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ABSTRACT

Synthetic lethality (SL) has emerged as a promising approach to cancer therapy. 
In contrast to the costly and labour-intensive genome-wide siRNA or CRISPR-based 
human cell line screening approaches, computational approaches to prioritize potential 
synthetic lethality pairs for further experimental validation represent an attractive 
alternative. In this study, we propose an efficient and comprehensive in-silico pipeline 
to rank novel SL gene pairs by mining vast amounts of accumulated tumor high-
throughput sequencing data in The Cancer Genome Atlas (TCGA), coupled with other 
protein interaction networks and cell line information. Our pipeline integrates three 
significant features, including mutation coverage in TCGA, driver mutation probability 
and the quantified cancer network information centrality, into a ranking model for 
SL gene pair identification, which is presented as the first learning-based method for 
SL identification. As a result, 107 potential SL gene pairs were obtained from the top 
10 results covering 11 cancers. Functional analysis of these genes indicated that 
several promising pathways were identified, including the DNA repair related Fanconi 
Anemia pathway and HIF-1 signaling pathway. In addition, 4 SL pairs, mTOR-TP53, 
VEGFR2-TP53, EGFR-TP53, ATM-PRKCA, were validated using drug sensitivity 
information in the cancer cell line databases CCLE or NCI60. Interestingly, significant 
differences in the cell growth of mTOR siRNA or EGFR siRNA knock-down were detected 
between cancer cells with wild type TP53 and mutant TP53. Our study indicates 
that the pre-screening of potential SL gene pairs based on the large genomics data 
repertoire of tumor tissues and cancer cell lines could substantially expedite the 
identification of synthetic lethal gene pairs for cancer therapy.

INTRODUCTION

Synthetic lethality describes the genetic interaction 
by which the combination of two separately non-lethal 
mutations results in lethality. The phenomenon was first 
described by Calvin Bridges in 1922 [1], who noticed that 
some combinations of mutations in the model organism 
Drosophila melanogaster confer lethality. Generally, the 
ablation of two genes located in parallel pathways (leading 
to cell survival or a common essential product) is one of 
the important patterns causing synthetic lethality (SL) [2].

Cancer is fundamentally a genetic disease with 
numerous gene mutations involved. Some of these 
genetic mutations serve as biomarkers in cancers. In 
particular, notable advances have been made in cancer 
therapy for example, with the discovery of Herceptin to 
treat breast cancer patients with HER2 amplification, and 
with Iressa for the treatment of non-small cell lung cancer 
patients with an EGFR mutation. However, developing 
drugs that selectively kill cancer cells without harming 
normal cells remains a big challenge in oncology therapy. 
Given that genetic mutations underpin differences 
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between cancer cells and healthy cells, Hartwell [3] 
was the first to suggest the use of chemical and genetic 
synthetic lethality screening for cancer therapy. Since 
then, this approach has attracted great attention from 
cancer biologists as it provides a promising perspective 
for oncology medicine discovery [4, 5]. For example, 
targeting the PARP-1 enzyme using Olaparib in ovarian 
cancer patients carrying a tumor BRCA1/2 mutation 
achieved milestone success in this area [6]. Ultimately, 
siRNA and CRISPR screenings are the most reliable 
methods for detecting SL gene pairs. However, compared 
to model genetic systems (such as yeast or fruit flies), 
human cell systems hold greater challenges for genome-
wide siRNA or CRISPR screening. For this reason, 
several computational approaches have been proposed 
to facilitate the systematic detection of SL gene pairs in 
cancer. Briefly, these methods can be divided into three 
categories according to their targeted data resources: 
(i) inferring human ortholog gene pairs from yeast SL 
genes [7]; (ii) using the robustness features to evaluate 
the importance of gene pairs in the cancer PPI network 
[8]; (iii) calculating mutual exclusivity using statistical 
models from gene mutation/transcriptional expression 
data [9–12]. More recently, Livnat et al. [13] proposed 
DAISY to identify SL gene pairs. This approach combines 
somatic copy number alteration, siRNA screening as 
well as cell survival and gene co-expression information. 
Derived from comprehensive in-house data, this approach 
achieved a promising performance in data-driving SL gene 
pair identification. Nevertheless, we comprehensively 
compared the four available predicted SL data sets from 
previously developed methods (including DAISY) [8, 
10, 12, 13] on SL gene pair prediction. The concordance 
of predicted SL gene pairs among those different 
methods is extremely low (see details in Discussions). 
This inconsistency across different methods may 
indicate that the in silico SL gene pair identification 
methods are far from mature. In addition, none of 
the previous methods was learning-based, that is, SL 
gene pair identification was based on the screening of 
certain criteria rather than training and prediction. We 
noticed that a portion of known SL gene pairs have been 
accumulated, and the investigation of the characteristics 
of these SL gene pairs are expected to derive significant 
features which can quantitatively depict the common 
mechanisms of the SL. Therefore, in our study, we 
designed a learning-based pipeline to rank novel SL gene 
pairs based on the known SL gene pairs, together with 
other unknown ones. By mining the accumulated TCGA 
mutation and gene expression data, as well as the gene 
properties in the protein-protein interaction network, our 
pipeline can be treated as an integration of the traditional 
strategies, and ranked a list of potential SL gene pairs. In 
contrast to the lack of experimental validation in most 
previous methods, we implemented further siRNA knock-
down experiments to evaluate our results.

RESULTS

Brief results of 10 times 5-fold cross validation

We evaluated the ranking performance in 11 cancers 
through 10 times 5-fold cross validation, the other cancers 
in TCGA failed due to the limited number of overlapping 
samples between mutation data and the expression data 
or limited coverage of positive SL pairs. The brief results 
were listed in Table 1. Herein we didn’t intend to describe 
the details of each pair, Kidney renal clear cell carcinoma 
(KIRC) would be picked out as an example for illustration 
(see details in Supplementary Table S1). Currently, TCGA 
mutation data contains 417 KIRC patients. In addition, the 
gene-expression data on 400 KIRC patients is available 
in the TCGA dataset. At first, 528 genes with mutation 
rate >= 1% were selected from the gene mutation data. 
Following the workflow described in methods, 1014 
candidate SL gene pairs were generated with the chi-
square test p value <=0.05 and mutation exclusivity ≥0.8. 
Three features (Gene pair mutation coverage, Driver 
mutation probability, Network information centrality) were 
subsequently calculated. The same calculation process 
was used on the 119 positive SL gene pairs covered 
by KIRC mutation and expression data and the cancer 
network. During the 10 times 5-fold cross validation 
procedure, the test set contained 23 or 24 SL pairs. Then 
the top 25 results were used for NDCG calculation and 
enrichment evaluation, respectively. alpha optimization 
is a critical process in data manifolds ranking algorithm, 
which can directly influence the ranking performance. 
As it was shown in Figure 1, NDCG@25 was gradually 
increased from 0 to 0.9768, as the increase of alpha; while 
the enrichment p value was decreased. This means that 
the ranking performance was better at a larger alpha. 
Finally, the optimized alpha = 0.84 was achieved when 
NDCG@25 reached the peak value. Then, after all of the 
positive SL pairs were imported as the training set with the 
optimized alpha, we generated a ranking list for the 1014 
candidate pairs according to their relevance to positive 
pairs. The same process was implemented on 10 other 
cancer types. Finally, we generated a SL network in Figure 
2, which is comprised of 107 predicted SL gene pairs from 
the top 10 results in the 11 cancer types. (See all of the 
ranking results in Supplementary Table S2)

Function analysis of the genes in the predicted 
novel SL pairs

Pathway enrichment was utilized to decipher 
the biological functions of the gene list. Specifically, 
73/107 genes were mapped to KEGG pathways. From 
Table 2, we can see that these genes are mainly enriched 
in 15 pathways (covering 61.64% of the mapped genes) 
involved in six biological process categories, namely, 
replication and repair, signal transduction, the endocrine 
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system, cell growth and death, cellular immunity and 
development. In particular, the Fanconi Anemia pathway 
ranked No.1 as a potential pathway for identifying 
novel anticancer therapies by exploiting synthetic lethal 
relationships [14]. The most famous example of this is the 
synthetic lethality relationship between the BRCA1/2 gene 
in the Fanconi Anemia pathways and PARP [15]. Recently, 
the first-in-class PARP inhibitor, Olaparib, was approved 
by the U.S. FDA for use in advanced ovarian cancer 

patients with BRCA mutations [16]. Based on our findings, 
several other biological pathways for synthetic lethality 
exploration were identified. For example, the HIF-1 
signalling pathway (which activates the transcription of 
genes involved in angiogenesis, cell survival, glucose 
metabolism and invasion), was used as a screening 
resource in discovering synthetic lethal gene pairs [17]. 
RAS signalling [18], P53 signalling [19], PI3K-AKT 
signalling [20], are also widely considered to be promising 

Table 1: Ranking performance in 11 cancer types

Cancer Type Candidate pair 
Num.

Positive pair 
Num.

NDCG@Positive 
pair/5

Enriched p value Optimized 
alpha

LGG 1192 76 0.9808 5.96E-13 0.56

KIRC 1014 119 0.9768 3.90E-13 0.84

CESC 93 38 0.9343 0.0027 0.98

OV 126 99 0.5574 1.50E-07 0.86

BRCA 534 148 0.4618 0.0099 0.99

GBM 791 49 0.3417 0.0262 0.99

LUAD 766 164 0.3244 0.0609 0.99

LUSC 2177 101 0.2928 5.29E-03 0.99

SKCM 7290 135 0.2707 6.24E-04 0.98

HNSC 2213 140 0.2643 0.0271 0.87

STAD 1417 135 0.2372 0.0160 0.98

Figure 1: Ranking performance according to alpha. The X-axis indicates the parameter alpha in manifold ranking algorithm. The 
Y-axis represents the corresponding enriched p value and NDCG in the top 25 ranking results.
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pathways for synthetic lethal pair identification, and have 
previously attracted considerable research interest.

In-vitro drug sensitivity of cell lines in which one 
of the genes in each synthetic lethality pair is 
targeted

In the process of validating the SL gene pairs in the 
cell lines, two strict criteria are applied in the cell response 
information for each SL gene pair: 1. One of the genes in 
a SL pair should be the target of a drug in the database. 2. 
Several cancer cell lines treated by the drug must possess 
the mutation of the other gene in the SL pair. Finally, only 
37 predicted SL gene pairs could be well annotated by 
the drug sensitivity data in CCLE [21] and NCI60 [22] 
databases (see Table 3 and Table 4). We compared the drug 
sensitivity of the two types of cancer cell lines, namely, 
the cell lines with the other gene mutation and the cell 
lines without the other gene mutation in the SL pair. We 
found 4 pairs: mTOR-TP53, VEGFR2-TP53, EGFR-
TP53, ATM-PRKCA which showed significantly higher 
drug sensitivity (targeting one of the genes in the SL pairs) 
in the cell lines with the other gene mutations (P value <= 
0.05), than the cell lines without the other gene mutation 
in these predicted SL pairs.

Possible molecular mechanisms of the 4 positive 
pairs

According to Kaelin [23]’s synthetic lethality model, 
synthetic lethality occurs via 4 different mechanisms: The 
cellular organizational units may be uniquely redundant 

and their roles are essential (type A), subunits of an 
essential multi-protein complex (type B), interconnected 
components in an essential linear pathway (type C), or 
they may participate in parallel pathways that are together 
essential (type D). The 4 pairs were consistent with either 
type D or type C.

mTOR-TP53

mTOR can integrate nutrient and mitogen signals to 
activate cell growth (increase cell mass and cell size) and 
cell division [24, 25], whilst one of the most important 
functions of TP53 is its ability to activate apoptosis [26]. 
Cell growth and apoptosis may provide parallel functions 
in cancer pathology. mTOR and TP53 may be considered 
synthetic lethality targets.

VEGFR2-TP53, EGFR-TP53

EGFR is a hot target for cancer therapy with many 
currently FDA approved drugs, and can activate at least 
4 major downstream signalling cascades including; RAS-
RAF-MEK-ERK, PI3 kinase-AKT, PLCgamma-PKC and 
STATs modules. Those signalling cascades can ultimately 
lead to a series of cellular events such as cell proliferation, 
inhibition of apoptosis, angiogenesis, migration, adhesion 
and invasion [27]. Furthermore, VEGF’s can specifically 
induce blood and lymphatic vessel development and 
homeostasis [28]. Inhibition of EGFR can block the 
angiogenesis process. Double knock out VEGFR2 and 
TP53 may lead to synthetic lethality through angiogenesis 
and apoptosis.

Figure 2: SL network of the predicted 107 pairs. Each node represents a gene. The SL relationship of a gene pair was linked by an 
edge. The graph was generated by Cytoscape.



Oncotarget55356www.impactjournals.com/oncotarget

ATM-PRKCA

ATM [29] is a key regulator of multiple signaling 
cascades that respond to DNA damage. These responses 
involve the activation of cell cycle checkpoint factors, 
DNA repair and apoptosis. PRKCA has long been 
recognized to participate in activating tumour growth and 
development across different cancers [30]. In addition, 
PRKCA activation can result in increased cell motility in 
several in vivo and in vitro cancer models, the effect of 
which may be reversed with PRKCA inhibition [31, 32]. 

Hence, ATM and PRKCA knock-out, coupled with loss of 
function of apoptosis and the cell migration process, may 
generate synthetic lethality.

Validation through siRNA knock-down in cancer 
cell lines

Regarding the mutation information in the 
CancerDR database [33], three cancer cell lines were 
selected (Table 5). MCF-7 is a breast cancer cell line, 
carrying wild type TP53 and PRKCA. FaDu is a human 

Table 2: Enriched pathways of the top 10 results in 11 cancer types

Pathway Category Pathway Predicted SL genes in the pathway Number of the 
predicted SL genes

p value

Replication and repair Fanconi anemia 
pathway

ERCC1; PMS2; USP1; PALB2; ATR; 
FANCD2; BRCA2; ERCC4; MLH1; POLI

10 3.06E-08

Signal transduction FoxO signaling 
pathway

ATM; TGFBR1; PIK3CA; PTEN; INSR; 
CREBBP; EP300; SMAD3; GRB2; EGFR; 
MAPK1; CSNK1E

12 7.02E-07

Signal transduction HIF-1 signaling 
pathway

VHL; PIK3CA; INSR; CREBBP; MTOR; 
EP300; EGFR; TLR4; PRKCA; MAPK1

10 8.57E-06

Endocrine system Thyroid hormone 
signaling pathway

TP53; PIK3CA; CREBBP; MTOR; EP300; 
NOTCH4; ESR1; PLCE1; PRKCA; MAPK1

10 1.55E-05

Cell growth and death Cell cycle TP53; ATM; CDK1; PRKDC; CREBBP; 
CHEK2; EP300; ATR; SMAD3; SMC1A

10 2.68E-05

Cellular community Adherens junction TGFBR1; INSR; CREBBP; EP300; SMAD3; 
EGFR; CSNK2A1; MAPK1

8 3.60E-05

Signal transduction Ras signaling 
pathway

PDGFRA; PIK3CA; INSR; PTPN11; GRB2; 
EGFR; NF1; KDR; PLCE1; PRKCA; 
MAPK1

11 0.00039

Cellular community Focal adhesion PDGFRA; PIK3CA; PTEN; COL1A1; 
MYLK; GRB2; EGFR; KDR; PRKCA; 
MAPK1

10 0.00067

Signal transduction ErbB signaling 
pathway

PIK3CA; ERBB3; MTOR; GRB2; EGFR; 
PRKCA; MAPK1

7 0.00071

Signal transduction PI3K-AKT 
signaling pathway

PDGFRA; TP53; PIK3CA; PTEN; COL1A1; 
INSR; MTOR; GRB2; EGFR; KDR; TLR4; 
PRKCA; MAPK1

13 0.00087

Cell growth and death p53 signaling 
pathway

TP53; ATM; CDK1; PTEN; CHEK2; ATR 6 0.0016

Replication and repair Nucleotide 
excision repair

ERCC1; ERCC5; ERCC4; RFC4; ERCC6 5 0.0031

Development Dorso-ventral axis 
formation

GRB2; EGFR; NOTCH4; MAPK1 4 0.0041

Cellular community Gap junction PDGFRA; CDK1; GRB2; EGFR; PRKCA; 
MAPK1

6 0.0049

Signal transduction Wnt signaling 
pathway

TP53; CREBBP; EP300; SMAD3; 
CSNK2A1; PRKCA; CSNK1E

7 0.0098
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Table 3: Comparison of drug sensitivity between two groups of cell lines in CCLE data

Pair(Entrz 
Gene ID)

Gene A Gene B Drug targeted 
on gene A

Mean of drug sensitivity (PIC50)§ p value

Cell lines with 
gene B mutation

Cell lines with 
gene B wild type

1009_7157 TP53 CDH11 Nutlin-3 5.0978 5.1246 0.7689

11200_4763 CHEK2 NF1 AZD7762 6.1902 6.0711 0.1553

11200_5290 PIK3CA CHEK2 GDC0941 5.1880 5.1031 0.3676

PIK3CA CHEK2 NVP-BEZ235 6.9181 6.9876 0.6393

CHEK2 PIK3CA AZD7762 5.8728 6.1251 0.9818

1387_7157 TP53 RSTS Nutlin-3 5.1032 5.1261 0.8182

1956_1454 EGFR CSNK1E Gefitinib 5.1213 4.9910 0.2948

EGFR CSNK1E Lapatinib 5.1555 5.0623 0.3428

EGFR CSNK1E BIBW2992 5.1208 5.0253 0.3775

EGFR CSNK1E Erlotinib 5.0803 5.0415 0.4258

EGFR CSNK1E ZD-6474 5.1210 5.2915 0.8464

1956_7157 EGFR TP53 BIBW2992 5.1074 4.8862 0.0047

EGFR TP53 Gefitinib 5.0485 4.8969 0.0121

EGFR TP53 ZD-6474 5.3078 5.2584 0.0679

EGFR TP53 Erlotinib 5.0587 5.0137 0.1822

EGFR TP53 Lapatinib 5.0810 5.0339 0.1933

TP53 EGFR Nutlin-3 5.1081 5.1247 0.7205

2065_7157 TP53 LCCS2 Nutlin-3 5.1057 5.1251 0.7572

2475_51366 MTOR UBR5 Temsirolimus 6.4909 6.4765 0.4590

2475_7157 TP53 MTOR Nutlin-3 5.1135 5.1240 0.6411

MTOR TP53 Temsirolimus 6.4561 6.5175 0.7357

3643_7157 TP53 INSR Nutlin-3 5.1204 5.1232 0.5272

367_7157 TP53 SBMA Nutlin-3 5.0970 5.1248 0.7850

3791_7157 TP53 VEGFR2 Nutlin-3 5.1186 5.1234 0.5590

VEGFR2 TP53 Sorafenib 5.0474 5.1525 0.9738

4297_7157 TP53 MLL Nutlin-3 5.1239 5.1230 0.4885

4638_7157 TP53 MYLK Nutlin-3 5.1091 5.1320 0.9036

472_2885 ATM GRB2 KU-55933 3.6089 3.8219 0.8999

472_3426 ATM CFI KU-55933 3.7372 3.8174 0.6780

472_5290 PIK3CA ATM GDC0941 5.1010 5.1066 0.5171

ATM PIK3CA KU-55933 3.7713 3.8224 0.7299

PIK3CA ATM NVP-BEZ235 6.9180 6.9958 0.7795

472_5578 ATM PRKCA KU-55933 3.9089 3.7880 0.0423

472_5728 ATM PTEN KU-55933 3.8008 3.8179 0.5858

472_5781 ATM PTPN11 KU-55933 3.6390 3.8214 0.8728

(Continued )
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epithelial cell line with mutant TP53 and SW48 is an 
invasive human colon adenocarcinoma cell line with 
a PRKCA mutation. Since an extremely low level of 
VEGFR2 mRNA expression was detected in the FaDu 
line, only three gene pairs (TP53-mTOR, TP53-EGFR, 
PRKCA-ATM) were able to be analyzed for siRNA 
knock-down validation. The relative cell growth results 
are displayed in Figure 3.

siRNA knock-down validation on TP53-mTOR

According to the results of mRNA expression 
detection, there was no significant difference in the mTOR 
knock-down rate between MCF7 and FaDu (average mTOR 
knock-down rate: MCF7 62.26%; FaDu 60.67%). As shown 
in Figure 3A, the cell growth inhibitory effect of mTOR 
knock-down was observed in both MCF7 and FaDu. 96 
hours after mTOR siRNA knock-down, the relative cell 
growth of FaDu slightly decreased from 1.1596 to 0.8178, 
while the relative cell growth of MCF7 dramatically 
decreased from 0.9509 to 0.4581. 24 hours after mTOR 
knock-down, the relative cell growth of MCF7 was always 
significantly lower than FaDu with a t-test P value of less 
than 0.01. The lowest inhibition of cell growth (54.19%) 

was achieved after 96 hours of mTOR knockdown in the 
MCF7 cells. This may indicate that wild type TP53 in the 
MCF7 line can possibly strongly enhance the cell growth 
inhibition effects of mTOR knock-down, compared to the 
mutant TP53 in FaDu.

siRNA knock-down validation on TP53-EGFR

Also, no significant difference in the EGFR siRNA 
knock-down rate was detected between MCF7 and FaDu. 
The optimal knock-down rates were 82.81% and 88.87% 
in FaDu and MCF7, respectively. Figure 3B displays the 
relative cell growth of MCF7 and FaDu cells after EGFR 
siRNA knock-down within 96 hours. No inhibition of cell 
growth using EGFR knock-down was observed in FaDu 
cells. The average relative cell growth was maintained at 
around 0.9325 ~ 1.0300 upon EGFR knock-down, whilst 
the relative cell growth of MCF7 strongly decreased from 
0.9595 to 0.6884 following EGFR knock-down. 24 hours 
after EGFR knock-down, the relative cell growth of the 
MCF7 line was always significantly lower than the FaDu 
line with a t-test P value of less than 0.01. The wild type 
TP53 in MCF7 cells with EGFR knock-down could lead 
to cell growth inhibition.

Pair(Entrz 
Gene ID)

Gene A Gene B Drug targeted 
on gene A

Mean of drug sensitivity (PIC50)§ p value

Cell lines with 
gene B mutation

Cell lines with 
gene B wild type

4763_7157 TP53 NF1 Nutlin-3 5.1033 5.1260 0.8145

4855_7157 TP53 NOTCH4 Nutlin-3 5.1386 5.1184 0.1609

546_5156 PDGFRA RAD54 Pazopanib 3.8402 4.1592 0.9844

PDGFRA RAD54 Sorafenib 4.9588 5.1008 0.9495

5727_7157 TP53 PTCH1 Nutlin-3 5.1016 5.1248 0.7610

64324_7157 TP53 STO Nutlin-3 5.1031 5.1244 0.7307

2475_675 MTOR BRCA2 Temsirolimus 6.3225 6.4942 0.8553

7099_7157 TP53 TLR4 Nutlin-3 5.1121 5.1236 0.6151

7157_1457 TP53 CSNK2A1 Nutlin-3 5.0969 5.1236 0.6783

7157_2033 TP53 EP300 Nutlin-3 5.1252 5.1219 0.4262

7157_2099 TP53 ESR1 Nutlin-3 5.0986 5.1238 0.6970

7157_4088 TP53 SMAD3 Nutlin-3 5.1190 5.1231 0.5239

7157_5594 TP53 PRKM2 Nutlin-3 5.0969 5.1233 0.6144

7157_7046 TP53 TGFBR1 Nutlin-3 5.0969 5.1240 0.7224

7157_983 TP53 CDK1 Nutlin-3 5.0969 5.1233 0.6276

CDK1 TP53 RO-3306 4.0215 4.0474 0.6447

8476_7157 TP53 CDC42BPA Nutlin-3 5.1285 5.1226 0.4244

9113_7157 TP53 LATS1 Nutlin-3 5.0969 5.1247 0.7767

§ PIC50 means negative log10(IC50) values (higher value indicate higher drug sensitivity)
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Table 5: siRNA knock-down on the cancer cell lines

SL pair (Entrz Gene 
ID)

Gene A Cell line with wild 
type gene A

Cell line with mutant 
gene A

siRNA knock down 
gene B

7157-2475 TP53 MCF-7 FaDu MTOR

7157-1956 TP53 MCF-7 FaDu EGFR

7157-3791 TP53 MCF-7 FaDu VEGFR2

472-5578 PRKCA MCF-7 SW48 ATM

Table 4: Comparison of drug sensitivity between two groups of cell lines in NCI60 data

Pair (Entrz 
Gene ID)

GeneA Gene B Drug targeted on 
gene A

Mean of drug sensitivity  
(z-score normalized GI50 values)*

p value

Cell lines with 
gene B mutation

Cell lines with 
gene B wild type

1956_7157 EGFR TP53 Lapatinib -0.1547 0.2300 0.0791

EGFR TP53 Erlotinib 
hydrochloride

-0.0997 0.0925 0.2517

EGFR TP53 Gefitinib -0.0414 0.1119 0.2968

EGFR TP53 Afatinib -0.0551 -0.0219 0.4541

2475_7157 MTOR TP53 Sirolimus -0.2149 0.3950 0.0070

MTOR TP53 Temsirolimus -0.1846 0.4443 0.0146

MTOR TP53 Everolimus -0.1158 0.2619 0.0771

367_7157 SBMA TP53 Dromostanolone 
Propionate

-0.1572 0.2575 0.0519

SBMA TP53 Calusterone -0.0156 0.1200 0.3373

SBMA TP53 Nandrolone 
phenpropionate

0.0200 -0.0169 0.5508

3791_7157 VEGFR2 TP53 Pazopanib 
hydrochloride

-0.2302 0.4594 0.0052

VEGFR2 TP53 Axitinib -0.1028 0.2731 0.1062

VEGFR2 TP53 Sunitinib malate/
Sunitinib (free 

base)

-0.0886 0.17125 0.1696

7157_2099 ESR1 TP53 Raloxifene 
hydrochloride

-0.1808 0.2231 0.0740

ESR1 TP53 Fulvestrant -0.1194 0.2606 0.1093

ESR1 TP53 Tamoxifen citrate -0.0158 0.0525 0.3947

ESR1 TP53 Estramustine 
phosphate sodium

-0.1011 -0.0450 0.4061

7157_5594 PRKM2 TP53 Arsenic Trioxide -0.0272 0.0275 0.4218

*z score normalized GI50 values are the elements of cellular fingerprint in NCI60 dataset. (http://data-analysis.charite.de/
care/index.php?site=about#usecase) (Smaller values indicate higher drug sensitivity)
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siRNA knock-down validation on PRKCA-ATM

Upon siRNA transfection, the average knock-down 
rates of ATM were 86.07% and 45.43% in MCF7 and 
SW48 cells, respectively.Figure 3C shows the relative cell 
growth of MCF7 and SW48 cells with ATM siRNA knock-
down. The relative cell growth of MCF cells decreased 

slightly from 1.030 to 0.9208. Considering the high ATM 
siRNA knock-down efficiency, this suggests that ATM 
knock-down has very limited inhibition effects on MCF cell 
growth. For SW48 cells, the relative cell growth decreased 
from 0.9936 to 0.8495. 96 hours after ATM knock-down, 
the relative cell growth of SW48 was significantly lower 
than MCF7 (0.8495 ± 0.0209 vs. 0.9208 ±0.0636, t test 

Figure 3: The relative cell growth of cancer cell lines. A. The relative cell growth of MCF7 and FaDu with siRNA knock-down 
of mTOR. B. The relative cell growth of MCF7 and FaDu with siRNA knock-down of EGFR. C. The relative cell growth of MCF7 and 
SW48 with siRNA knock-down of ATM.
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P value = 0.01296). This may partly indicate that the mutant 
PRKCA in SW48 cells can enhance the inhibition of cell 
growth on ATM knock-down, compared to the wild type 
PRKCA in MCF7. The slight inhibition observed on SW48 
cell growth may be caused by the low ATM siRNA knock-
down rate in the cell. It may be a novel SL gene pair with 
further rigorous validation.

DISCUSSION

Regarding the predicted SL gene pairs: mTOR-TP53 
and EGFR-TP53, we found that mTOR knock-down or 
EGFR knock-down could cause much stronger cell growth 
inhibition in cell lines with wild type TP53, compared 
to mutant TP53. It seems that the relationships between 
mTOR-TP53 and EGFR-TP53 are exactly opposed to the 
concept of synthetic lethality. Indeed, the multifunctional 
nature of mutant TP53 needs to be better understood. A 
series of earlier studies [34–37] had suggested that mutant 
TP53 not only represents the equivalent of wild type TP53 
functional loss, but also acquires new functions in driving 
cell migration, invasion and metastasis. The significant 
differences in cell growth between cancer cell lines with 
wild type TP53 and mutant TP53 could partly suggest 
that there is a special relationship between TP53-mTOR 
and TP53-EGFR. Notably, TP53 may be a promising 
biomarker in the development of cancer drugs targeting 
the mTOR and EGFR pathways in precision medicine.

siRNA knock-down is limited by both the 
expression level of the gene in the cell and the knock-
down efficiency of the siRNA. In our study, we failed to 
validate VEGFR2-TP53 due to the low expression levels 
of VEGFR2 in the FaDu cell line. The low knock-down 
rate (45%) of ATM may weaken the inhibitory effects on 
cell growth. In response to these issues, the latest CRISPR 
technology [38, 39], which can provide considerable gene 
editing power, may provide a more reliable approach to 
further validate SL gene pairs.

Detecting SL gene pairs in humans is a challenging 
problem due to the highly evolved, complex and redundant 
signalling pathways within human cells. The influence of 
a loss of function caused by gene mutation can often be 
complemented by parallel pathway signalling. Various 
computational methods can provide potential SL gene 
pairs from different perspectives, such as the correlation 
of gene expression with mutation, robustness in the cancer 
network or gene co-expression in related biological 
processes. In this study, we compared the 107 predicted SL 
pairs with the results of four previous methods (see details 
in Supplementary Table S3). As shown in Figure 4, 12.15% 
(13 pairs) of our predicted results overlapped with Wang’s 
[10] or Kranthi’s [8] prediction. Importantly, TP53-mTOR 
and EGFR-TP53 pairs validated by drug sensitivity data 
were included in the overlapping pairs. This may suggest 
that overlapping predictions from different methods may 
provide more reliable results. Interestingly, we also found 

Figure 4: Comparison of the predicted results with other methods. The Venn diagram was drawn based on the overlap of the 
predicted SL gene pairs in three previous reports and our results.
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that no overlap occurred between Livnat’s [13] predictions 
or any of the other four methods. The original input data 
may be one of the important factors in influencing the final 
predictions. Kranthi’s method [8] started with the human 
protein-protein interaction database HPRD [40] as well as 
CancerGenes [22]. Wang’s prediction [10] was based on 
the profiling data of glioblastoma multiforme from TCGA 
as well as the p53 mutation information from the Trust 
Sanger Institute. Srihari [12] used the copy-number and 
gene-expression profiling data of four cancers (breast, 
prostate, ovarian and uterine) in TCGA as input data for 
their method. The different features of these input data 
across the methods may generate bias in SL gene pair 
predictions. Since there was no priori knowledge of 
cancer targets in the NCI-60 database, CancerGenes or 
Metacore were used to filter the input data in Livnat’s 
model [13], the potential SL gene pairs from the cancer 
lines may lead to distinct prediction results from others. 
In addition, due to the low concordance of results between 
different methods, further efforts to explore such complex 
SL relationships in a human system may be required.

CONCLUSIONS

In this study, we proposed a semi-supervised ranking 
pipeline to rank novel SL gene pairs based on the vast 
amounts of accumulated TCGA data. 107 novel potential 
SL gene pairs were predicted from the top 10 results 
covering 11 cancers. In particular, 4 SL pairs: mTOR-
TP53, VEGFR2-TP53, EGFR-TP53, ATM-PRKCA, could 
be validated using drug sensitivity information in the 
cancer cell line databases CCLE or NCI60. Furthermore, 
the results of siRNA knock-down experiments indicated 
that significant differences in the cell growth of mTOR 
or EGFR siRNA knock-down were detected between 
the cancer cells with wild type TP53 and mutant TP53. 
The TP53 mutation may serve as a biomarker for cancer 
therapy in drugs targeting mTOR or EGFR. More 
promisingly, a recent study [41] has proposed P53 as a 
biomarker for predicting the progression free survival 
(PFS) of pancreatic cancer patients being treated with 
erlotinib (EGFR inhibitor). Taken together, these data 
underscore the potential of investigating the role of P53 as 
a predictive biomarker in other cancer types.

MATERIALS AND METHODS

SL gene pair prediction pipeline

In this study, we designed a semi-supervised learning 
model [42] to rank the similarities between positive SL gene 
pairs and candidate SL gene pairs, mainly using 3 defined 
features namely, gene pair mutation coverage, driver 
mutation probability and the quantified network information 
centrality. More specifically, we used three features to 
describe both the known SL gene pairs and candidate SL 

gene pairs. Then the semi-supervised method could rank 
the candidate SL gene pairs according to the similarity of 
these features with the known SL gene pairs. Herein, gene 
pair mutation coverage was defined as the percentage of 
samples containing at least one gene mutation in the pair. 
Furthermore, in order to get more reliable results from 
TCGA mutation data, the mutations of genes in candidate 
SL pairs should be covered by a certain number of samples. 
Driver mutations play vital roles in cancer development. 
Regarding the cancer specific SL pairs, we hypothesised 
that the mutation of genes playing an important role in 
cancer progression are more likely to be driver mutations. 
Last, the network information centrality helps to identify the 
potential nodes, which are crucial for the proper functioning 
of the system. Since simultaneously mutating two genes in 
a SL gene pair could dramatically influence the cellular 
process and cause cell death, network information centrality 
was used to calculate the influence of knocking-out a node 
pair on system stability. This approach inherently mimics 
the synthetic lethality mechanism well.

The brief workflow of the SL prediction pipeline is 
shown in Figure 5. In the first step, cancer biomarkers were 
collected from COSMIC [43] and MetaCore [44], which 
were used as a filter to select raw cancer related SL pairs. 
Next, the positive SL pairs were generated from yeast SL 
pairs, followed by homolog gene transformation, cancer 
biomarker filtering as well as the application of evidence 
in human cell lines obtained from literature mining. The 
candidate genes were selected from TCGA mutation data. 
The raw candidate SL pairs were then composed based 
on a candidate gene and a gene within a cancer network. 
Then, a Chi-square test (implemented by chi2_contingency 
in python package Scipy) was used to evaluate whether 
the mutations of the two genes is an independent event 
in each raw candidate SL pair. In addition, the mutation 
exclusivity was also calculated, which was defined as the 
percentage of samples carrying one of the mutant genes 
in the SL gene pair [9]. Only those independent gene 
mutations with high mutation exclusivity were selected as 
candidate SL pairs for further calculation. Subsequently, 
three features of both candidate SL pairs and positive 
SL pairs were calculated and normalized before being 
exported into a learning model. Finally, the novel SL pairs 
were detected with an optimized parameter which was 
obtained from 10 times 5-fold cross validation.

TCGA mutation and expression data processing

We downloaded TCGA mutation and expression 
profiling data from the UCSC Cancer Genomics Browser 
(https://genome-cancer.ucsc.edu), which provides well-
annotated and interactive visualizations of TCGA genomic, 
phenotypic, and clinical data [45]. We then obtained two 
matrices. Each row of the matrices represented a gene, 
and each column indicated a sample. The values in the 
cells represented the expression and mutation status in 
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the gene expression matrix and the gene mutation matrix, 
respectively. Finally, data from 11 cancers, containing both 
the gene expression matrix and the corresponding gene 
mutation matrix, were used in our study.

Positive synthetic lethality gene pairs

The collective data on yeast SL (synthetic lethal) 
genes based on high throughput genetic screening is 
available at BioGRID [46]. However, no curated database 
of human SL gene pairs has been established yet. In 
this study, BioGRID was used as the primary resource 
to retrieve human cancer related SL gene pairs. The 
phylogenetic inference from yeast to human genes was 
obtained from the Ensemble database (http://useast.
ensembl.org/). Then, homolog human SL pairs were 
filtered by cancer biomarkers in MetaCore (https://portal.

genego.com/) and driver genes in COSMIC [43]. Only 
homolog human SL gene pairs with both of the genes 
covered by cancer biomarkers or driver genes were kept 
for downstream analysis. In order to reduce the false 
positive rate as much as possible, for each homolog 
human SL gene pair, we checked the evidence available 
in the PubMed literature. Finally, 399 positive SL pairs 
were identified with the evidence of synthetic lethality in 
human cell lines or animal models in the literature (see 
Supplementary Table S4).

Cancer network

307,066 protein-protein interactions were 
downloaded from HPRD [40]. Then, we used cancer 
biomarkers from MetaCore and COSMIC [43] to filter 
them. In details, we searched the keywords ‘cancer, tumor, 

Figure 5: Workflow of the SL prediction pipeline. The three types of original data (gene mutation and expression, cancer biomarker, 
SL-pairs in yeast) were downloaded from TCGA, COSMIC and MetaCore as well as BIOGRID, respectively. The cancer network was built 
from the interaction of cancer biomarkers in the protein-protein interaction database HPRD. Each raw candidate SL pair was composed 
of a highly mutated gene and another gene in the cancer network. Then a chi-square test on the mutation exclusivity with p value <= 0.05 
was utilized to generate the candidate SL pairs, while the positive SL pairs were derived from the yeasts’ SL pairs followed by homology 
transformation, cancer biomarker filtration and literature evidence identification on human cell lines. For each pair in of candidate SL and 
positive SL data, three features were generated for them. The first feature was calculated from the mutation coverage of each SL gene pair in 
the TCGA mutation data. The driver mutation probability was calculated by R package DriverNet. The third feature was defined to evaluate 
the influence on stability of the cancer network, after removing the two genes from an SL pair. Then normalized features of each SL pair 
were imported into a manifolds ranking model to generate a ranking list of potential SL pairs.
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carcinoma’ in MetaCore and retrieved 4,296 cancer related 
biomarkers. At the same time, we also downloaded the 
507 driver mutation genes collected in the Cancer Gene 
Census from the website of COSMIC. All of these gene 
mutations in Cancer Gene Census have been proved to 
causally implicate in cancer. Then, for each protein-
protein interaction, only if both proteins are included in 
MetaCore cancer biomarkers or Cancer Gene Census in 
COSMIC, would the protein-protein interaction be kept. 
Finally, we obtained 11,925 protein-protein interaction 
pairs, corresponding to 2,869 individual proteins. The 
cancer network could be built with edge presented by the 
protein-protein interaction, as well as the node displayed 
by a protein.

Candidate SL pairs generation

We calculated the mutation rate of each gene 
among the samples in the TCGA mutation data. Herein, 
1% was utilized as the cut-off threshold to select the 
candidate genes. Each raw candidate SL gene pair was 
generated by selecting a candidate gene as well as the 
other gene from the cancer network. Subsequently, we 
tested whether gene A mutation and gene B mutation 
are independent events based on the mutation data. In 
detail, the null hypothesis is that gene A mutation and 
gene B mutation are independent of each other. A Chi-
square test was implemented on a 2×2 contingency 
table (see Table 6). M represents the number of samples 
carrying both gene A and gene B mutations; N represents 
the number of samples carrying the gene A mutation 
without the gene B mutation; X represents the number of 
samples carrying the gene B mutation without the gene 
A mutation; Y is the number of samples that containing 
both wild type gene A and wild type gene B.

The raw candidate SL gene pairs with Chi-square 
test p value <=0.05 means the mutation of gene A and 
gene B are not independent. Maybe some relationships 
exist between mutation of gene A and gene B. In addition, 
the mutation exclusivity of gene A and gene B could be 
calculated as (X+N)/(M+N+X). The higher mutation 
exclusivity indicates the gene A and gene B are more 
likely to be mutually exclusive mutations. Herein, only 
candidate SL pairs with both Chi-square test P value ≤ 
0.05 and mutation exclusivity ≥ 0.8 were selected for the 
downstream processing.

Features calculation

Gene pair mutation coverage

It was defined as the percentage of samples 
containing at least one gene mutation in the pair. For 
example, gene A is mutated in samples s1,s3,s6, gene B 
is mutated in samples s3,s8,s9. n is the total number of 
samples. The mutation coverage of the pair (gene A, 
gene B) is 5/n.

Driver mutation probability

Herein, we utilized the R package DriverNet [47] 
to evaluate the driver mutation probability of genes based 
on the relationship between mutation and consequent 
changes in gene expression. The input data of DriverNet 
comes from two matrices, namely a mutation matrix and 
its corresponding gene expression matrix. Each column of 
the two matrices is a sample, whilst each row represents 
the mutation status or expression level of a gene among 
the samples. The output of DriverNet is the P value of 
each gene that will likely be a driver of gene mutation. 
The smaller P value of the two genes from a SL pair was 
transformed to a negative log10 (P value) indicating the 
strength of the driver mutation for the pair.
Network information centrality

If G refers to the cancer network mentioned above, 
and G’ refers to the cancer network after removing gene 
A and gene B, then the network information centrality of 
gene A and gene B could be defined as formula I:

= = − ′C E
E

E G E G
E G

I( ) ( )
( )

( )geneA geneB,

Where E(G) is the efficiency of the network. It could be 
calculated in the formula II:

∑=
− ≠
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N N d

II( ) 1
( 1)

1 ( )
ij

i j i j G; ,

Herein, if gene i could reach gene j in cancer network, 
dij is the length of the shortest path between the gene i 
and gene j (calculated by shortest_path_length in python 
package networkx), otherwise, dij is equal to D(G) + 1. 
D(G) represents the diameter of cancer network, which 
is defined as the largest distance across all of the shortest 
paths in the cancer network (calculated through diameter 
in python package networkx).

Finally, normalization of the three features was 
taken to transform the values of each feature between 0-1 
in formula III. x is the original value of a feature. x’ is the 
normalized value.

′= −
−

x x x
x x

IIImin( )
max( ) min( )

( )

A semi-supervised ranking model

The principle of our ranking model, which is 
referred to as a manifold ranking algorithm [42, 48] 
can be intuitively explained: the problem is defined in 
two datasets, a true sample set and an unknown sample 
set (background); and the goal is to rank the individual 
members of the unknown sample set according to their 
relevance to the true samples. This model is well suited 
to address our problem scenario, which is that we only 
have few known SL pairs in hand (known positive data 
samples), and we want to prioritize the largest possible 

Δ
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gene pair combinations based on their possibility to be the 
true SL pairs. In detail, we used three features to describe 
each SL pair. Then 1- cosine angle distance was calculated 
to represent the relevance between candidate SL pairs and 
true SL pairs.

Input: A set of points X = (x1... xq, xq + 1... xn) 
representing the SL pairs. The first q points are true SL 
pairs, while, the others are candidate SL pairs. The initial 
score y was defined as (1…1,0 …0). (The true SL pairs are 
corresponding to 1, candidate SL pairs are assigned as 0.) 
Define f  0 = y; α is a parameter of the algorithm.

Output: A ranked list of X, where higher ranked 
gene pairs are more likely to be SL gene pairs.

1. Define the similarity matrix Wij = 1- cosine(i,j) 
and Wii = 0.

2. Compute L = D-1/2WD-1/2 with D being a diagonal 
matrix defined as ∑= =

D Wii ijj

n

1

3. Set iteratively f  t+1  =  αLf  t  +  (1-α)y until f 
converges, where α is a parameter in [0, 1);

4. Let f * be the converged function f  t; and rank all 
the points X in the decreasing order of their f  * values.

It has been shown [42] that f * could be calculated 
as formula IV.

α α= − − −f I L y IV(1 )( ) ( )* ( 1)

Evaluation test design

10 times 5-fold cross validation

For each case, the positive SL pairs were divided 
into five segments. Four of them were used as training sets, 
while the rest of the segments were used for evaluation. 
Next, positive SL pairs were shuffled 10 times, the overall 
performance was determined by the average results of 
these 10 shuffling events.

Ranking performance evaluation

Normalized discounted cumulative gain (NDCG) 
[49] was originally used to evaluate web search engine 
algorithms in the field of information retrieval. It 
can measure the usefulness of a document based on 
its position in the result list. Here we used NDCG to 
measure the effectiveness of ranking performance for 
each case’s predicted results (see formula V ).
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i
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i

Z is the normalization constant.
i is the rank position of candidate SL pair m.
reli is the relevance value of candidate SL pair m. If 

candidate SL pair m belongs to the positive SL pairs, reli 
is set to 1, otherwise, reli is set to 0.

p is the maximum position.
For example, if the three positive SL pairs are 

ranked at 2, 3 & 8, respectively, while the ideal rank 
position should be 1, 2 & 3, then:
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In addition, the positive enrichment of SL pairs in 
the top n ranking position are also used to evaluate our 
prediction performance. Herein, a hypergeometric test is 
utilized. (see formula VI)
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k: number of positive SL pairs included in top n 
ranking results.

N: the whole candidate SL pairs
M: the whole positive SL pairs.

Comparison of drug sensitivities between two 
groups of cancer cell lines

The original drug sensitivity data, drug targets as 
well as the mutation backgrounds of cancer cell lines 
in CCLE [21], NCI60 [22] were downloaded from 
broadinstitute.org/ccle/home and discover.nci.nih.gov/
cellminer/, respectively. Regarding a SL gene pair, if 
one of the genes in the SL pair is targeted by a drug, we 
compared the drug sensitivities on the cell lines carrying 
the mutation of the other genes in the pair and the cell 
lines containing the wild type of the other genes. The 
lower GI50 or IC50 value means higher drug sensitivity.

Further validation through siRNA knock down 
on cell lines

In order to get more reliable validation of the 
predicted SL gene pairs, we conducted siRNA knock-
down experiments on cancer cell lines. The influence 
on cell growth of different genetic background cell lines 
would indicate SL relationships.

Table 6: 2×2 contingency table in chi-square test

gene B + gene B −

gene A + M N

gene A − X Y

+ mutant type
− wild type
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For example, regarding a SL gene pair gene a –
gene b, two cancer cell lines were selected. The first 
cell line carried mutant gene a, while the wild type gene 
a was carried in the other cell line. Then, the siRNA 
of gene b was transfected into the two cell lines. We 
recorded the cell growth of two cell lines at the time 
points of 0h, 24h, 48h, 72h and 96h on two different 
treatments: placebo, siRNA-knockdown of gene b, 
respectively. Herein, we did 8 parallel experiments at 
each time point. The relative cell growth was calculated 
through the formula VII.

= VIIRelative cell growth Growth of cell with siRNA treatment
Growth of cell with placebo treatment

( )
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