preliminary screening of candidate genes 
from PBMCs and tissues and the composition of subjects 
with regard to ethnicity, gender ratios, age, cancer subtype, 
and stage were different between those studies and ours, 
one common factor was the utilization of patient PBMCs.

The probability of developing invasive cancer 
increases with age, from 0.2% to 6.7% from birth to 
>70 years, respectively, in men and from 0.2% to 4.9%, 
respectively, in women [42]. However, the molecular 
basis of age and gender effects on cancer incidence 
remains unclear. Our age- and gender-stratified study 
provided the very first information about age- and/or 
gender-dependent NSCLC-associated markers. First, an 
increased relative expression of DUSP6 was a significant 

Table 6: Multivariate analysis of NSCLC-associated molecular markers based on stage-stratified subpopulations 
containing advanced-stage (IIIB-IV) NSCLC cases (n = 128) and all non-cancer controls (n = 310). #* 

Variable OR 95%CI of OR p StdEst

DUSP6 12.49 5.55 28.12 0.0000 1.10

GRB2 20.48 7.12 58.91 0.0000 1.29

MDM2 4.43 1.61 12.16 0.0039 0.52

EIF2S3 0.23 0.08 0.67 0.0066 -0.42

POLDIP2 0.10 0.04 0.30 0.0000 -0.87

RNF4 0.25 0.08 0.82 0.0228 -0.45

STAT2 0.32 0.12 0.85 0.0219 -0.35

WEE1 0.29 0.13 0.62 0.0017 -0.46

C statistic 0.953

OR: odds ratio; CI: confidence interval; StdEst: standardized coefficients;
# The multiple logistic model contains all 15 expressed genes, with controlling for age, gender, and smoking status. The 
other seven molecular markers (CPEB4, EXT2, IRF4, MCM4, MMD, NF1, and ZNF264) were not significantly associated.
* The performance of this model is presented as the sensitivity and specificity depending on the cut-off value chosen:
cut-off value =0.514, Sensitivity = 0.781, Specificity = 0.952
cut-off value =0.311, Sensitivity = 0.859, Specificity = 0.903
cut-off value =0.187, Sensitivity = 0.914, Specificity = 0.852
cut-off value =0.125, Sensitivity = 0.953, Specificity = 0.768
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NSCLC risk factor in all four subpopulation models, 
suggesting an essential role for DUSP6 expression 
during tumorigenesis and metastasis of NSCLC. 
Our findings are in agreement with those reported 
by Lee and colleagues who demonstrated a positive 
correlation between high DUSP6 expression and lung 
adenocarcinoma [43], because the majority of our case 
subjects (73.8%) had lung adenocarcinoma.

Second, most of the genes investigated in this study 
exhibited additional correlations with gender and age, such 
as male dependency (POLDIP2), age dependency (MDM2, 
NF1, and WEE1), and age and gender dependency 
(CPEB4, EIF2S3, GRB2, MCM4, RNF4, and STAT2). 
Our analysis results confirmed our presumption that 
some disease-related factors only for a particular age and/
or gender subpopulation. For example, CPEB4, MCM4, 
and STAT2 was specifically selected for older men, for 
older women, and for younger women, respectively. To 
the best of our knowledge, there are a limited number of 
reports on the direct correlations between these molecular 
markers and demographic factors (i.e., age and gender) 
of NSCLC patients. For instance, a higher expression 
of MDM2 was observed in younger women with breast 
cancer [44], whereas Adami and colleagues reported 
positive effects of female sex hormones on the incidence 
of lung cancer in women receiving hormone replacement 
therapy, particularly in those with a history of smoking 
[45]. In addition, Magnussen and colleagues [46] showed 
a correlation between high WEE1 expression and vulvar 
squamous cell carcinoma prevalence in younger patients. 
One possible reason for the important protective effect of 
WEE1 expression in younger subjects is its role in mitotic 
control in active juvenile cells. Further investigation 
is warranted to ascertain the correlations between these 
markers and age and gender.

The severity of primary lung cancer is currently 
determined by the TNM staging system; however, NSCLC 
recurrence in certain early-stage patients is common, albeit 
unpredictable, following surgical tumor resection [47]. 
Uramoto and Tanaka [48] proposed several factors to 
explain this phenomenon, including occult micrometastatic 
cancer cells and circulating tumor cells. We explored 
PBMC-based stage-dependent gene signatures using 
stage-stratified subpopulations and specifically identified 
two advanced stage-dependent genes (STAT2 and WEE1), 
in addition to six common NSCLC-associated genes 
(EIF2S3, DUSP6, GRB2, MDM2, POLDIP2, and RNF4). 
It is intriguing that the expression of STAT2 was associated 
specifically with younger female subjects, whereas WEE1 
expression was associated with younger age in both 
genders in age/gender-stratified analyses. We propose 
that the expression of STAT2, as well as WEE1, is more 
robust as prognostic factors for earlier recurrence and/
or distant metastasis in younger NSCLC patients than in 
older NSCLC; this hypothesis remains to be examined in 
future work.

The logistic regression models established in our 
study were useful in the classification of subjects with 
lung cancer risk. The majority of classification models 
delivered very good to excellent performance with the 
area under the receiver operating characteristic curve 
(AUC) ranging from 0.883 to 0.970. The model for the 
older male subpopulation was the strongest, which may 
be due to the larger sample size after stringent controlling 
for age and gender. Moreover, the cross-validation of 
logistic models for total sample and for age- and gender-
stratified sample confirmed the significance of the selected 
NSCLC-associated markers and their high predictive 
accuracy. In addition, the sensitivity for an independent 
validation sample was 75.86% using the classification 
model for total sample with the cutoff value at 0.434. 
More clinical samples should be included for validation 
as future work. Overall, four characteristics were the 
most likely contributors to the excellent performance of 
our classification model. First, the candidate genes were 
obtained from tumor tissues by initial screening. The 
second character was the comparable cancer incidence 
rate between the included control subjects and general 
population. Finally, matched age and gender between 
cases and controls, as well as the smoking status were 
controlled for the logistic model.

There were some limitations in this study. First, the 
frequency of non-smoker subjects was higher in the non-
cancer control group than that in the NSCLC case group, 
and the study groups were not matched for smoking status. 
In addition, the smoking amount was not considered in the 
analysis, and its influence on gene expression in healthy 
subjects and patients with lung cancer remains unknown. 
Second, all patients participating in this study were Asian, 
and utility of the eight-gene classification model, as well 
as age-, gender-, and stage-dependent signatures, in 
detecting potential lung cancer cases in other ethnicities 
requires further investigation. Third, the PBMC-based 
method may result in lower sensitivity for detection of 
NSCLC at early stage, especially stage I-II, because the 
tumor is majorly localized in the lung at this stage.

In conclusion, we demonstrated a promising 
PBMC-derived method for NSCLC detection based on 
gene signatures. Our eight-gene classification model 
may provide a feasible, minimally invasive method for 
the identification of those patients at a higher risk for 
developing lung cancer.

MATERIALS AND METHODS

Patients, controls and blood samples

In total, 187 patients with clinically confirmed 
NSCLC were enrolled (June 2006–October 2009) in a 
prospective investigational protocol, which was approved 
by the Institutional Review Board at Tri-Service General 
Hospital (Taipei, Taiwan) (Table 1). Patients with NSCLC 
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at different clinical stages were classified according to the 
TNM system, American Joint Committee on Cancer 7th 
edition, including 36 (19.25%) stage I, 8 (4.28%) stage 
II, 15 (8.02%) stage IIIA, 42 (22.46%) stage IIIB, and 86 
(45.99%) stage IV. Pathologically, 138 (73.8%) patients 
had adenocarcinoma, 14 (7.5%) had squamous cell 
carcinoma, and 35 (18.7%) had other types of NSCLC.

The non-cancer controls were 310 volunteers who 
had come to our institution for a routine health examination 
during November 2005–November 2010. They had no 
evidence of any clinically detectable cancer disease by the 
time of blood sample collection. The majority of control 
subjects did not have any suspicious lung nodules by 
X-ray radiograph during the study period. The follow-up 
period of 310 controls ranged between 4.8 and 9.9 years. 
Twenty-six controls (8.39%) were censored, and the status 
of 284 controls were confirmed as with or without cancer 
as of September, 2015. Twelve of 284 (4.225%) control 
subjects were diagnosed with cancer within the follow-up 
period. More detailed was described in the Supplementary 
Materials and Methods (Section 1).

An independent validation sample containing 
29 cases with early stage (I-II) of NSCLC disease was 
included. They were enrolled during November 2012 
and August 2014 (later than the original study set). The 
investigation protocol was approved by the Institutional 
Review Board of the same hospital as for the original 
sample. Pathologically, there were 23 (79.31%) 
adenocarcinoma, three squamous carcinoma, one large 
cell carcinoma, and two NSCLC.

Samples of peripheral blood (6–8 mL) were drawn 
after obtaining written informed consent from the healthy 
volunteers and patients with NSCLC before any treatment. 
Blood samples were stored at 4°C until the peripheral 
mononuclear cell (PBMC) fraction was isolated, within 3 
hours of collection. The PBMC fraction was used for further 
preparations according to Chang et al [49], including RNA 
extraction, reverse transcription, and real-time PCR analysis. 
All RNA and cDNA were stored at −80°C before analysis.

Cell cultures

The human lung adenocarcinoma cell line A549 was 
obtained from Bioresource Collection and Research Center 
(Hsinchu, Taiwan; Cat. No. BCRC60074), and maintained 
in Ham’s F-12K medium with 2 mM glutamine adjusted 
to contain 1.5 g/L sodium bicarbonate supplemented with 
10% fetal bovine serum. The cells were incubated in 5% 
CO2 humidified at 37°C for growth. Cell cultures were split 
10-fold every 3–4 days.

Validation of reference genes for real-time PCR 
assay

Two commonly used reference genes, HPRT1 
(hypoxanthine phosphoribosylthansferase) and ACTB 

(beta-actin), were evaluated for relative quantitative real-
time PCR assay. The human lung adenocarcinoma cell line 
A549 was spiked into healthy volunteer blood samples at 
concentrations of 0, 50, 100, 300, 1000 and 3000 cells/mL, 
and processed to isolate the PBMC fraction. Total RNA 
extraction, cDNA synthesis, and real-time PCR assay were 
performed using pre-designed, gene-specific amplification 
primers, including HK-HPRT1 Primer and HK-ACTB 
Primer (Advpharma, Taiwan). The means of five repeated 
measurements (cycle number; Cp values) derived from 
graded A549-spiked samples were 28.84 ± 0.57 for the 
HPRT1 gene and 18.50 ± 0.77 for ACTB gene. The Cp 
values of HPRT1 (written as Cp[HPRT1]) presented with 
a medium–low expression level, consistent with the report 
by Dheda et al [50]. The HPRT1 was used as reference 
gene for further real-time PCR assays, because the Cp 
values of the investigated genes in our study had medium–
low expression levels.

The expression of each investigated gene in a 
sample or cell was normalized to that of the HPRT1 
gene and presented as a delta Cp value (Cp[HPRT1] − 
Cp[investigated gene]), which is inversely correlated with 
the gene expression [51].

Assessment of the sensitivity of the blood-based 
molecular assay

We used A549 cell-spiked blood samples to mimic 
blood samples derived from patients with lung cancer to 
evaluate the detection sensitivity of the current assay. The 
A549 cells were added into whole blood, with decreasing 
doses from 500–20 cells/mL. The blood sample that was 
not spiked with A549 cells was used as the reference.

All blood samples (with and without spiked A549 
cell) were simultaneously processed to isolate the PBMC 
fraction and for total RNA extraction. The correlation 
between the A549 cell number in the spiked blood sample 
and expression of keratin 19 (KRT19), an A549-specific 
molecular marker [14, 18, 52], was determined by real-
time PCR using KRT19 Primer (Advpharma, Taiwan). 
The expression of HPRT1 gene was used as a reference 
for normalization. A reaction mixture without cDNA was 
used as a negative control to confirm PCR assay quality 
for each analytic batch.

Each reaction mixture contained 1/20 volume of 
cDNA derived from 500–20 cells/mL blood. Therefore, 
the cell number equivalent was 25, 15, 5, 2.5, 2, 1.5 and 1 
cell/assay. The mean Cp(HPRT1) from all tested samples 
was 25.28, with a standard deviation of 0.21. This test 
demonstrates that the HPRT1 gene is a valid reference 
gene for our study and provides consistent Cp values 
irrespective of the cancer cell number in the sample. To 
assess the detection performance, the Cp(KRT19) of each 
sample was firstly normalized with the Cp(HPRT1), and 
the delta Cp (Cp[KRT19] − Cp[HPRT1]) was obtained. 
Then, the relative change for each spiked sample was 
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calculated as delta − delta Cp = delta Cp(reference) − delta 
Cp(spiked sample).

In summary, A549 cells at concentrations of over 5 
cells/mL blood were detected consistently using the assay 
method described.

Preliminary selection of genes for investigation

Nineteen genes were selected at the beginning of 
this study based on previous studies. Twelve of these 
genes had a hazard ratio >1, including CPEB4, DLG2, 
DUSP6, ERBB3, HGF, HMMR, IRF4, MMD, RNF4, 
NF1, STAT2, and ZNF264 [12]. Expression of these genes 
were considered as risk factors and were associated with 
a hazard ratio for death from any cause or recurrence of 
cancer. Another seven expressing genes were identified 
as significant factors affecting the incidence of NSCLC 
(unpublished results) including EIF2S3, EXT2, GRB2, 
MCM4, MDM2, POLDIP2, and WEE1.

Real-time PCR assays of 19 genes were performed 
on a small number (approximately 10) of blood 
samples for the evaluation of PCR specificity and the 
reproducibility of measurements using pre-designed, gene-
specific primer sets purchased from Advpharma, Taiwan. 
These primer sets were experimentally validated with 
the following criteria: (i) a single gene-specific amplified 
product was confirmed by DNA gel electrophoresis; (ii) 
the amplification efficiency ranged between 90% and 
95%; and (iii) the Cp-value was less than 30. After this 
preliminary test, the real-time PCR measurements of 
15 genes were found to fulfil the criteria and were thus 
applied for further investigation, including CPEB4, 
DUSP6, EIF2S3, EXT2, GRB2, IRF4, MCM4, MDM2, 
MMD, NF1, POLDIP2, RNF4, STAT2, WEE1, and 
ZNF264.

Statistical analysis

Chi-square and independent two-sample t-tests were 
first used to evaluate the bivariate associations between 
the demographics and lung cancer status, as well as 
between relative gene expression and lung cancer status. 
We used logistic regression model for estimation of the 
probability of occurrence of an event, such as lung cancer 
(Supplementary Materials and Methods; Section 2).

Model fitness was assessed by a receiver operating 
characteristic (ROC) curve which was created by plotting 
the true positive rate (TPR; sensitivity) against the false 
positive rate (FPR; 1-specificity) at various threshold 
settings. The area under the ROC curve (AUC), which is 
C statistic, was regarded as an index for the performance 
of the model. The impact level of the covariates was 
evaluated by standardized coefficient (StdEst). Models are 
typically considered to be reasonable when the C statistic 
is higher than 0.7 and strong when C exceeds 0.8 [53].

In order to explore age- and/or gender-dependent 
cancer molecular markers, we stratified participants into 
two different sexes (men and women), and then further 
into two age subpopulations with a cut-off age of 65 
years. Those older than 65 years old are considered by 
the World Health Organization as “elderly” or older 
persons in most developed countries. Moreover, NSCLC 
cases were stratified into early-stage (clinical stage 
I-IIIA) and advanced-stage (clinical stage IIIB-IV). 
These subpopulations were applied for selection of stage-
dependent markers.

Classification process can be performed for a given 
cutoff value. For example, a cutoff value could be set 
to equal to 0.5. A subject was classified as a case if the 
probability is greater than 0.5, and was classified as a 
control if the probability is smaller than 0.5.

Cross-validation was applied to evaluate how 
well the classification model generalized. (A) Repeated 
random sub-sampling method was used for total sample: 
The total dataset (N = 497) was randomly split into 
the training dataset (N = 447; 90%) and testing dataset 
(N = 50; 10%). For each split, the model was fit to the 
training dataset, and significant factors were selected 
for each training model. This random sub-sampling and 
modeling was repeated for 100 times. The predictive 
accuracy was then assessed using the testing data. The 
results of predictive accuracies were then averaged over 
100 subsamples. (B) Leave-one-out method was applied 
for age/gender-stratified samples: One dataset from 
the age/gender-stratified samples was left out for the 
leave-one-out model validation, and the rest was used 
as training dataset. Logistic regression analysis was then 
performed using the training dataset, including selected 
significant genes and a control variable (smoking status). 
The procedure was then continued until all samples 
were selected as a test sample. Finally, the quality and 
appropriateness of our study design and inclusion of 
cases and controls were confirmed according to textbooks 
written by Schulz and Grimes [54] and by Dawson and 
Trapp [55].
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