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ABSTRACT
While the mechanisms underlying apoptosis and autophagy have been well 

characterized over recent decades, another regulated cell death event, necroptosis, 
remains poorly understood. Elucidating the signaling networks involved in the 
regulation of necroptosis may allow this form of regulated cell death to be exploited 
for diagnosis and treatment of cancer, and will contribute to the understanding of 
the complex tumor microenvironment. In this review, we have summarized the 
mechanisms and regulation of necroptosis, the converging and diverging features of 
necroptosis in tumorigenesis, activation of anti-tumor immunity, and cancer therapy, 
as well as attempts to exploit this newly gained knowledge to provide therapeutics 
for cancer.

INTRODUCTION

In multicellular organisms, the balance between cell 
death, proliferation and differentiation is crucial for the 
maintenance of organ development, tissue homeostasis, 
and aging. For many years, the three basic types of cell 
death, type I, II, and III, could be distinguished according 
to morphological, enzymological, and functional criteria. 
Type I, apoptotic cell death, is defined by an ensemble of 
morphological features including chromatin condensation, 
nuclear fragmentation, cell shrinkage, plasma membrane 
blebbing, and the formation of an apoptotic bodies. Type 
II, autophagic cell death, is a process by which cells 
generate energy and metabolites by digesting organelles 
or macromolecules. Type III, necrosis, is characterized by 
a lack of stereotypical morphological changes, but does 
eventually result in the rounding of the cell, cytoplasmic 

swelling, and the rupture of the plasma membrane and the 
spilling of the intracellular contents [1-2].

The field of cell death research has rapidly 
developed, resulting in the recommendation of updated 
cell death classification criteria by the Nomenclature 
Committee on Cell Death [2]. For example, necrosis has 
for a long time been considered an accidental mode of cell 
death. However, it was recently recognized that a form 
of cell death morphologically classified as necrosis could 
also be regulated in a programmed manner via defined 
signal transduction pathways (termed necroptosis) [3-
5]. Multiple lines of evidence indicate that necrosis can 
be a programmed event: (I) cell death with a necrotic 
appearance can contribute to embryonic development and 
adult tissue homeostasis; (II) necrotic cell death can be 
induced by ligands that bind to specific plasma membrane 
receptors, (III) necrosis can be regulated by genetic, 
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epigenetic, and pharmacological factors [6]; (IV) the 
cellular disintegration phase of necrosis is characterized 
by an identical sequence of sub-cellular events, 
including oxidative burst, mitochondrial membrane 
hyperpolarization, lysosomal membrane permeabilization 
and plasma membrane permeabilization, although 
with different kinetics [7]; and (V) the inactivation of 
caspases causes a shift from apoptosis either to cell death 
morphologies with mixed necrotic and apoptotic features 
or to full-blown necrosis [8].

The molecular mechanisms involved in necroptosis 
have been intensively studied in recent years. In principle, 
a multitude of different stimuli can initiate necroptosis, 
comprising mainly of three phases of signal transduction, 
including an initiation and an execution phase associated 
with the loss of cell and organelle integrity. The execution 
necroptosis phase involves activation of specific death 
mediators, such as receptor-interacting protein kinases 
(RIPKs) and mixed-lineage kinase domain-like protein 
(MLKL) [9-10].

Accumulating evidence indicates that necroptosis is 
involved in the regulation of cancer [11-16]. It is widely 
accepted that evasion of cell death is one of the hallmarks 
of cancer [17-18]. Many lines of clinical and experimental 
evidence have demonstrated that defects in cancer 
cell death are the most frequent causes of therapeutic 
resistance, and thus exploring cancer cell death might 
inform development of strategies to overcome therapeutic 
resistance. Although the molecular mechanisms 
underlying necroptosis need to be further elucidated, it 
is becoming clear that further insights into the signaling 
networks involved in regulation of necroptosis will likely 
have important implications for the exploitation of this 
form of regulated cell death for the diagnosis or treatment 
of cancer in the complex tumor microenvironment. With 
these aims in mind, in this review, we summarize the role 
of necroptosis in tumorigenesis, activation of anti-tumor 
immunity, and cancer therapy.

MECHANISMS AND REGULATION OF 
NECROPTOSIS

Considering the emerging significance of 
necroptosis in cancer, a better understanding of 
the molecular mechanisms underlying necroptotic 
signaling will likely have important implications for 
the development of novel methods to interfere with 
necroptosis in cancer. In principle, a multitude of different 
stimuli can initiate necroptotic cell death, which mainly 
comprises three phases of signal transduction, including an 
initiation and an execution phase, finally causing the loss 
of cell and organelle integrity and cell death (Figure 1).

Initiation of necroptosis

Necroptosis can be elicited by a range of stimuli, 
from cytokines, viral infection, chemicals, or damage-
associated molecular patterns (DAMPs), to several 
forms of physicochemical cellular stress [19]. Different 
necroptotic stimuli are recognized or sensed by specific 
receptors or sensors on the cell surface or cell interior. 
A range of receptor-sensor complexes can initiate the 
necroptotic response to different stimuli, although the 
nature of some of these complexes is presently unknown. 
We focus on the components of TNF-α signaling, because 
this signaling pathway is the most extensively studied 
inducer of necroptosis [9]. Under some conditions, 
TNF signaling occurs primarily through TNF receptor 
1 (TNFR1), a potent inducer of induced cell death. 
However, early evidence demonstrated that TNF induces 
caspase-independent cell death by a mechanism involving 
activation of RIPK1 [3, 20-21]. Also important is the 
identification of necroptotic inhibitor necrostatin-1 (Nec-
1) targeting RIPK1 that indicated that TNF-α induced 
necroptosis is a kinase-regulated process [16, 22]. In 
addition, RIPK3 was reported to be an essential regulator 
of TNF-α induced necroptosis [22-24], and TNF-α 
stimulation was reported to induce the formation of a 
necrosome in which RIPK3 is activated to interact with 
RIPK1 via the RIP homotypic interaction motif (RHIM) 
initiating necroptosis [23-25].

Besides TNF-α, there are five different stimulators 
of necroptosis. (I) Fas or tumor necrosis factor related 
apoptosis inducing ligand receptor (TRAILR): stimulation 
of Fas or TRAILR induces formation of the receptor-
bound death inducing signaling complex that triggers 
caspase-8 mediated apoptosis independent of RIPK1. 
Under particular conditions, such as the absence of 
cellular inhibitors of apoptosis (cIAPs), which favor the 
recruitment of RIPK1 to Fas [26], and the formation of 
a cytosolic ripoptosome complex [27], which mediates 
necroptosis when caspase-8 is blocked. (II) Toll-like 
receptor-4 (TLR4) and Toll-like receptor-3 (TLR3): TLR4 
or TLR3 stimulation triggers formation of the necrosome 
through the RHIM containing adapter Toll/IL-1 receptor 
domain containing adaptor protein inducing interferon 
(IFN)-β (TRIF), resulting in RIPK3 dependent necroptosis 
in which the role of RIPK1 depends on the cellular 
context. (III) double-stranded DNA viruses such as murine 
cytomegalovirus (MCMV): DNA dependent activator of 
IFN regulatory factors recognize viral double-stranded 
DNA and, through its RHIM domain, recruits RIPK3 
to induce formation of the necrosome without RIPK1, 
triggering RIPK1 independent RIPK3 kinase activity 
dependent necroptosis. (IV) IFN-α and IFN-β: IFN-α and 
IFN-β induce necroptosis through their cognate receptors, 
interferon alpha receptors (IFNRs), leading to activation 
of the Janus kinase/Signal transducer and activator of 
transcription (JAK/STAT). In cells that were deficient 
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in nuclear factor κ-light-chain-enhancer of activated B 
cells (NF-κB) signaling, IFN-γ promoted accumulation of 
mitochondrial reactive oxygen species (ROS) and eventual 
loss of mitochondrial membrane potential that ultimately 
leads to necroptosis; and (V) polyinosine-polycytidylic 
acid (Poly (I:C)): Poly (I:C)-TLR3 stimulation in the 
absence of zVAD-fmk induced TRIF mediated necroptosis 
(Figure 2).

Execution of necroptosis

Efforts to further explore the execution of 
necroptosis include establishment of a robust cell-based 

model of necroptosis. By treating human colon cancer HT-
29 cells with TNF-α, about 200,000 chemical compounds 
were screened for their ability to inhibit necroptosis, and 
MLKL was identified as a critical substrate of RIPK3 
during the induction of necroptosis [28]. Meanwhile, the 
fact that MLKL pseudokinase is a substrate of RIPK3 
required for necroptosis sheds light on the mechanisms 
involved in executing necroptotic cell death downstream 
of RIPK3 [29], as RHIM-dependent oligomerization and 
intramolecular autophosphorylation of RIPK3 results in 
the recruitment and phosphorylation of MLKL at Ser 345, 
Ser 347, and Thr349 [30-32]. Further studies demonstrated 
that the phosphorylation of MLKL at Ser 345 is not 

Figure 1: TNF-induced formation of apoptotic and necroptotic signaling complexes. After ligand binds to the receptor, the 
intracellular tails of tumor necrosis factor receptor 1 (TNFR1) recruit multiple proteins to form the membrane-proximal supramolecular 
structure complex I including TNFR1 associated death domain protein (TRADD), receptor-interacting protein kinase-1 (RIPK1), cellular 
inhibitors of apoptosis (cIAPs), the E3 ubiquitin ligases TNF-receptor-associated factor 2 and 5 (TRAF2 and TRAF5). Lys63-linked 
polyubiquitination (K63-poly Ub) of RIPK1 in complex I mediated by cIAP ligases is crucial for the recruitment of nuclear factor-κB (NF-
κB) essential modulator (NEMO), a regulatory subunit of IκB kinase (IKK) complex that in turn activates NF-κB and mitogen-activated 
protein kinases (MAPKs). Deubiquitination RIPK1 by cylindromatosis (CYLD) or inhibition of cIAP proteins promote the conversion of 
complex I to complex II and inhibits NF-κB activation. Complex II contains RIPK1, Fas-associated protein with death domain (FADD), 
caspase-8, cellular FLICE-inhibitory protein-L (cFLIPL), RIPK3 and TRADD. Caspase-8 becomes activated in complex II and initiates 
apoptosis, whereas cFLIPL can prevent activation of caspase-8. In cells with high levels of RIPK3 expression, RIPK3 enters complex II 
via interaction with RIPK1 after stimulation. The RIPK3-containning complex is called complex IIb or the necrosome. In the presence of 
cFLIPL, caspase-8 is unable to initiate apoptosis but can cleave RIPK1 and RIPK3 and thus inhibits necroptosis. Depletion of FADD or 
caspase-8, inhibition of caspase-8 or induction of RIPK3 can free RIPK1-RIPK3 from inhibition and initiate necroptosis by mixed-lineage 
kinase domain-like protein (MLKL) of TNF-treated cells.
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required for interaction between RIPK3 and MLKL in 
the necrosome, but is essential for MLKL translocation, 
accumulation in the plasma membrane, and consequent 
necroptosis [33]. Taken together, two non-exclusive 
models are proposed for the executioner mechanism 
of MLKL: one as a platform at the plasma membrane 
for the recruitment of Ca2+ or Na+ ion channels [34-35], 
and the other as a direct pore-forming complex that is 
recruited through binding of the amino-terminus of the 
4-helical bundle domain of MLKL to negatively charged 
phosphatidylinositophosphates [36-38].

In addition, phosphoglycerate mutase 5 (PGAM5), 
a mitochondrial phosphoglyceratemutase, was identified 
to be another necrosome-associated protein that can 
regulate dynamic-related protein (Drp1) through its 
dephosphorylation [39-40]. It is noteworthy that the 
two variants of PGAM5 (PGAM5S and PGAM5L) 
have different functions during necroptosis, even 
though they are both required for necroptosis execution. 
After the necrosome core is formed, PGAM5L binds 
to the necrosome, unaffected by the MLKL inhibitor 
necrosulfonamide (NSA); however, NSA blocks PGAM5S. 

Figure 2: Necroptosis is induced by various stimuli. Necroptotic stimuli such as TNF-α, FasL/TRAIL, IFN-α/IFN-β, pathogen-
associated molecular patterns (LPS, poly (I:C)) via TLR activation or virus-mediated activation of DAI are recognized or sensed by specific 
receptors or sensors on the surface of or inside cells, and mediate the initiation of the necroptotic response to different stimuli, although the 
nature of some of these complexes is currently unknown. Formation of the necroptotic-signaling complex determines cell date. Different 
necroptotic complexes are found after ligation of different receptors or under genotoxic stress. When different necroptotic stimuli induced 
necroptosis, a complex called the necrosome is formed leading to RIPK3 oligomerization. MLKL could then modify ion influx, changing 
osmotic pressure, and/or forming a pore, thus causing plasma membrane rupture. In addition, necroptosis can be pharmacologically 
inhibited by Nec-1 (RIPK1 inhibitor), GSK- 843/872/840 (RIPK3 inhibitors), and NSA (MLKL inhibitor).
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In addition, multiple leading cell death laboratories 
have recently reported that PGAM5 is dispensable for 
necroptosis [41-42]. Therefore, although many cellular 
events have been reported to act downstream of the 
necroptotic-signaling complex to execute necroptosis, the 
role of PGAM5 during necroptosis remains largely elusive 
and somewhat controversial. Further investigation will be 
required to clarify the importance of these executors of 
necroptosis.

Mechanisms of necroptosis

After TNF-α binds to the receptor TNFR1, the 
intracellular tails of TNFR1 recruit multiple proteins 
to form the membrane associated protein Complex I, 
which contains TNFR1 associated death domain protein 
(TRADD), RIPK1 and the E3 ubiquitin ligases TNF-
receptor-associated factor 2 and 5 (TRAF2 and TRAF5), 
cIAPs, and the linear ubiquitin chain assembly complex 
(LUBAC) [3, 43-44]. This complex provides a platform 
for the recruitment of downstream kinases and effector 
proteins to activate NF-κB and mitogen-activated 
protein kinase (MAPK) [45-51]. NF-κB and MAPK 
are believed to initiate a survival pathway because they 
induce expression of some genes encoding cytoprotective 
molecules [52].

Under some conditions, the intracellular tails of 
TNFR1 also induce apoptosis through cytosolic complex 
IIA (TRADD, Fas-associated protein with death domain 
(FADD), and caspase-8) and IIB (RIPK1, RIPK3, FADD, 
caspase-8, and cellular FLICE-inhibitory protein-L 
(cFLIPL)), and in particular conditions or cells, necroptosis 
can be executed by necrosomes including RIPK1, RIPK3, 
and MLKL [53]. Destabilization of complex I leads 
to the formation of a second cytosolic complex IIA, 
which induced apoptosis and inhibits NF-κB activation 
[54-55]. In conditions such as TNF stimulation in the 
inhibition of cIAPs [52] or deubiquitination of RIPK1 by 
cylindromatosis (CYLD) [56-58], a cytosolic IIB complex 
forms, precipitating apoptosis. In cells with high levels of 
RIPK3 and MLKL expression, or under the conditions 
when caspase-8 activity is reduced, blocked or absent; 
complex IIB may form the necrosome [59].

Mechanisms determining the type of cell death

It is clear that programmed cell-death signaling 
pathways share some common components. For example, 
the same death stimuli can trigger different modes of cell 
death according to the molecular complexes present in 
the pathway. Different modes of cell death can also occur 
simultaneously or separately depending on the cellular 
circumstances.

Currently, the precise mechanisms that determine 
progression to necroptosis remain poorly understood. 

Numerous studies have suggested that expression 
of RIPK3 and MLKL correlates with sensitivity to 
necroptosis [24, 36, 60-64], however, a potential drawback 
of these studies is that RIPK3 and MLKL expression were 
compared between healthy and inflamed tissues. It is, 
therefore, difficult to conclude that RIPK3 and/or MLKL 
over-expression have primary causal functions. 

Caspase-8 is the most crucial factor for preventing 
necroptosis. TNF-α induced signaling towards necroptosis 
is prevented by caspase-8, and it is reported to inhibit 
necroptosis by cleaving RIPK1 [65] and RIPK3 [66], as 
well as CYLD [67]. Currently, sensitization to necroptosis 
is achieved through a genetic defect compromising 
FADD-caspase-8 signaling and thus inhibiting apoptosis 
[68-71]; and inhibition of caspase-8 causes necroptosis 
[24], suggesting that whether a cell dies by apoptosis or 
necroptosis depends on caspase-8 activity.

In addition, ubiquitination or deubiquitination of 
RIPK1 can regulate the TNFR1 signaling pathway, driving 
necroptosis in vitro and in vivo [60, 68, 72]. In contrary, 
several brakes on RIPK1, affecting the presence or 
absence of RIPK1 and its post-translational modifications 
such as ubiquitylation and phosphorylation, can also 
inhibit necroptosis. Although ubiquitination has clearly 
emerged as a major regulatory mechanism, the substrates, 
exact linkage composition of the different chains, and the 
precise roles of the diverse related enzymes remain to be 
clarified [73-75].

NECROPTOSIS IN TUMORIGENESIS

Necroptosis was recently reported to play a very 
important role in tumorigenesis as a backup cell death 
mechanism in cancer cells. Hitomi et al. [72] used a 
genome-wide screen using small interfering RNAs to 
delineate a cellular signaling network that regulated 
necroptosis and implicated two suppressor genes, CYLD 
and EDD1, and four Ras related proteins in regulation 
of necroptosis, which suggested a possible function of 
necroptosis in tumorigenesis.

Yang et al. [76] reported that the ratio of RIPK3-r, 
a truncated splice variant of RIPK3, to RIPK3 was 
significantly increased in colon and lung cancers relative 
to matched normal tissues, indicating that RIP3-r may 
be a major splice form associated with tumorigenesis. 
Furthermore, the RIPK3 gene is located on chromosome 
14q11.2, a locus frequently altered in many cancers 
including nasopharyngeal carcinoma and T cell 
leukemia/lymphoma [77]. In non-Hodgkin lymphoma, 
polymorphisms in the RIPK3 gene were identified and 
found to correlate with increased risk of tumors [78].

Mutations in the CYLD gene in tumorigenic 
epidermal cells increase the aggressiveness of carcinomas, 
mainly by enhancing expression of angiogenic factors, 
thereby playing a key role in epidermal cancer malignancy 
[79-80]. In chronic lymphocytic leukemia cells (CLL), 
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RIPK3 and CYLD were downregulated and lymphoid 
enhancer-binding factor 1 (LEF1) acts as a transcription 
repressor for CYLD [81]. Taken together, necroptosis may 
play a very important role in tumorigenesis [82].

NECROPTOSIS BACKS UP TUMOR 
IMMUNE ACTIVATION

The idea that cell death may precede, trigger 
or amplify immunity has recently gained increasing 

attention. Similar to apoptotic cells, necroptotic tumor 
cells can induce anti-tumor immunity, necroptotic tumor 
cells can be cleared by innate immune phagocytic cells 
and engulfed by dendritic cells, macrophages, monocytes, 
and neutrophils, inducing release of pro-inflammatory 
cytokines and chemokines, upregulation of stimulatory 
molecules and enhanced cross-presentation, and eventual 
trigger of adaptive immune responses (Figure 3).

Figure 3: The concept that cell death may precede, trigger or amplify immunity has gained increasing attention. 
Immune activation phagocytic cells (dendritic cells, macrophages, monocytes, and neutrophils) can identify and engulf necroptotic tumor 
cells, inducing production of pro-inflammatory cytokines and chemokines, up-regulation of stimulatory molecules and enhanced cross-
presentation; and, eventually, triggering of adaptive immune response.
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Necroptotic cell clearance

Higher-level organisms have developed impressively 
efficient immune mechanisms to clear dying cells, for 
which the capability to distinguish dying from viable cells 
is crucial [83]. The sophisticated process of apoptotic 
cell removal involves several distinct phases, phagocyte 
recruitment, the engulfment of target cells, and the post-
phagocytic response [84-86]. Phagocyte recruitment is 
accomplished by the release of soluble “find-me” signals 
from the dying cell [87-88]. Similar to apoptotic cells, the 
most likely candidates for necroptotic cell derived “find-
me” signals are monosodium urate (MSU) crystals [89], 
high mobility group box 1 protein (HMGB1) [90], and 
annexin A1 [91-92]. When phagocytes reach the dying 
cells, they identify and recognize “eat-me” signals, which 
are exposed on the surface of the dying cell. Specific “eat-
me” signals of necroptotic cells include annexin A1 [92-
93], phosphatidylserine (PS) [94-95], and the C-type lectin 
Clec9A [96-98]. After dying cells are engulfed, phagocytic 
cells, including dendritic cells, macrophages, monocytes, 
and neutrophils can produce pro-inflammatory cytokines 
and chemokines, up-regulate stimulatory molecules and 
enhance cross-presentation, eventually triggering adaptive 
immune responses [99-100]. In addition, Martinez et al 
found that LC3-associated phagocytosis may play a key 
role in the clearance of dying cells and inflammation in the 
control of systemic lupus erythematosus [101]. Of course, 
further studies will be required to clarify the mechanisms 
of necroptotic cell clearance.

Effect of necroptosis on pro-inflammatory 
cytokine production

Necroptosis is thought to directly trigger 
inflammation through a massive release of DAMPs 
including HMGB1, interleukin family cytokines, 
adenosine triphosphate (ATP), and so on, which are 
released by necrotic cells [102]. However, necrotic cells 
can inhibit inflammatory reactions under some conditions 
[103-104]. For example, macrophages can engulf 
necroptotic L929 cells without producing inflammatory 
cytokines [98], highlighting an unexpected complexity in 
the immune response to necrotic cells. Theoretically, acute 
release of DAMPs could enhance the pro-inflammatory 
effect of necroptosis; however, the role of specific 
DAMPs in necroptosis induced in inflammation has not 
been functionally validated. While DAMPs appear to be 
involved in necroptosis-induced inflammation, their role 
awaits in vivo experimental validation.

Necroptotic cell induction of anti-tumor immune 
response

Dying cells induce DAMPs and initiate adaptive 
immunity by providing both antigens and inflammatory 
stimuli for DCs, which in turn activate CD8+ T cells 
through antigen cross-priming [105-106]. For example, 
IFN-α/β predominantly affects macrophages, DCs, and 
natural killer (NK) cells; inducing their activation and/
or maturation, upregulating of chemokine expression, 
enhancing antigen-presentation and cross-presentation 
by DCs and a robustly augmenting induction of adaptive 
immune responses [107].

Anticancer agents induce a type of cell stress and 
death that is immunogenic; directly killing cancer cells, 
and using dead cells to provoke innate and adaptive 
immunity to attack other cancer cells [108]. For example, 
some studies demonstrated that stimulation of cervical 
cancer cells with PolyI:C, induced necroptotic cell death, 
then necroptotic cancer cells released IL-1α, which was 
required for the strong activation of DCs to produce IL-12, 
a cytokine critical for anti-tumor immune responses [109-
110]. Kang et al. [111] implicated RIPK3-PGAM5-Drp1 
signaling in NKT cell activation, and further suggested 
that RIPK3-PGAM5 signaling may mediate crosstalk 
between mitochondrial function and immune signaling. 
Aaes et al. reported that necroptotic cancer cells release 
DAMP and promote DC maturation, cross priming of 
cytotoxic T cells, and production of IFN-γ in response to 
tumor antigen stimulation [112]. Recently, using the model 
of cervical cancer, Smola demonstrated that PolyI:C 
driven immunogenicity strictly depends on the necroptosis 
regulator RIPK3 in neoplastic cells, suggesting RIPK3 as 
a novel predictive marker for personalization of cancer 
immunotherapy [113].

Although necrosis may induce effective immune 
responses, out of control necrosis could potentially cause 
irreversible tissue damage [114]. Additionally, the immune 
inflammatory cells recruited by the inflammatory factors 
released by necrotic cells may promote angiogenesis and 
cancer cell proliferation [115]. By tolerating some degree 
of necrotic cell death, invasive and metastatic tumors 
may gain growth-stimulating factors from the recruited 
tumor-promoting inflammatory cells [6]. Therefore, role 
of necroptosis of cancer and anti-tumor immune responses 
may be difficult to elucidate.

Necroptosis in T-cell expansion

Several reports indicate that necroptosis regulates 
the antigen-induced proliferation of T cells required 
for peripheral T cell homeostasis and T cell survival in 
response to activation stimuli [116]. For example, mice 
lacking caspase-8, or expressing a dominantly interfering 
form of FADD unable to recruit caspase-8 in T cells, 
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exhibited impaired T cell homeostasis and diminished 
peripheral T cell numbers [117]. Impaired expansion of 
T cells after Fyn-T cell receptor (TCR) activation was 
observed in T cells deficient in caspase-8 [118-119] or 
FADD [120], as well as in FADDdd-expressing T cells 
[121-122]. Furthermore, blockade of RIPK1 through 
Nec-1 restores the expansion defect in caspase-8 deficient 
and FADDdd-expressing T cells [123-124], as does the 
genetic knockdown of RIPK1 in FADD deficient mice 
[72]. Similarly, loss of RIPK3 can rescue defective T cell 
proliferation of caspase-8-/- or FADDdd mice [125-126], 
indicating that necroptotic signaling in T cells is regulated 
by caspase-8.

Osborn et al. [120] demonstrated that necroptosis 
occurs during the late stage of normal T-cell proliferation, 
and that this process is greatly amplified in FADD-
deficient T cells. Furthermore, in a thymidine kinase 
transfected tumor mouse model, the necrosis induced by 
a vascular target agent ZD6126, impaired the function of 
tumor-specific CD8+ T cells and abrogated a robust tumor 
specific immune response [127]. Cho et al. demonstrated 
that Nec-1 can inhibit RIPK1 dependent and independent 
necroptosis, and that a high dose of Nec-1 will inhibit 
other signal transduction pathways such as that for T cell 
receptor activation [128]. In addition, regulatory T cells 
(Tregs) are potent immune regulators and play a key role 
in maintaining peripheral tolerance. The contribution of 
two forms of programmed cell death, apoptosis and RIPK 
dependent necroptosis, to Treg-mediated suppression 
were evaluated, and it was found that Tregs can’t mediate 
suppress apoptosis or necroptosis via programmed 
cell death pathways [129]. Therefore, the capacity of 
necroptosis to trigger tumor immunity requires further 
investigation.

NECROPTOSIS IN CANCER THERAPY

Necroptosis may be linked to not only tumorigenesis 
and anti-tumor immunity, but also to the success of cancer 
treatments. Characterization of the precise mechanisms 
underlying necroptosis and the molecular switches 
between apoptosis and necroptosis, may have major 
therapeutic implications [130-131]. In particular, we will 
focus on converging and diverging evidence implicating 
necroptosis in cancer therapies, and hope that research 
into necroptosis will provide new targets for effective 
therapies.

Necroptosis as a cancer therapeutic target

As discussed above, necroptosis is often impaired 
during tumorigenesis, but can be engaged by targeted 
pharmacological approaches. It is also clear that 
necroptosis plays a pivotal role in the pathogenesis 
of cancer. Therefore, characterization of the signal 

transduction pathways underlying necroptosis may 
highlight therapeutic targets. 
Compounds and anticancer drugs

A growing list of compounds and anticancer drugs 
with various primary mechanisms of action, have been 
reported to initiate programmed necrosis or necroptosis in 
different cancer cells via mediated RIPK1, RIPK3, MLKL, 
and HMGB1 [132-166]. However, most studies on cancer 
and necroptosis are based on in vitro experiments, thus 
the efficacy and safety of these compounds and anticancer 
drugs still need investigation in vivo (Supplementary File 
1).
Kinase inhibitors

Necroptosis has been implicated in the anti-tumor 
activity of several kinase inhibitors. Bl2536, a small 
molecule inhibitor of the mitotic kinase pololike kinase 
1 (Plk1), has been reported to induce necroptosis in 
androgen-resistant prostate cancer cells [167]. Compound 
C, a widely used 5’-AMP-activated protein kinase 
inhibitor was described to induce glioma cell death 
through several mechanisms including necroptosis [168]. 
A cell permeant urokinase plasminogen activator system 
inhibitor 5’-benzylglycinyl-amiloride (UCD38B) also 
induces cell cycle independent and caspase-independent 
death of necroptotic glioma cells and breast cancer cells 
via apoptosis-inducing factors, independent of poly (ADP-
ribose) polymerase and H2AX activation [169-170]. The 
formation of ATG5 deficient autophagosomes in response 
to sorafenib promotes interaction of p62 with RIPK, 
leading to cell death by necroptosis [171-172]. In addition, 
the combination of Givinostat and Sorafenib caused 
sustained production of ROS and activation of necroptotic 
relapsed/refractory Hodgkin’s lymphoma cell death [172].
Radiation therapy and chemotherapy

In addition to the drugs and kinase inhibitors that 
promote necroptosis, radiation and/or chemotherapy can 
also induce necroptosis of cell death [173]. In tumor 
cells of epithelial origin, radiotherapy induces limited 
apoptosis, but when combined with hyperthermia has been 
reported to stimulate necroptosis [174-175]. Furthermore, 
active caspase-8 induces apoptosis in response to low-
doses radiation and inhibits necrosis by cleaving RIPK1. 
When activation of caspase-8 was reduced by high doses 
radiation, the RIPK1/RIPK3 necrosome II was formed. 
These complexes induce necroptosis through the caspase-
3-independent pathway, mediated by calpain, cathepsin 
B/D, and apoptosis-inducing factor (AIF) [176]. MyD88 
may determine whether UV irradiation causes apoptosis 
or necroptosis [177]. In addition, pan-caspase inhibitors 
can sensitize resistant colon cancer cells to 5-FU-induced 
necroptosis [178]. As radiation equipment and techniques, 
and chemotherapies improvement, further studies will be 
required to explore the potential for anticancer strategies 
to manipulate necroptosis with minimal side effects.
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Others

MicroRNAs (miRNAs) are highly conserved, small 
noncoding RNA molecules that function to regulate a wide 
variety of cellular processes including cell proliferation 
and differentiation, fate determination, signal transduction, 
organ development, host-viral interactions, tumorigenesis 
and tumor progression [179-180]. While the mechanisms 
by which miRNA regulate necroptotic cell death are not 
well understood, miRNA-874 was reported to enhance 
necroptosis by targeting caspase-8, which acts as a 
key modulator of the transition between apoptosis and 
necroptosis [181]. However, how miRNAs regulate 
other key necroptotic factors, including RIPK3, MLKL, 
and PGAM5, remains to be determined. In addition, 
nanosecond pulsed electric fields and gemcitabine induce 
similar cell death pathways, particularly in breast cancer 
MCF-7 cells; however, the two agents exhibit different 
mechanisms of necrosis, most likely necroptosis, in 
breast cancer MDA-MB-231 cells [182]. Endoplasmic 
reticulum stress can also trigger RIPK1 kinase dependent 
necroptosis [183], and viruses can induce necroptosis in 
ovarian carcinoma cells and neuroblastoma cell lines [184-
185].

Crosstalk between necroptosis and other forms of 
cancer cell death forms

Despite involving morphologically different and 
distinct molecular pathways, the pathways controlling 
different cell death modes involve complex interaction 
and crosstalk [186]. 
Induction of the mixed forms of death

Several studies have demonstrated that some drugs 
and kinase inhibitors, and heat stress, induce simultaneous 
apoptosis, necroptosis and autophagy in cancer cells 
[187-214] (Supplementary File 2). Furthermore, the 
combination of necroptotic inducers and standard 
treatments enhanced this form of cancer cell death. For 
example, gambogenic acid, one of the main components of 
Gamboge, and 5-Fu have synergistic effects on A549 cells, 
activating cell death through apoptotic and necroptotic 
mechanisms via the ROS-mitochondrial pathway 
[215]. Treatment of colorectal tumor cells with RT and 
hyperthermia also activates apoptosis and necroptosis 
[174]. These forms of cancer cell death highlight the 
interconnected nature of cell the involved pathways, and 
interdependence of the different modes of cancer cell 
death [22, 216].
Induction of apoptosis engages necroptosis

Some agents that are well-known inducers of 
apoptosis can also induce necroptosis under certain 
conditions. For example, staurosporine has been reported 
to trigger necroptosis in leukemia cells, and necroptosis 
was blocked by the RIPK1 inhibitor Nec-1 and MLKL 

inhibitor NSA [217]. The death receptor ligand TRAIL can 
also trigger necroptosis in colon and liver cancer cells at 
acidic extracellular PH [218-220]. Cancer cells shift from 
apoptosis to programmed necrosis or necroptosis when 
energy stores are depleted, such as during DNA repair 
by poly-ADP-ribose polymerase (PARP) activation, or 
switching of the extracellular PH in human HT29 and 
HepG2 cells [220-221]. However, Sosna et al. [222] 
have shown that necroptosis and PARP-1-mediated 
necrotic cell death follow two distinct routes to regulate 
necrosis. In addition, small molecule inhibitors that 
antagonize inhibitors of apoptotic proteins, such as second 
mitochondrial activator of caspases (smac) mimetics, were 
shown to cause necroptotic cell death in fibrosarcoma 
cells, breast cancer cells, and acute lymphoblastic 
leukemia, underscoring the potential clinical relevance 
of this therapeutic strategy [223-224], which is regulated 
by ROS [225]. Therefore, whether cancer cells undergo 
apoptosis or necroptosis following exposure to smac 
mimetics will be crucial for the implementation of therapy, 
and should be addressed in future studies.
Induction of necroptosis engages apoptosis

In contrast to the above-mentioned results, some 
agents inducing of necroptosis were also found to 
induce apoptosis under certain conditions. For example, 
shikomin and its analogues induced necroptosis, but in 
the presence of Nec-1, cells revert to apoptosis. The death 
mode switch is at least partially due to the conversion 
from mitochondrial inner membrane permeability to 
mitochondrial outer membrane permeability, which is 
associated with Bax translocation [226-227]. In addition, 
shikonin at low doses induces caspase dependent 
apoptosis, but at high doses induces necroptosis. Gene 
expression profiling revealed that 353 genes were 
significantly regulated by low dose shikonin and 85 
genes by high dose shikonin. Among these genes, 
the transcription factor 3 and DNA damage inducible 
transcript 3 were highly expressed following low dose 
treatment, while high doses induced tumor necrosis factor 
expression. These findings provide novel information 
about the molecular mechanism of shikonin-induced 
apoptosis and necroptosis [228]. In combination with 
a previous report [16], these findings seem to support 
the notion that apoptosis and necroptosis may function 
as reciprocal backup mechanisms. Although the precise 
molecular mechanisms by which these agents induce cell 
death modes remain to be elucidated, these results indicate 
multiple pathways for the treatment of cancer.
Induction of autophagy engages necroptosis

Little is known about how autophagy is intertwined 
with necroptosis. However, some of the first evidence to 
show that autophagy could promote cell death came from 
a system that has gone on to become the best understood 
necroptosis pathway [229-232]. In this case, autophagy 
was shown to modulate necroptosis by selectively 
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degrading the ROS scavenger enzyme catalase [233]. 
In another example, one piece of evidence suggests 
that autophagosomal membranes act as platforms for 
necrosome assembly, and serves as key sites to mediate 
necroptosis. For example, autophagosomes can act as key 
mediators of efficient necrosome formation, resulting in 
necroptotic cell death by Obatoclax (GX15-070), which is 
a compound that antagonizes Bcl-2 family proteins [152]. 
On the contrary, Bray et al. provided another example 
of the coordination between necroptosis and autophagy 
[234]. They found that concurrent mTOR inhibition by 
CCI-779 and inhibition of autophagosome maturation 
with chloroquine caused accumulation of autophagosomes 
that induced RIPK3-dependent and ROS-dependent 
necroptosis in renal cell carcinoma lines. RIPK1 may 
also degrade by autophagy. Overall, these data support 
the notion that autophagy can influence the fate of cells 
treated with compounds that induce necroptosis. However, 
the molecular underpinnings of this relationship remain 
largely elusive and somewhat controversial. Autophagy 
has been shown to induce [152, 229-233], suppress [117, 
235-236] or not be involved in necroptosis [237]. Further 
work will be required to uncover the mechanistic ties, and 
to determine how these processes are controlled.

Necroptosis overcomes therapy resistance of 
cancer

Cancer resistance is a major obstacle limiting 
the efficacy of cancer therapy. Many lines of clinical 
and experimental evidence have demonstrated that an 
apoptotic defect is the most frequent cause of cancer 
resistance [23]. First, since the neoplastic process is driven 
by oncogenic mutations that increase tumor cell number 
via activating the cell cycle and/or inhibiting the normal 
apoptotic process, cancer cells are genetically predisposed 
to apoptotic resistance. Second, since conventional 
anticancer therapies, regardless of their targets and 
mechanisms, mostly induce apoptosis, therapy resistance 
via anti-apoptotic progression appears to be inevitable, 
and the clones with greater selective advantages against 
apoptosis are destined to dominate the total cancerous cell 
population, forming cancers in an ever more relentless 
cycle [238-239].

Apoptotic defects in cancers include over-expression 
of anti-apoptotic proteins, mutations of pro-apoptotic 
proteins and the loss of caspases [239]. The blockage of a 
single pathway does not entirely block cell death; however, 
it may provoke the cell to choose an alternative death 
pathway [240]. Therefore, targeting the “weak point” of 
cancers, especially apoptotic/drug resistant cancers, is 
critical for the success of cancer therapy. The necroptotic 
pathway might be an intrinsic “weak point” under these 
circumstances, and thus exploitation of this alternative cell 
death pathway may help bypass the blockade to destroy 

therapy-resistant cancers [241].
Generally speaking, apoptosis can overshadow 

necroptosis, implying that apoptotic death is the first 
choice in most settings and that necroptosis acts only 
as an alternative to ensure cell demise [242]. However, 
induction of necroptosis by a small molecular compound 
can circumvent cancer resistance. For example, Cisplatin-
based chemotherapy is currently the standard treatment for 
locally advanced esophageal cancer, but cancer cells have 
evolved several strategies to evade apoptosis. Xu et al. 
[243] indicated that RIPK3 and the autocrine production 
of TNF-α contribute to cisplatin sensitivity by initiating 
necrosis when the apoptotic pathway is suppressed or 
absent in esophageal cancer cells. These findings provide 
new insight into the molecular mechanisms underlying 
cisplatin-induced necroptosis, and suggest that RIPK3 
is a potential marker of cisplatin sensitivity in apoptosis-
resistant and advanced esophageal cancer. The inhibition 
of glycogen synthase kinase 3 alpha (GSK3A) or glycogen 
synthase kinase 3 beta (GSK3B), whose silencing 
bypasses drug resistance due to the loss of p53, can 
abolish cell viability and cloning growth via necroptosis. 
Targeting GSK3B with/without CT may thus represent a 
novel strategy for the treatment of chemotherapy resistant 
tumors [244-246]. Meanwhile, a diphtheria based fusion 
toxin or smac mimetric, in addition to demethylating 
agents, synergistically trigger cell death in cancer cells and 
overcome apoptosis resistance by inducing necroptosis 
[247-249]. In addition, Trastuzumab, a humanized 
recombination monoclonal antibody that binds to the 
extracellular domain of Her2, can simultaneously induce 
necroptosis and overcome the resistance of tumor cells 
to antibody treatment [250]. These findings raise the 
possibility that induction of necroptosis may be considered 
an alternative choice for therapeutic resistant cancers.

Development of necroptotic inhibitors

Traditional chemotherapeutic agents are not efficient 
inducers of necroptosis, and more potent necroptotic 
pathway-specific drugs will be required to fully harness 
the power of necroptosis in anticancer therapy. We have 
reviewed the published literature on small molecule 
inhibition of necroptosis, and the development of specific 
necroptotic inducers, in combination with conventional 
therapeutic styles such as RT or CT, may be required to 
effectively treat cancers [251-252].
Nec-1

Small molecule compounds that inhibit programmed 
necrosis are not only effective tools for the study of 
necrotic cell death, but also have the potential to treatment 
for necroptosis. Nec-1 is the first necroptosis inhibitor 
to have been widely used in vitro or in animal models to 
study necroptosis. Nec-1 specifically inhibits necroptosis, 
but does not affect apoptosis and autophagy, and does not 
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affect the general physiology of healthy cells, ATP levels, 
mitochondria membrane potential, plasma membrane 
integrity, cell shape and size, cell cycle distribution, 
proliferation, global mRNA expression, or intracellular 
ROS. The specificity of Nec-1-mediated inhibition of 
necroptosis has been well defined by extensive structure-
activity relationship analyses, and Nec-1 was reported to 
allosterically inhibit the kinase activity of RIPK1, which 
is essential for death receptor triggered necroptosis, 
by interacting with its T-loop without affecting other 
functional domains [16]. Although many studies of 
necroptosis are exclusively based on experiments showing 
that Nec-1 inhibits cell death in the corresponding cell 
death model, these studies should be interpreted with 
caution as RIPK1 can regulate not only necroptotic but 
also apoptotic cell death, and therefore, Nec-1 might block 
apoptosis under specific conditions as well as ferroptosis 
except for necroptosis, in contrast to Nec-1s and ponatinib 
[253]. Furthermore, Linkermann et al. demonstrated that 
the in vivo effects of Nec-1 did not necessarily involve 
necrosis [254].
GSKs and NSA

Given that RIPK3 is involved in necroptosis, 
but not apoptosis, a RIPK3 inhibitor may be a more 
selective inhibitor of necroptosis. Necroptosis can be 
pharmacologically inhibited by RIPK3 inhibitors GSK-
843, GSK-872, and GSK-840 [255-256]. RIPK3 silencing 
in cancer cells was reported to suppress the complex 
regulation of the apoptosis/necroptosis switch and NF-κB 
activation [257]. In addition, MLKL might also mediate 
signal transduction beyond RIPK3, as it is more widely 
expressed than RIPK3. It would therefore be interesting 
to identify the kinases with which MLKL interacts in the 
context of other signaling events [34]. MLKL expression, 
an independent prognostic biomarker in patients with 
early-stage resected pancreatic carcinoma, when low, 
is associated with a decrease in overall survival and 
recurrence-free survival in resected pancreatic carcinoma 
patients who receive adjuvant chemotherapy, even after 
accounting for adverse tumor characteristics and other 
known prognostic biomarkers [64]. Several studies reveal 
that NSA blocked necroptosis downstream of RIPK3 
activation [29], and also targeted the N-terminal fragment 
of MLKL, and covalently modified MLKL through a 
Michael addition at a reactive amino acid residue cysteine. 
Therefore, NSA may represent a specific inhibitor of 
necroptosis. However, it should be noted that NSA 
does not work with murine MLKL, and currently lacks 
specificity.
Pazopanib and ponatinib

Drugs capable of inhibiting necroptosis may be 
useful in treating pathologies caused or aggravated 
by necroptotic cell death. For example, Fauster et al. 
performed a phenotypic screen for small-molecule 
inhibitors of TNF-alpha induced necroptosis in FADD 

deficient Jurkat cells using a representative panel of FDA 
approved drugs. Two structurally distinct kinase inhibitors, 
pazopanib and ponatinib, were found to be potent blockers 
of necroptosis, which do not protect from apoptosis [258]. 
Pazopanib and ponatinib abrogated phosphorylation of 
MLKL upon TNF-alpha induced necroptosis, indicating 
that both agents target a component upstream of MLKL. 
Importantly, ponatinib inhibited both RIPK1 and RIPK3, 
while pazopanib preferentially targeted RIPK1. Further 
studies will clarify the potential necroptosis-related 
clinical applications of these drugs which, given their 
potency in cellular assays and favorable pharmacological 
properties, could otherwise provide the basis for 
development of necroptosis inhibitors.
Others

In addition to Nec-1, GSKs, and NSA, a few other 
necroptotic inhibitors have been developed. Geserick et 
al. [259] reported that Dabrafenib, a V600E- or V600K 
mutated porto-oncogene serine/threonine protein kinase 
B-RAF, inhibited necroptosis in melanoma cells whenever 
RIPK3 is present. Wang et al. [260] reported that the 
histone deacetylase inhibitor vorinostat prevents TNF-
α-induced necroptosis by regulating multiple signaling 
pathways, and suggested that histone deacetylase 
inhibition exerts its anti-inflammatory and cell protective 
effects by preventing necroptosis, an important process in 
inflammation and the elimination of cells. Onizawa et al. 
reported that necroptosis is inhibited by deubiquitinating 
enzyme A20, also known as tumor necrosis factor 
induced protein 3 (TNFAP3), and demonstrated that it 
prevents RIPK3-mediated necroptosis by blocking the 
ubiquitination of RIPK3 and formation of the RIPK1-
RIPK3 complex [73, 261]. In addition, Carmina-Gutierrez 
et al. [262] reported that the propeptide of yeast cathepsin 
D inhibits necroptosis. Other necroptosis inhibitors such 
as Nec-7, which inhibits necroptosis independently of 
RIPK1, are also available [263-264].

The potential side effects triggered by necroptotic 
inhibitors in acute settings might differ from those of 
long-term anticancer treatment, and require careful 
evaluation. The identification of FDA approved drugs as 
new inhibitors of necroptosis, together with the elucidation 
of their mechanism of action, warrants a series of careful 
studies in animal models covering a wide variety of 
necroptosis associated pathologies. These studies may 
clarify the clinical potential of these necroptosis-related 
drugs which, given their potency in cellular assays and 
favorable pharmacological properties, could allow further 
development of clinically useful necroptosis inhibitors.

The resistant mechanism of necroptosis

Acquired or intrinsic resistance to necroptosis may 
be considered a major hindrance to therapeutic success 
in cancers. RIPK3 expression is likely repressed during 
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cancer development or progression, by methylation 
of the genomic region near its transcriptional start 
site. Thus RIPK3 dependent activation of MLKL and 
downstream-programmed necroptosis during therapeutic 
death is largely repressed [265]. These results suggest 
that RIPK3 deficient cancer patients might benefit from 
agents inducing RIPK3 expression prior to treatment 
with conventional therapeutics. Seneviratne et al. [266] 
showed that defective DNA MMR system-induced 
genomic instability causes the truncation of an HGF 
gene promoter element, which reactivates the otherwise 
silenced HGF gene in colonic epithelial cells. This lead 
to autocrine HGF production and dysregulated Met 
signaling in colon cancer cells, thereby promoting their 
resistance to necroptosis. In addition, hypoxia inducible 
factor-1α and glucose transporters were recently reported 
to colocalize at peri-necrotic regions in human colorectal 
tumors [267-268]. Moriwaki et al. [252] further reported 
that expression of RIPK1 and RIPK3 was suppressed 
by hypoxia in human colon cancer tissues. These results 
suggest that glucose metabolism might confer anti-
necrotic resistance to hypoxia stress. Malignant cells 
develop adaptive mechanisms to evade necrotic death 
caused by the depletion of oxygen and nutrients. Huang 
et al. [269] demonstrated a novel mechanism through 
which glycolytic pyruvate conferred resistance to RIP-
dependent necroptosis in hypoxic colorectal carcinoma via 
mitochondrial superoxide scavenging. Understanding of 
how cells develop resistance to hypoxic necrosis through 
glucose and pyruvate may aid development of novel 
therapeutic targets for treating colorectal carcinoma.

FUTURE DIRECTIONS

Recently, extensive studies have elucidated the 
molecular mechanisms by which necroptosis is regulated 
and the intricate crosstalk between different cell death 
modes. However, our understanding of the necroptosis 
pathway is still at an infant stage, and the execution of 
necroptosis remains unclear. We still lack a biomarker for 
the in vivo detection of necroptosis. Induction of necrosis 
may not only eliminate tumor cells directly, but may also 
invoke host innate immune responses to aid clearance of 
tumor cells. More experimental and clinical trials will be 
required to clarify the potential for necroptosis-targeted 
cancer therapy. Although the effects of therapy-induced 
necroptosis in cancer remain controversial, the hypothesis 
provides a novel perspective and may yield a new way to 
overcome therapy resistance in the treatment of cancer.

CONCLUSION

Since evasion of apoptosis represents a hallmark of 
human cancers, it follows that engagement of necroptosis 
may offer new opportunities for the development of novel 
treatments for apoptosis -resistant cancers. Since treatment 

resistance is currently the most challenging unsolved 
problem in oncology, therapeutic induction of necroptosis 
may pave an avenue for novel and more efficient treatment 
approaches. While a number of different anticancer 
compounds have been reported to trigger necroptosis 
in malignant cells, little is known about the precise 
molecular targets of these compounds. In conclusion, a 
better understanding of the molecular events that regulate 
necroptotic cell death in different types of human cancers 
is expected to provide exciting novel opportunities in 
the coming years for the therapeutic exploitation of 
cell death programs for the treatment of cancer. Further 
studies to identify novel biomarkers of necroptosis, 
and to develop tools for the precise characterization of 
necroptosis, distinct from other forms of programmed 
necrosis, in animal models and human disease samples, 
will provide crucial insight into the diagnosis, treatment, 
and monitoring of necroptosis-associated disease.
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