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ABSTRACT
Glioma is often diagnosed at a later stage, and the high risk of recurrence remains 

a major challenge. We hypothesized that the microRNA expression profile may serve as 
a biomarker for the prognosis and prediction of glioblastoma recurrence. We defined 
microRNAs that were associated with good and poor prognosis in 300 specimens of 
glioblastoma from the Cancer Genome Atlas. By analyzing microarray gene expression 
data and clinical information from three random groups, we identified 7 microRNAs 
that have prognostic and prognostic accuracy: microRNA-124a, microRNA-129, 
microRNA-139, microRNA-15b, microRNA-21, microRNA-218 and microRNA-7. The 
differential expression of these miRNAs was verified using an independent set of 
glioma samples from the Affiliated People’s Hospital of Jiangsu University. We used 
the log-rank test and the Kaplan-Meier method to estimate correlations between 
the miRNA signature and disease-free survival/overall survival. Using the LASSO 
model, we observed a uniform significant difference in disease-free survival and 
overall survival between patients with high-risk and low-risk miRNA signature 
scores. Furthermore, the prognostic capability of the seven-miRNA signature was 
demonstrated by receiver operator characteristic curve analysis. A Circos plot was 
generated to examine the network of genes and pathways predicted to be targeted 
by the seven-miRNA signature. The seven-miRNA-based classifier should be useful in 
the stratification and individualized management of patients with glioma.

INTRODUCTION

Glioblastoma multiforme (GBM), which arises 
from transformed astrocytes, is the most malignant form 
of brain neoplasms. GBM is a highly aggressive glioma 
that is resistant to standard therapeutic interventions, thus 
its prognosis is often dire.. Currently, GBM has a median 
survival of 13-16 months post diagnosis, and an overall 
survival (OS) of 2.5-70 months [1]. While GBM tumors 
may share similar histological characteristics, their varied 
molecular characteristics contribute to the vastly different 
survival rates associated with GBM. Genomic analysis 
studies have identified molecular signatures which 
respond to specific treatment regimens [2]. Data from 
phase III clinical trials suggests that monotherapy with 
the angiogenesis inhibitor bevacizumab preserves quality 
of life, reduces corticosteroid use, and improves disease-
free survival (DFS); however, bevacizumab monotherapy 

does not substantially improve OS [3]. Therefore, drugs 
such as cilengitide are currently used in combination with 
bevacizumab with the goal of improving OS [4]. A major 
hurdle in GBM research is identification of prognostic 
biomarkers that can sensitively predict the clinical 
outcome of patients.

MicroRNAs (miRNAs) are short 18-25 nucleotide 
non-coding RNAs that regulate gene expression at the 
post-transcription level by inhibiting mRNA. Currently, 
miRNA profiling is an important method that is used to 
characterize tumors [5]. Bioinformatics tools suggest that 
miRNAs may regulate more than 60% of human genes 
including oncogenes, tumor suppressors, and those that 
impact chemoradioresistance [6]. Moreover, reports suggest 
that miRNA signatures may be prognostic indicators of 
GBM thus predict clinical outcome [7-13]. While Cox 
proportional hazards regression statistics is typically used 
for modeling covariate analysis associated with patient 
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survival, it is not suitable analyzing high-dimensional 
microarray data with variable sample size ratio (for 
example data of less than 10:1). Instead, the least absolute 
shrinkage and selection operator (LASSO) method has been 
introduced to eliminate this limitation associated with Cox 
regression analysis [14]. The LASSO method has been 
applied broadly to the Cox proportional hazard regression 
model for survival analysis with high-dimensional data [15]. 
However, most of the studies that have been performed to 
identify miRNAs in glioma have used small sample sizes 
and have not used comprehensive statistical approaches.

The aim of this study was to use advanced statistical 
methods and an expanded data set to determine a miRNA 
signature that can proficiently predict DFS and OS in GBM. 
Using the LASSO Cox regression model and GBM tumor 
tissues compared with non-tumor brain tissues from patients 
who underwent surgery, we developed a multi-miRNA-
based classifier to predict DFS. We assessed the prognostic 
accuracy of this classifier using two validation patient 
groups and confirmed our findings using an independent 
patient group. Moreover, using bioinformatics analysis, 
we investigated the functional relevance and ability of the 
selected miRNAs as potential biomarkers for recurrence 
and progression. The identification of a validated miRNA 
signature should be useful in predicting patient outcomes 
and tailoring treatment regimens for glioma.

RESULTS

Identification of miRNAs that are dysregulated 
in GBM

To identify miRNAs that are dysregulated during 
GBM, we analyzed data from 300 patients from TCGA 
database who underwent surgical resection for glioma. A 
training set (89 patients), a validation set (102 patients), 
and an independent verification set (109 patients) 
were randomly assigned to GBM patients. A set of 10 
unmatched samples from normal non-cancerous tissue 
was also analyzed for comparison. The distribution of the 
clinicopathological characteristics of malignant glioma in 
the three subgroups of GBM patients is shown in Table 1. 
According to the microarray data, 49 miRNAs were 
differentially expressed between the 300 GBM samples 
and 10 matched non-cancerous normal brain tissue 
samples (fold change ≥ 3.0; false discovery rate 0) (Figure 
1A). Of these, 28 miRNAs were upregulated and 21 were 
downregulated in the 300-sample GMB set (Table 2). 
Similar dysregulation was observed in the training set, 
validation set, and independent set (Supplemental Tables 
1–3). Hierarchical clustering based on the 49 differentially 
expressed miRNAs determined that the 300 tumor tissue 
and 10 normal brain tissue samples could be successfully 
separated into two discrete groups (p < 0.005); similar 
groups could be distinguished all three sets.

Identification of seven miRNAs significantly 
associated with DFS in GBM

To further investigate whether the miRNAs are 
significantly correlated with DFS in GBM, we performed 
univariate analysis. We used a LASSO Cox regression 
model to build a prognostic classifier, which selected 
seven miRNAs from among the 49 miRNAs identified 
in the training set (Figure 1B and 1C). Among the seven 
miRNAs, the expression of five miRNAs (miR-124a, miR-
129, miR-139, miR-218 and miR-7) was down-regulated 
in GBM tissues, and the expression of the other two (miR-
15b and miR-21) was up-regulated. The association with 
DFS was verified in all three patient sets (Table 3).

Quantitative RT-PCR was then used to validate the 
seven miRNAs for an additional set of 34 pathologically 
proven malignant glioma tissues and 10 non-cancer 
normal brain tissues from the Affiliated People’s Hospital 
of Jiangsu University. The expression of these miRNAs 
was significantly different between malignant glioma and 
non-cancerous normal brain samples and was consistent 
with the microarray expression patterns (Figure 2).

Establishment of a seven-miRNA-based signature 
that is associated with GBM disease risk

To assess the utility of the seven miRNAs in predicting 
disease risk, we derived a formula using the LASSO Cox 
regression model to calculate a score for the risk of disease 
recurrence for patients based on their individual seven-
miRNA expression levels. By introducing and observing 
auxiliary problems with continuous variables, a simple and 
efficient algorithm was established. Training set patients 
were further stratified into high- and low-risk groups, with 
the median risk score (4.25) as the cutoff value (Figure 3). No 
differences in clinical characteristics were observed between 
the two groups. However, Kaplan-Meier analysis showed 
that high-risk patients had shorter DFS and OS, which was 
confirmed for the three patient sets (Figure 4).

To further validate that these seven miRNAs are 
important for the signature, constructed six-miRNA 
signature was respectively created wherein one miRNA 
was sequentially deleted from the original seven-miRNA 
signature and survival analysis was compared by log-rank 
testing. Results showed that none of the iterations of the 
six-miRNA signatures was consistently correlated with 
DFS or OS in any of the three patient sets (Table 4).

Comparison of the seven-miRNA-based 
signature to other parameters of disease risk

To compare the correlative ability of the seven-
miRNA signature to that of other disease parameters, we 
performed univariate analysis. The results demonstrate that 
the risk score established by the miRNA expression was more 
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effective at distinguishing DFS time than other criteria that 
are traditionally used to distinguish disease status, including 
Kamofsky score, tumor location, recurrence status, MGMT 
methylation, IDH1 mutation, smoking and family history of 
cancer. Similar results were obtained upon dividing the group 
into training and validation sets (Table 5).

To further compare the seven-miRNA signature to 
other disease parameters, pairwise Pearson correlations 
were calculated for the signal values between 11 tracks 
(DFS, miRNA expression, age, sex, Kamofsky score, tumor 
location, recurrence, MGMT methylation, IDH1 mutation, 
smoking, and family history of cancer). The resulting 

matrix provides a pictorial representation showing that the 
miRNA signature has a high correlation with DFS and a 
high negative correlation with recurrence, whereas other 
parameters do not correlate as highly with DFS (Figure 5).

Assessment of the prognostic capability of the 
seven-miRNA-based signature

To assess the prognostic capability of the seven-
miRNA signature, we performed ROC analysis. The 
seven-miRNA signature provided a high sensitivity 
and specificity of survival prediction in the training set, 

Table 1: Baseline characteristics of patients in three miRNA assessment sets from TCGA

Training set Validation set Independent set

Numbers of 
patients

Low risk High risk Numbers 
of patients

Low risk 
(%)

High risk 
(%)

Numbers of 
patients

Low risk 
(%)

High risk 
(%)

Age

  ≤60 year 40 14(35%) 26(65%) 54 24(44%) 30(56%) 57 29(51%) 28(49%)

  >60 year 49 29(59%) 20(41%) 48 20(42%) 28(58%) 52 26(50%) 26(50%)

Gender

  Male 50 20(40%) 30(60%) 50 26(52%) 24(48%) 55 19(35%) 36(65%)

  Female 39 20(51%) 19(49%) 52 22(42%) 30(58%) 54 36(67%) 18(33%)

Karnofsky score

  ≤70 score 70 33(47%) 37(53%) 72 34(47%) 38(53%) 84 45(54%) 39(46%)

  ≥80 score 19 7(37%) 12(63%) 30 12(40%) 18(60%) 25 10(40%) 15(60%)

Tumorlocation

   Fronto lobe or 
temporal lobe 40 19(48%) 21(53%) 48 23(48%) 25(52%) 52 25(48%) 27(52%)

  Other lobe* 49 19(39%) 30(61%) 54 25(46%) 29(54%) 57 30(53%) 27(47%)

Recurrence

  Yes 69 32(46%) 37(54%) 17 7(41%) 10(59%) 93 41(44%) 53(56%)

  No 20 8(40%) 12(60%) 85 41(48%) 44(52%) 16 9(60%) 6(40%)

MGMT methylight

  methylated 47 22(47%) 25(53%) 69 38(55%) 31(45%) 78 42(54%) 36(46%)

  unmethylated 42 18(43%) 24(57%) 33 10(30%) 23(70%) 31 13(42&) 18(58%)

IDH1 mutant

  mutated 11 5(46%) 6(54%) 17 9(53%) 6(47%) 15 9(60%) 6(40%)

  unmutated 78 38(49%) 40(51%) 85 36(42%) 49(58%) 94 43(46%) 51(54%)

Smoking

  Yes 60 29(48%) 31(52%) 49 22(45%) 27(55%) 77 38(49%) 39(51%)

  No 29 11(38%) 18(62%) 53 26(49%) 27(51%) 32 15(47%) 17(53%)

Family history of cancer†

  Yes 68 30(44%) 38(56%) 69 30(43%) 39(57%) 88 43(49%) 45(51%)

  No 21 10(48%) 11(52%) 33 18(55%) 15(45%) 21 12(57%) 9(43%)

*Other lobe including insular lobe,parietal lobe,cerebellar,lateral ventricles,fourth ventricle, occipital lobe and multiple lobes
†Family history of cancer means any type tumor suffered in any family menbers.
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Figure 1: A. miRNAs differentially expressed in GBM tissues compared with non-cancerous glial tissues. A heat map of the miRNAs 
is shown. Green represents miRNAs that are downregulated in GBM, and red represents miRNAs that are upregulated. B. Twenty-time 
cross-validation for tuning parameter selection in the LASSO model. C. LASSO coefficient profiles of the 49 GBM -associated miRNAs. 
A vertical line is drawn at the value chosen by 20-fold cross-validation.

A
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Table 2: MiRNAs differentially expressed in GBM tissues compared with non-cancerous glial tissues. The data were 
derived from 300 GBM patients from TCGA database and 10 controls. (A) Upregulated in GBM; (B) Downregulated 
in GBM

MicroRNAs downregulated in Glioblastoma a relative to non-cancer glial tissues

microRNA GBM mean 
expression

Normal mean 
expression

Fold Change p-value(%) chromosomal location

hsa-miR-21 40406 1620 24.941 <0.00001 17q23.1

hsa-miR-27a 1801 341 5.283 <0.00001 19p13.12

hsa-miR-15b 14120 3502 4.032 <0.00001 3q26.1

hsa-miR-106b 1404 350 4.01 <0.00001 7q22.1

hsa-miR-93 1152 342 3.369 <0.00001 7q22.1

hsa-miR-23a 13710 3262 4.203 <0.00001 19p13.12

hsa-miR-155 1232 346 3.561 <0.00001 21q21.3

hsa-let-7i 777 299 2.597 <0.00001 12q14.1

hsa-miR-210 1122 340 3.3 <0.00001 11p15.5

hsa-miR-25 1597 348 4.586 0.0009 7q22.1

hsa-miR-130b 997 330 3.025 <0.00001 22q12.21

hsa-miR-92b 887 317 2.802 <0.00001 1q22

hsa-miR-106a 1897 700 2.711 0.0014 Xq26.2

hsa-miR-20a 963 326 2.955 <0.00001 13q31.3

hsa-miR-15a 934 323 2.896 <0.00001 13q14.3

hsa-miR-148a 1168 343 3.405 <0.00001 7p12.5

hsa-miR-16 7587 2959 2.564 0.0018 13q14.3

hsa-miR-17-5p 754 295 2.557 0.00005 3q26.1

hsa-miR-142-3p 1125 340 3.305 <0.00001 17q22

hsa-miR-10b 4076 1014 4.018 <0.00001 2q31.3

hsa-miR-34a 774 299 2.592 <0.00001 1p36.23

MicroRNAs upregulated in Glioblastoma a relative to non-cancer glial tissues

microRNA GBM mean 
expression

Normal mean 
expression Fold Change p-value(%) chromosomal location

hsa-miR-218 1109 12463 0.089 <0.00001 4p15.31,5q35.1

hsa-miR-129 200 2063 0.097 <0.00001 7q32.1,11p11.2

hsa-miR-491 1687 7271 0.232 0.00006 9p22.3

hsa-miR-132 225 1250 0.18 <0.00001 17p13.3

hsa-miR-137 141 2480 0.057 0.00012 1p21.3

hsa-miR-330 46 163 0.282 0.00009 19q13.32

hsa-miR-139 160 3200 0.05 <0.00001 11q13.4

hsa-miR-124a 60 7444 0.008 <0.00001 8p23.1

hsa-miR-7 173 3270 0.053 0.00074 9q21.32,15q26.1,19p13.3

hsa-miR-769-5p 449 1150 0.39 <0.00001 19q13.32

hsa-miR-323 849 2454 0.346 <0.00001 14q32.31

(Continued)
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MicroRNAs downregulated in Glioblastoma a relative to non-cancer glial tissues

microRNA GBM mean 
expression

Normal mean 
expression

Fold Change p-value(%) chromosomal location

hsa-miR-128a 474 2928 0.162 <0.00001 2q21.3

hsa-miR-410 751 4289 0.175 0.00023 Xp11.3

hsa-miR-128b 179 1470 0.122 <0.00001 3p22.3

hsa-miR-432 813 2123 0.383 <0.00001 14q32.31

hsa-miR-136 380 1829 0.208 <0.00001 14q32.31

hsa-miR-29c 327 1370 0.239 <0.00001 1q32.2

hsa-miR-338 120 1506 0.08 <0.00001 17q25.3

hsa-miR-342 470 1276 0.368 0.00022 14q32.2

hsa-miR-127 916 4127 0.222 0.00037 14q32.31

hsa-miR-379 771 3293 0.234 <0.00001 14q32.31

hsa-miR-138 102 647 0.158 <0.00001 16q13,3p21.33

hsa-miR-377 361 1281 0.282 <0.00001 14q32.31

hsa-miR-29b 869 2860 0.304 0.00033 7q32.3

hsa-miR-149 141 460 0.307 0.00061 2q37.3

hsa-miR-219 130 1915 0.068 <0.00001 6p21.32,9q32.41

hsa-miR-221 1307 3291 0.397 <0.00001 Xp11.3

hsa-miR-222 236 934 0.253 <0.00001 Xp11.3

†We used these microRNAs in the clustering analysis in Supplementary figure 1. ‡We calculated p values with unpaired 
class comparison analysis in SAM array Tools 4.0.

Table 3: Univariate association of the 49 differentially expressed miRNAs with DFS in the training, validation, and 
independent sets. The 7 miRNAs with significant association (P < 0.05) are marked in bold

Parameters Catergories Training set Validation set Independent set

P value HR(95%CI) P value HR(95%CI) P value HR(95%CI)

hsa_let_7i Low(≤ 1.91) vs. High 
expression (> 1.91)

0.07 1.21(0.98-1.49) 0.27 1.09(0.93-1.28) 0.28 1.12(0.91-1.38)

hsa_miR_106a Low(≤ 0.42) vs. High 
expression (> 0.42)

0.67 1.04(0.86-1.26) 0.76 1.03(0.87-1.21) 0.62 1.06(0.86-1.30)

hsa_miR_106b Low(≤ 1.93) vs. High 
expression (> 1.93)

0.58 1.21(0.61-2.40) 0.26 1.12(0.92-1.36) 0.34 1.11(0.89-1.39)

hsa_miR_10b Low(≤ -2.67) vs. High 
expression (> -2.67)

0.58 0.77(0.30-1.97) 0.18 0.94(0.86-1.03) 0.12 0.92(0.83-1.02)

hsa_miR_124a Low(≤ -2.94) vs. High 
expression (> -2.94)

0.0071 0.75(0.62-0.90) <0.001 0.81(0.75-0.87) 0.003 0.84(0.76-0.92)

hsa_miR_127 Low(≤ -7.43) vs. High 
expression (> -7.43)

0.48 0.48(0.77-1.13) 0.13 0.87(0.76-1.03) 0.8 1.02(0.87-1.20)

hsa_miR_128a Low(≤ -6.80) vs. High 
expression (> -6.80)

0.57 0.51(0.74-1.18) 0.1 0.82(0.64-1.04) 0.45 0.91(0.72-1.15)

hsa_miR_128b Low(≤ -3.54) vs. High 
expression (> -3.54)

0.71 0.70(0.11-4.52) 0.06 0.84(0.69-1.01) 0.4 0.92(0.75-1.12)

hsa_miR_129 Low(≤ -3.27) vs. High 
expression (> -3.27)

0.03 0.04(0.53-0.98) 0.002 0.42(0.31-0.57) <0.0001 0.51(0.38-0.69)

(Continued)



Oncotarget53398www.impactjournals.com/oncotarget

Parameters Catergories Training set Validation set Independent set

P value HR(95%CI) P value HR(95%CI) P value HR(95%CI)

hsa_miR_130b Low(≤ 1.78) vs. High 
expression (> 1.78)

0.07 1.19(0.99-1.45) 0.9 1.01(0.88-1.16) 0.39 1.10(0.88-1.38)

hsa_miR_132 Low(≤ 0.43) vs. High 
expression (> 0.43)

0.48 1.04(0.93-1.18) 0.17 1.18(0.93-1.48) 0.65 1.05(0.86-1.28)

hsa_miR_136 Low(≤ -1.37) vs. High 
expression (>1.101)

0.22 0.25(0.03-2.33) 0.11 0.86(0.72-1.03) 0.25 0.83(0.60-1.14)

hsa_miR_137 Low(≤ 1.15) vs. High 
expression (> 1.15)

0.19 0.32(0.06-1.77) 0.26 1.11(0.92-1.34) 0.06 1.25(0.99-1.58)

hsa_miR_138 Low(≤ -4.42) vs. High 
expression (> -4.42)

0.68 0.64(0.08-5.40) 0.57 1.09(0.798-1.51) 0.32 0.90(0.735-1.11)

hsa_miR_139 Low(≤ -1.85) vs. High 
expression (> -1.85)

0.02 1.2(1.03-1.40) 0.014 0.67(0.55-0.83) 0.0004 0.66(0.52-0.83)

hsa_miR_142_3p Low(≤ -6.22) vs. High 
expression (> -6.22)

0.41 0.54(0.12-2.39) 0.47 0.95(0.84-1.084) 0.83 1.02(0.86-1.21)

hsa_miR_148a Low(≤ -8.92) vs. High 
expression (> -8.92)

0.13 0.41(0.13-1.29) 0.85 1.01(0.91-1.13) 0.13 1.11(0.97-1.26)

hsa_miR_149 Low(≤ -0.66) vs. High 
expression (> -0.66)

0.54 0.94(0.76-1.16) 0.51 0.96(0.84-1.09) 0.35 0.93(0.80-1.08)

hsa_miR_155 Low(≤ 3.51) vs. High 
expression (> 3.51)

0.62 1.42(0.36-5.62) 0.26 1.10(0.93-1.31) 0.27 1.10(0.93-1.33)

hsa_miR_15a Low(≤ -0.67) vs. High 
expression (> -0.67)

0.59 0.94(0.73-1.19) 0.7 1.04(0.84-1.30) 0.4 0.91(0.72-1.14)

hsa_miR_15b Low(≤ 2.2) vs. High 
expression (> 2.2)

0.04 1.25(1.01-1.54) 0.003 1.31(1.09-1.57) 0.003 1.49(1.14-1.95)

hsa_miR_16 Low(≤ 2.55) vs. High 
expression (> 2.55)

0.12 1.29(0.94-1.78) 0.09 1.25(0.97-1.60) 0.73 1.04(0.82-1.32)

hsa_miR_17_5p Low(≤ -1.51) vs. High 
expression (> -1.51)

0.16 0.86(0.70-1.06) 0.94 0.99(0.84-1.17) 0.54 1.07(0.86-1.33)

hsa_miR_20a Low(≤ -0.47) vs. High 
expression (> -0.47)

0.63 0.95(0.79-1.16) 0.35 1.08(0.92-1.25) 0.59 1.05(0.87-1.27)

hsa_miR_21 Low(≤ 6.07) vs. High 
expression (> 6.07)

0.002 1.84(1.35-2.50) 0.009 1.38(1.20-1.59) 0.0061 1.37(1.18-1.60)

hsa_miR_210 Low(≤ 6.24) vs. High 
expression (> 6.24)

0.21 1.87(0.70-4.98) 0.17 1.08(0.97-1.21) 0.71 1.03(0.90-1.18)

hsa_miR_218 Low(≤ -2.14) vs. High 
expression (> -2.14)

0.041 0.81(0.66-0.99) 0.0026 0.49(0.36-0.65) 0.013 0.72(0.58-0.93)

hsa_miR_219 Low(≤ -4.04) vs. High 
expression (> -4.04)

0.25 0.67(0.34-1.33) 0.49 1.03(0.95-1.11) 0.35 0.96(0.88-1.05)

hsa_miR_221 Low(≤ 2.24) vs. High 
expression (> 2.24)

0.77 1.25(0.98-1.60) 0.14 1.13(0.96-1.32) 0.26 1.09(0.93-1.30)

hsa_miR_222 Low(≤ -3.49) vs. High 
expression (> -3.49)

0.12 0.71(0.46-1.09) 0.07 1.11(0.99-1.23) 0.53 0.96(0.86-1.08)

hsa_miR_23a Low(≤ -1.34) vs. High 
expression (> -1.34)

0.57 0.87(0.55-1.40) 0.52 1.06(0.88-1.28) 0.17 1.18(0.93-1.49)

hsa_miR_25 Low(≤ -2.07) vs. High 
expression (> -2.07)

0.42 0.81(0.49-1.35) 0.33 1.12(0.89-1.39) 0.16 1.16(0.94-1.43)

hsa_miR_27a Low(≤ -0.54) vs. High 
expression (> -0.54)

0.9 0.95(0.39-2.29) 0.65 1.04(0.87-1.26) 0.08 1.23(0.97-1.55)

hsa_miR_29b Low(≤ 2.45) vs. High 
expression (> 2.45)

0.41 1.28(0.71-2.29) 0.74 0.98(0.84-1.13) 0.61 0.96(0.81-1.13)

(Continued)
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validation set and independent set, with areas under 
the ROC curve (AUROC) ranging from 0.51 to 0.71 
for DFS prediction and 0.69 to 0.73 for OS prediction 
(Figure 6).

To further examine the prognostic capability of 
the miRNA, we applied the same cutoff risk scores to 
all samples from TCGA in the cohort. A significant 
segregation of patients based on DFS (P < 0.001) was 
observed (Figure 7). These analyses underscore the 
robustness of our miRNA-based classifier in predicting 
glioma patient outcome.

Analysis of the network of genes and pathways 
targeted by the 7-miRNA signature using Circos 
plots

Though initially designed for displaying 
comparative genomic data, Circos plots have also 
been used to analyze mutations in cancer metagenomic 
regulatory networks [18]. To provide a comprehensive 

evaluation of the putative biological functions of the 
seven-miRNA signature, we applied Circos plots to 
integrate data from the seven miRNAs, their predicted 
transcriptional targets, and annotated functions in 
glioma. To our knowledge, this is the first time that data 
from miRNAs and their predicted targets have been 
simultaneously combined in this manner. To decrease the 
complexity of the graphs and allow for better readability, 
we only showed selected transcriptional targets and 
inferred functions with known relevance to glioma. 
The results suggest that many oncogenes and tumor 
suppressor genes are targeted by miRNAs, including 
STAT3 and E2F1 (Figure 8-14).

DISCUSSION

An excessive number of cancers occur without 
an effective means of prevention or treatment. In 
routine clinical practice, disease recurrence determines 
the prognosis of many glioma patients. However, the 

Parameters Catergories Training set Validation set Independent set

P value HR(95%CI) P value HR(95%CI) P value HR(95%CI)

hsa_miR_29c Low(≤ -1.44) vs. High 
expression (> -1.44)

0.29 0.87(0.66-1.13) 0.19 0.89(0.75-1.06) 0.02 0.78(0.64-0.96)

hsa_miR_323 Low(≤ -4.27) vs. High 
expression (> -4.27)

0.51 0.65(0.19-2.25) 0.61 1.06(0.84-1.35) 0.32 1.27(0.79-2.06)

hsa_miR_330 Low(≤ -3.15) vs. High 
expression (> -3.15)

0.18 0.74(0.46-1.16) 0.74 1.05(0.78-1.41) 0.76 0.95(0.67-1.34)

hsa_miR_338 Low(≤ -1.24) vs. High 
expression (> -1.24)

0.6 0.88(0.56-1.40) 0.12 1.09(0.98-1.22) 0.4 1.05(0.94-1.16)

hsa_miR_342 Low(≤ 1.09) vs. High 
expression (> 1.09)

0.67 0.90(0.54-1.48) 0.51 0.91(0.69-1.20) 0.32 0.86(0.64-1.16)

hsa_miR_34a Low(≤ 4.32) vs. High 
expression (> 4.32)

0.48 1.54(0.46-5.12) 0.08 1.11(0.99-1.25) 0.19 1.10(0.95-1.28)

hsa_miR_377 Low(≤ -1.74) vs. High 
expression (> -1.74)

0.12 0.18(0.02-1.55) 0.14 0.89(0.76-1.04) 0.37 0.92(0.76-1.11)

hsa_miR_379 Low(≤ 2.44) vs. High 
expression (> 2.44)

0.29 1.28(0.82-1.99) 0.68 0.98(0.88-1.09) 0.88 1.02(0.82-1.25)

hsa_miR_410 Low(≤ -6.92) vs. High 
expression (> -6.92)

0.31 0.50(0.14-1.85) 0.37 0.91(0.73-1.12) 0.11 1.22(0.95-1.57)

hsa_miR_432 Low(≤ -0.52) vs. High 
expression (> -0.52)

0.82 0.95(0.61-1.48) 0.14 0.75(0.51-1.10) 0.11 0.72(0.47-1.08)

hsa_miR_491 Low(≤ -0.58) vs. High 
expression (>-0.58)

0.77 0.94(0.64-1.40) 0.54 0.90(0.63-1.27) 0.45 0.89(0.66-1.20)

hsa_miR_7 Low(≤ -1.86) vs. High 
expression (> -1.86)

0.01 0.83(0.72-0.96) 0.0078 0.67(0.58-0.78) <0.0001 0.49(0.39-0.62)

hsa_miR_769_5p Low(≤ -3.95) vs. High 
expression (> -3.95)

0.19 0.67(0.37-1.22) 0.4 1.28(0.72-2.29) 0.41 0.94(0.83-1.08)

hsa_miR_92b Low(≤ 0.44) vs. High 
expression (> 0.44)

0.73 1.05(0.81-1.35) 0.2 0.91(0.77-1.06) 0.54 0.94(0.76-1.15)

hsa_miR_93 Low(≤ -0.54) vs. High 
expression (> -0.54)

0.63 0.95(0.76-1.18) 0.51 1.07(0.88-1.29) 0.37 1.11(0.88-1.40)
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Figure 2: MiRNA expression profiles and quantitative RT-PCR validation of seven differentially expressed miRNAs. 
A. The relative expression of miR-124a, miR-129, miR-139, miR-15b, miR-21, miR-218 and miR-7 from microarray analysis of 300 
GBM samples and 10 healthy control samples from TCGA database. B. Relative expression of these same miRNAs was determined by 
quantitative RT-PCR of 34 GBM samples and 10 control non-cancerous glial tissues. Expression was normalized to U6 expression. Data 
are presented as the mean± SEM, and the statistical significance calculated using the unpaired t-test is indicated.
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underlying molecular differences in glioma, even 
those with the same staging, leads to variation in 
patient outcomes, thus suggesting that there is a need 
for improvement of the current staging system [1]. 
To gain better insights into the biology of cancers, 
precision medicine has emerged as a promising 
approach for disease treatment and prevention that 
considers individual variability in genes, environment, 
and lifestyle [19]. Therefore, identifying novel 
genetic signatures may help clinicians to determine 
the likelihood of recurrence and tailor treatments 
accordingly.

In this study, we established a seven-miRNA 
diagnostic tool that can improve the predictability of 

disease recurrence. This novel prognostic tool was 
validated and our results showed that this tool can 
successfully stratify GBM patients in high- and low-
risk categories and predict patient DFS. Additionally, 
in comparison with other clinicopathological risk factor 
analysis, the tool could more accurately predict patient 
survival, suggesting that the seven-miRNA-based 
classifier provides prognostic value that complements 
clinicopathological features.

Previous studies have identified multiple miRNAs 
that are differentially regulated in glioma compared with 
normal tissue. Each of the miRNAs in this study has 
previously been shown to be associated with prognosis 
or therapeutic outcome in patients with malignant 

Figure 3: Seven-miRNA signature risk-score distribution in GBM patients from the training set, validation set and 
independent sets.
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Figure 4: Kaplan-Meier curves of DFS and OS according to expression of the seven-miRNA signature in patients with 
GBM. Correlations for patients with low-risk and high-risk miRNA expression scores are shown for the training set, the validation set, the 
independent set, and all patients combined. P-values were calculated by log rank testing.
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glioma [7, 11-13, 20-25]; however, the integration of 
these miRNAs as a seven-miRNA signature for glioma 
prognosis is unique to our study. Interestingly, the two 
up-regulated miRNAs (miR-15b and miR-21) have 
been identified as circulating markers for glioma [24]. 
Furthermore, miR-15b has recently been identified as a 
“hub” gene that regulates multiple pathways associated 
with glioma progression [12]. Conversely, each of the 
down-regulated genes has been directly shown to have 
tumor suppressor properties, including the ability to 
inhibit glioblastoma invasion, migration and viability 
[13, 26-29]. These findings support the inclusion of the 
miRNAs within the seven-miRNA signature.

Our study is unique from previous studies in that it 
provides an approach for classifications of gliomas using 
a large sample size and advanced statistical approaches. 
Previous studies that have assessed miRNA biomarkers 
in glioma have been limited by small numbers 
of miRNAs screened, small sample sizes, lack of 

independent validation sets, and the use of inappropriate 
statistical methods to mine miRNA microarray data. The 
use of the LASSO Cox regression model has allowed 
us to integrate multiple miRNAs into one tool, which 
has significantly greater prognostic accuracy than that 
of single miRNAs alone [14]. We demonstrated that 
similarly-staged glioma patients can be classified into 
high- and low-risk groups based on their seven-miRNA 
signature identified by this method. Additionally, the 
seven-miRNA signature had a better survival prognostic 
capability compared with other indices as determined 
by ROC analysis. Thus, classification of patients by this 
approach could provide useful information to clinicians 
on the glioma recurrence risk and guide decisions for 
treatment. Based on the highly sensitive results of our 
prognostic model, modifications can be made on disease 
management, for example over-treatment of low-risk 
patients can be avoided which could save extraordinary 
expense and unnecessary aggravation.

Table 4: Log-rank test comparison of Kaplan-Meier survival analysis for the seven-miRNA signature vs. the “seven-
minus-one” miRNA signatures in GBM patients

Training set (109) Validation set Independent set

Disease Free Survival

7-microRNA signature <0.0001 0.0066 0.0016

5-microRNA signature minus

microRNA-124a 0.036 0.124 0.059

microRNA-129 0.018 0.0081 0.033

microRNA-139 0.0098 0.01 0.058

microRNA-21 0.025 0.0164 0.083

microRNA-218 0.027 0.05 0.0043

microRNA-15b 0.072 0.004 0.0012

microRNA-7 0.08 0.147 0.013

Overall Survival

7-microRNA signature 0.0014 0.0091 0.0035

5-microRNA signature minus

microRNA-124a 0.042 0.13 0.042

microRNA-129 0.049 0.171 0.044

microRNA-139 0.006 0.097 0.051

microRNA-21 0.09 0.031 0.041

microRNA-218 0.04 0.064 0.0102

microRNA-15b 0.12 0.018 0.023

microRNA-7 0.101 0.073 0.037
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Notably, we validated the differential expression 
of the seven miRNAs identified in this study using an 
independent set for formalin-fixed paraffin-embedded 
tissues. As we could not obtain fresh paired frozen 
specimens, a direct miRNA expression comparison 
between corresponding frozen and formalin-fixed 
paraffin-embedded clinical specimens could not be 
performed. However, studies on mouse liver show 
similar miRNA expression results for both freshly 
frozen and formalin-fixed paraffin-embedded specimens 
[30]; however, it still would be important to repeat 
the RT-PCR analyses of the seven-miRNA signature 
using fresh frozen samples. As an additional potential 
limitation, our study was performed using samples 

from the United States and China. The distribution of 
clinical characteristics could potentially differ in other 
geographic locations. Therefore, the generalizability 
of our results should be further validated on other 
prospective studies for population-based analysis.

In summary, our results suggest that the novel seven-
miRNA based prognostic tool can effectively classify 
malignant glioma patients into groups at low or high 
risk of glioma relapse, thereby adding prognostic value 
to the traditional clinicopathological risk factors used to 
assess these patients’ prognosis. Overall, we believe that 
the distinctive seven-miRNA classifier provides a useful 
prognostic tool with clinical value for appropriately 
categorizing patients with malignant glioma.

Table 5: Univariate association of various parameters with DFS in the training, validation, and independent sets

Variables Training set Validation set Independent set

p value HR(95%CI) p value HR(95%CI) p value HR(95%CI)

Age (≤60 year 
vs.>60 year)

0.2 1.47(0.82-
2.64)

0.67 0.88(1.69-
5.42)

0.68 1.13(0.64-1.99)

Gender (Male 
vs. Female)

0.38 1.31(0.72-
2.38)

0.66 0.89(0.49-
1.58)

0.75 1.26(0.54-2.35)

Karnofsky 
score (≤70 
score vs.≥80 
score)

0.06 0.50(0.24-
1.04)

0.66 1.13(0.52-
1.51)

0.07 0.56(0.30-1.05)

Tumor location 
(Fronto-
temporal vs. 
Other)

0.49 1.25(0.67-
2.35)

0.61 0.87(0.65-
1.98)

0.38 0.77(0.43-1.38)

Whether 
recurrence 
(Yes vs. No)

0.02 0.44 
(0.22-0.88)

0.03 1.88 
(1.07-3.31)

0.023 0.49 
(0.26-0.93)

MGMT 
methylation 
(Yes vs. No)

0.49 0.80(0.43-
1.50)

0.05 0.57(0.39-
1.22)

0.7 1.11(0.64-1.94)

IDH1 mutant 
(Yes vs. No)

0.32 0.72(0.38-
1.37)

0.25 0.68(0.32-
0.99)

0.76 1.19(0.57-2.17)

Smoking (Yes 
vs. No)

0.22 0.65(0.32-
1.29)

0.27 0.73(0.36-
1.31)

0.56 1.21(0.63-2.33)

Family history 
of cancer (Yes 
vs. No)

0.88 0.94(0.45-
1.98)

0.23 1.42(0.42-
1.28)

0.3 1.42(0.73-2.79)

Seven-
miRNA-based 
classifier (Low 
vs. High risk)

<0.0001 3.55(1.82-
6.94)

<0.0001 3.02(0.80-
2.51)

0.0001 3.02(1.58-5.77)
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MATERIALS AND METHODS

Patients and glioma samples

Clinical information for 495 patients with GBM 
and 10 unmatched non-tumor samples from patients 
undergoing brain trauma were obtained from The Cancer 
Genome Atlas (TCGA) (tcga-data.nci.nih.gov”; accessed 
November 2013). The database includes both primary and 
secondary GBM. To rule out changes in miRNA expression 
caused by prior disease treatment, 308 patients that had 
not received radiotherapy of chemotherapy prior to biopsy 
sampling were extracted from the 495 in the database. We 
stochastically used computer-generated random numbers to 

select 300 of the 308 samples for analysis and to assign 
89 of the samples to the training set, 102 samples to the 
validation set and the other 109 samples to the independent 
set. The demographic and clinical features of all patients 
and healthy controls are listed in Table 1.

In addition to the data from TCGA, we obtained 34 
pathologically proven glioma (grade III–IV) specimens 
and 10 paraffin-embedded normal brain tissues from 
patients with brain trauma from the Affiliated People’s 
Hospital of Jiangsu University between 2009 and 2015. 
The demographic and clinical features of these patients 
and healthy controls are shown in Table 6. All samples 
were assessed by pathologists of the Affiliated People’s 
Hospital of Jiangsu University. The institutional review 

Figure 5: Correlation matrix of univariate association between miRNAs and other independent prognostic factors. 
The matrix was generated by R language. The numbers in the squares indicate how the independent prognostic factors correlate with each 
other and seven-microRNA, the larger absolute value is the larger the correlation. Blue indicates positive correlation and read indicates 
negative correlation
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boards at each participating institution approved 
retrospective analysis of anonymous data.

RNA Isolation, Microarray Analysis, and 
Quantitative RT-PCR

The isolation of total RNA from the 300 GBM 
samples and 10 unmatched non-tumor samples and 
microarray analysis has been described previously [16]. 

Data that were obtained using the Agilent human miRNA 
8×15k microarray (level 3) containing 534 miRNA probes 
were downloaded from the 2013 TCGA repository. Level 3 
data were derived after the raw signals per probe (level 1) 
were normalized per probe set (level 2) and then averaged 
for each miRNA. We performed a significance analysis 
of the microarray data, with a false discovery rate of less 
than 0.001, to identify miRNAs differentially expressed 
between the paired cancer and normal samples [17]. 

Figure 6: ROC analysis of the sensitivity and specificity for prediction of DFS and OS by the seven-miRNA signature, 
sex, age, MGMT, and tumor location in patients with GBM. The values of the areas under the ROC curve (AUROC) are shown 
as a measure of the prognostic capability of each parameter.
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Figure 7: Stratification of patients on the basis of the seven-miRNA signature and recurrence. The 300 GBM patients 
within this study were classified by the risk score defined in this study and divided into groups with and without recurrence in short times. 
The median time to recurrence from TCGA samples is 7 months.

Figure 8: Circos plots of the metagenomic regulatory networks predicted to be targeted by the seven-miRNA classifier 
(miR-7, miR-15b, miR-21, miR-124a, miR-129, miR-139 and miR-218.
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Figure 9: Circos plots of the metagenomic regulatory networks predicted to be targeted by the seven-miRNA classifier 
(miR-7, miR-15b, miR-21, miR-124a, miR-129, miR-139 and miR-218.

Figure 10: Circos plots of the metagenomic regulatory networks predicted to be targeted by the seven-miRNA classifier 
(miR-7, miR-15b, miR-21, miR-124a, miR-129, miR-139 and miR-218.
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Figure 11: Circos plots of the metagenomic regulatory networks predicted to be targeted by the seven-miRNA classifier 
(miR-7, miR-15b, miR-21, miR-124a, miR-129, miR-139 and miR-218.

Figure 12: Circos plots of the metagenomic regulatory networks predicted to be targeted by the seven-miRNA classifier 
(miR-7, miR-15b, miR-21, miR-124a, miR-129, miR-139 and miR-218.
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Figure 13: Circos plots of the metagenomic regulatory networks predicted to be targeted by the seven-miRNA classifier 
(miR-7, miR-15b, miR-21, miR-124a, miR-129, miR-139 and miR-218.

Figure 14: Circos plots of the metagenomic regulatory networks predicted to be targeted by the seven-miRNA classifier 
(miR-7, miR-15b, miR-21, miR-124a, miR-129, miR-139 and miR-218.
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MiRNAs were classified as differentially expressed if the 
expression change was >3.0-fold, and the difference were 
considered to be significant if p-values were less than 
0.01. We perform hierarchical clustering analysis with 
the average linkage method, and un-centered Pearson’s 
correlation coefficients with MEV version 4.9.

RNA was isolated from the 34 glioma (grade III–
IV) specimens and 10 normal brain tissues from the 
Affiliated People’s Hospital of Jiangsu University by the 

Trizol method (Invitrogen, USA). RT-PCR was performed 
using the one-step SYBR RT-PCR Kit II (Takara®, Japan). 
Values were standardized to the expression of U6 RNA.

Statistical analysis

The statistical software SPSS version 19.0 was used 
for data analysis. All computational work was performed 
using R language (v3.1.1). We analyzed data from TCGA 

Table 6: Baseline characteristics of patients in 34 GBM samples from the Affiliated People’s Hospital of Jiangsu 
University

Numbers of patients Low risk High risk

Age

  ≤60 year 19 9(35%) 10(53%)

  >60 year 15 4(27%) 11(73%)

Gender

  Male 19 8(420%) 11(58%)

  Female 15 5(33%) 10(67%)

Karnofsky score

  ≤70 score 22 7(32%) 15(68%)

  ≥80 score 12 6(50%) 6(50%)

Tumorlocation

   Fronto lobe or temporal 
lobe 12 5(42%) 7(58%)

  Other lobe* 22 8(36%) 14(64%)

Recurrence

  Yes 14 2(14%) 12(86%)

  No 20 11(55%) 9(45%)

MGMT methylight

  methylated 18 7(39%) 11(61%)

  unmethylated 16 6(38%) 10(62%)

IDH1 mutant

  mutated 3 1(33%) 2(67%)

  unmutated 31 12(39%) 19(61%)

Smoking

  Yes 11 3(27%) 8(73%)

  No 23 10(43%) 13(57%)

Family history of cancer†

  Yes 18 4(22%) 14(78%)

  No 16 9(56%) 7(44%)

*Other lobe including insular lobe,parietal lobe,cerebellar,lateral ventricles,fourth ventricle, occipital lobe and multiple 
lobes
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for the selected miRNAs to evaluate their prognostic 
value in malignant glioma. The primary outcome of this 
paper was DFS. We assessed the relationship between the 
clinical characteristics and miRNA expression using the 
Student’s t test, χ2 test or Fisher’s exact test. We analyzed 
correlations between the microarray data and the RT-PCR 
data of our samples using the Spearman correlation test. 
We used the Kaplan-Meier method and the log-rank test to 
estimate DFS and OS, and calculated hazard ratios with an 
adjusted multivariate Cox regression analysis.

We used the LASSO Cox regression model [14] 
to select the most useful prognostic markers among the 
GBM-associated miRNAs identified with the cohort set, 
and we constructed a multi-miRNA-based classifier for 
predicting the DFS of patients with malignant glioma in 
the training set. We also used the R software version 3.1.1 
“glmnet” package to perform the LASSO Cox regression 
model analysis. To identify the differentially expressed 
miRNAs that were significantly associated with DFS in the 
training set, we use LASSO Cox regarding analysis with 
R language. MiRNAs that were associated significantly 
with DFS were selected to construct an miRNA signature 
with the risk-score method and were used for survival 
analysis. The following algorithm was used to divide 
patients into high-risk (score > 4.25) and low-risk (score 
< 4.25) groups: risk score = (0.039 × status of miR-124a) 
+ (0.389 × status of miR-129) + (0.495 × status of miR-
139) - (0.396 × status of miR-15b) - (0.124 × status of 
miR-21) + (0.387 × status of miR-218) + (0.062 × status 
of miR-7). We compared the two groups using the t test for 
continuous variables and χ2 test for categorical variables.

For survival analyses, we used the Kaplan-Meier 
method to analyze the correlation between variables 
and DFS, and the log-rank test to compare survival 
curves. We used the Cox regression model to perform 
the multi-variable survival analysis, and Cox regression 
coefficients to generate nomograms. Calibration plots 
were generated to explore the performance characteristic 
of the nomograms. The x-axis represents the prediction 
calculated with use of the nomogram, and the y-axis 
represents the actual freedom from cancer recurrence 
for our patients. The 45-degree dashed line represents 
the performance of an ideal nomogram. Nomogram and 
calibration plots were generated with the rms using R 
software version 3.9.0. Statistical significance was set at 
0.05.

We performed multivariate analysis using a 
backward stepwise approach to test if the signature was 
an independent prognostic factor of OS, age, gender, 
Karnofsky score, tumor location, recurrence, MGMT 
methylation, IDH1 mutation, smoking, or family history 
of cancer. Individual miRNAs within the 7-miRNA-based 
classifier were used as covariates. The observed two-tailed 
significance level was less than 0.001.

We also used R software version 3.1.1 and the 
“survival ROC” package to perform time-dependent 

receiver operating characteristic (ROC) curve analysis. We 
investigated the prognostic accuracy of each feature and 
multi-miRNA-based classifier using time-dependent ROC 
analysis. We assessed the area under the curve at different 
cutoff times to measure prognostic accuracy.

Generation of a circos plot for identification 
of genes and pathways targeted by the 
seven-miRNA classifier

The Circos plots show glioblastoma signature genes 
regulated by miRNA. Several utility tools are bundled 
with Circos to help analyze, filter, and format data. Circos 
plots apply simulated annealing to a linked data set to 
generate an ideogram order that minimizes/maximizes the 
number of links that cross in the image. R language is a 
collection of tools that is used to parse tabular data and 
generate data and configuration files for visualizing tables 
with Circos.
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