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ABSTRACT

Standard clinicopathological variables are inadequate for optimal management 
of prostate cancer patients. While genomic classifiers have improved patient risk 
classification, the multifocality and heterogeneity of prostate cancer can confound 
pre-treatment assessment. The objective was to investigate the association of 
multiparametric (mp)MRI quantitative features with prostate cancer risk gene 
expression profiles in mpMRI-guided biopsies tissues.

Global gene expression profiles were generated from 17 mpMRI-directed 
diagnostic prostate biopsies using an Affimetrix platform. Spatially distinct imaging 
areas (‘habitats’) were identified on MRI/3D-Ultrasound fusion. Radiomic features 
were extracted from biopsy regions and normal appearing tissues. We correlated 
49 radiomic features with three clinically available gene signatures associated with 
adverse outcome. The signatures contain genes that are over-expressed in aggressive 
prostate cancers and genes that are under-expressed in aggressive prostate cancers. 
There were significant correlations between these genes and quantitative imaging 
features, indicating the presence of prostate cancer prognostic signal in the radiomic 
features. Strong associations were also found between the radiomic features and 
significantly expressed genes. Gene ontology analysis identified specific radiomic 
features associated with immune/inflammatory response, metabolism, cell and 
biological adhesion. To our knowledge, this is the first study to correlate radiogenomic 
parameters with prostate cancer in men with MRI-guided biopsy.

INTRODUCTION

Treatment recommendations for prostate cancer 
patients are currently based on risk stratification using 
PSA, Gleason score (GS) and T-category, which typically 
categorize men as having low, intermediate, and high risk 

disease [1]. The overtreatment of men with prostate cancer 
is a well-recognized problem and active surveillance has 
rapidly become a standard recommendation for many men 
with low risk disease [2]. Prostate tumor heterogeneity 
confounds the selection of men for active surveillance 
or definitive primary treatment because the determinate 
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lesion is missed in approximately 30% of cases. New 
methods are needed to improve risk stratification and 
optimize management [3].

Genomic analyses and gene expression signatures, 
such as Decipher® (GenomeDx, San Diego, California) 
[4-7], Prolaris® Cell Cycle Progression (CCP) (Myriad 
Genetics, Salt Lake City, Utah) [8], Genomic Prostate 
Score® (GPS) (Genomic Health, Redwood City, CA) [9] 
have the potential to become integral to risk stratification 
and management. Prostate cancer, however, exhibits 
spatial heterogeneity that can confound current pre-
treatment clinicalopathological and genomic assessment. 
Multiparametric (mp)MRI, including sequences for 
anatomical (T2-weighted (T2w)), perfusion (Dynamic 
contrast enhanced (DCE-)MRI) and diffusion (diffusion 
weighted imaging (DWI)) is an excellent tool for 
visualization of prostate structures, distributions of 
blood flow or diffusion. We propose the characterization 
of prostate “habitats”, and hence prostate cancer 
heterogeneity, through identification of distinct imaging 
characteristics using these sequences [10]. Our approach 
incorporates “radiomics”, an emerging method for 
high-throughput extraction of imaging features from 
diagnostic radiographic series [11]. Quantification and 
characterization of these features have been found to 
reflect tumor molecular characteristics (radiogenomics) 
and, hence, heterogeneity in solid tumors [12].

In this report, we describe for the first time the 
relationship between quantitative mpMRI and gene 
expression in prostate cancer samples from patients 
undergoing mpMRI-directed prostate biopsies. Biopsy 
targets were selected based on habitats at risk of harboring 
cancer. We extend the use of the habitat concept to the 
entire prostate as an important component of tumor 
microenvironment, including ‘normal’ appearing tissues 
(NAT) in the peripheral (PZ) and transition (TZ) zones. 
We demonstrate significant associations between 
quantitative imaging features and genes associated with 
adverse outcome, as well as genes associated with specific 
biological processes from mpMRI-directed biopsy tissue. 
We show that both tumor and surrounding prostate 
tissue contribute significantly to radiogenomic features 
associated with tumor molecular characteristics related to 
aggressive behavior.

RESULTS

Workflow for co-registration of genomic and 
radiomic data

The radiogenomics workflow is schematically 
represented in Figure 1. An mpMRI exam of the prostate, 
consisting of anatomical (T2w), perfusion (DCE-MRI) 
and diffusion (DWI) was acquired.

(Figure 1, pink shading) Prostate and suspicious for 
cancer regions were outlined in ProFuse (Eigen, Grass 

Valley, CA), a multi-modality image fusion software. MRI 
and 3D-Ultrasound of the prostate were co-registered, 
using deformable fusion. Tissue from the identified targets 
was obtained for pathology and gene expression analysis. 
The procedure for selecting MRI-guided biopsy targets is 
outlined in Figure 2.

(Figure 1, grey shading) Radiomics data were 
extracted in MIM system (MIM Software, Inc., Cleveland, 
Ohio). Prostate, peripheral zone (PZ) and urethra were 
manually contoured on T2w. TZ volume was determined 
by subtracting the PZ and urethra from the prostate 
volume. In addition, volumes of Normal Appearing Tissue 
(NAT) in PZ and TZ were outlined. The tumor habitats are 
determined as described in Methods. Briefly, tumors were 
characterized by high vascular perfusion/permeability and 
rapid contrast washin and gradual washout on DCE-MRI, 
and then the suspicious areas are stratified as high, mid and 
low probability for cancer. Similarly, areas of restricted 
diffusion, associated with tumor growth and cancer cell 
proliferation were delineated on ADC maps and assigned 
high, medium and low probabilities based on established 
values (≤800, >800 to ≤1000, and 1000 to ≤1200 μm2/s). 
Tumor habitats were identified as the intersections of high 
perfusion and low diffusion areas and the corresponding 
probabilities were assigned. The biopsy regions of interest 
(ROIs) were derived from the identified habitats and other 
imaging information. The needle biopsy path was back-
projected onto the MRI. Some of the radiomic features 
were from the biopsied tumor habitats and some were 
from normal appearing regions of the prostate.

Patient samples

Between September 2012 and March 2014, 37 
patients underwent mpMRI-guided prostate biopsies 
at the University of Miami and six patients met the 
following selection criteria: presence of at least three 
positive biopsies within a prostate with either (i) at least 
two distinct lesions found on imaging; or (ii) two distinct 
GS within a single lesion. Total of nineteen biopsies were 
identified and the summary of the patient characteristics 
is presented in Table 1. The Gleason Score (GS) from re-
reviewed H&E slides prior to gene expression analysis 
shows that the selection criteria did not hold in some cases.

Genomics features and association with 
gleason score

Out of 19 biopsy samples obtained, 17 samples 
yielded sufficient RNA (>100ng) for amplification 
and hybridization to Affymetrix Human Exon 1.0 ST 
microarrays (Table 1). All 17 biopsy samples passed 
microarray quality control metrics as described in 
Methods. Unsupervised clustering was performed in order 
to compare tumor expression patterns between patients and 
within patients. Hierarchical clustering using Pearson’s 
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Figure 1: Experimental Design. Multiparametric (mp)MRI, consisting of anatomical (T2-weighted), perfusion (Dynamic Contrast 
Enhanced [DCE]-MRI) and diffusion (Diffusion Weighted Imaging [DWI]) imaging sequences is acquired on 3T scanner. Upper left-hand 
side (shaded in pink) denotes the procedures for mpMRI-ultrasound fused targeted biopsies. The steps for radiomic analysis are presented 
at the right hand side in grey. Histopathology results, gene expression analysis and radiomic features are combined in the radiogenomic 
analysis.

Figure 2: Delineation of biopsy targets on mpMRI and fusion of targets on 3D TRUS. A. Screenshots from ProFuse 
software (Eigen, Grass Valley, CA) for fusion of mpMRI delineated prostate Regions of Interest (ROIs) for targeted biopsy. Two axial 
slices, going from base (top) to apex (bottom) are displayed. The prostate volume is outlined (yellow contour); (Left) T2-weighted MRI; 
(Center) Apparent Diffusion Coefficient (ADC) derived from Diffusion Weighted Imaging (DWI); and (Right) Early enhancing image from 
Dynamic Contrast Enhanced (DCE-)MRI. The volumes in red, green and blue are assigned high, medium and low probability for cancer; B. 
A screenshot from Artemis (Eigen, Grass Valley, CA), displaying the 3D TRUS views corresponding to the axial slices in (A) after non-rigid 
fusion of the prostate boundaries on MRI and ultrasound. The targets are transferred from mpMRI to real-time ultrasound biopsy system; C. 
Schematic representation of the prostate and target volumes. (Note that the display contains a ROI in yellow is with unassigned probability). 
Yellow lines indicate biopsy needle tracks (1 needle in green, 2 in red and 1 in blue); The corresponding N&E slides at 20 x magnification 
from green target (left; Gleason Score 6) and red targets (right, Gleason Score 7).
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correlation as the distance metric was performed using all 
genes and phylogenetic trees were created for visualization 
(Supplementary Figure S1A). The unsupervised clustering 
grouped samples on the individual branches of the tree 
(a measure of similarity) based on patient origin. In 
comparison, when clustering analysis was performed 
using only prostate cancer related genes, patient samples 
clustered based on Gleason Score (Supplementary Figure 
S1B). Finally, the 22 genomic expression feature Decipher® 
(GenomeDx, San Diego, California) test clustered samples 
by Gleason score (Supplementary Figure S1C).

Expression patterns of the 22 gene Decipher panel 
are illustrated as a heatmap in Figure 3A. Hierarchical 
clustering segregated the cohort into Gleason 6 and 
Gleason 8-9 disease. Gleason 7 samples segregated 
in both low and high risk clusters, in keeping with the 
genetic heterogeneity of this subtype. In addition to GS, 
the Decipher expression patterns also segregated by risk 
category, suggesting strong correlation between Gleason 

and Decipher score. Decipher and Gleason scores were 
also consistent with previous evaluations of tumor 
specimens from RP (Supplementary Figure S2) [13]. 
Low Decipher scores were significantly associated with 
Gleason scores (p-value = 8.23e-05) and all 8 samples 
with GS 6 were classified as Decipher low risk, based 
on previously reported cut-points for Decipher risk 
groups (Decipher score < 0.45). Decipher score was also 
significantly positively correlated with PSA (Spearman 
correlation p-value = 0.037, data not shown).

Radiomic features and association with 
gleason score

Using propriety extensions in MIM, we created 
a radiomics pipeline for extraction of 49 quantitative 
imaging features (Table 2). Twenty five features were 
first used to characterize the prostate (prostate level 
imaging features - light gray, top half of Table). Within 

Table 1: Patient clinical characteristics

Patient ID Age (years) PSA (ng/ml) T-category Biopsy Location GS† (selection) GS‡ (review)

P1 76 10.8 T1c

Left mid posterior PZ GS 7 GS 7

Left mid posterior PZ GS 7 GS 7

Right apex posterior PZ GS 7 GS 6

P2 85 6.2 T1c

Left apex posterior PZ GS 8 GS 8

Left apex posterior PZ GS 8 no tumor#

Left mid posterior PZ GS 8 no tumor#

P3 67 4.4 T1c

Left apex lateral PZ GS 7 GS 7

Left mid lateral PZ GS 7 GS 8

Left mid lateral PZ GS 7 GS 7

P4 61 5.1 T1c

Right apex posterior PZ GS 6 GS 6

Right mid posterior PZ GS 6 GS 6

Left apex lateral PZ GS 6 GS 6

Left mid anterior TZ GS 7 GS 6

P5 65 4.2 T1c

Left mid anterior TZ GS 7 GS 6

Left mid anterior TZ GS 6 GS 6

Left base anterior TZ GS 6 GS 6

P6 72 10.8 cT2b

Left apex posterior PZ GS 7 GS 9

Left mid posterior PZ GS 7 GS 7

Left mid posterior PZ GS 7 GS 9

Abbreviations: PSA = Prostate Specific Antigen; GS = Gleason Score; PZ = Peripheral Zone; TZ = Transition Zone
* Biopsies in different color are taken from distinct lesions in the prostate;
†GS at selection of patients for gene expression analysis;
‡ GS at re-review;
# Not enough tumor for gene expression analysis.
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each prostate 24 imaging features were then used to 
characterize each region of interest (biopsy ROI – dark 
gray, bottom half of Table 2). Features belonged to one of 
the four general categories: (i) volumes; (ii) intensity; (iii) 
perfusion; and (iv) diffusion. Each of these parameters was 
used in combination to define specific nomenclature for 
each unique feature. (For example, NAT.PZ_ADC_Mean 
refers to the mean ADC value in the contour of naturally 
appearing tissue (NAT) in the PZ).

Unsupervised clustering of radiomic features 
revealed clustering by patient (Figure 3B). When only ROI 
features were retained, the samples didn’t show any clear 
clustering pattern.

Association of radiomic features and 
commercially available prostate cancer classifiers

Genes from three commercially available prostate 
cancer prognostic signatures, Polaris Cell Cycle 
Progression (CCP), Decipher, and Genomic Prostate 
Score (GPS), were assessed for their relationship to the 
radiomic features. In Figure 4 we demonstrate significant 
associations between quantitative imaging features 
and genes associated with adverse outcome. The three 
clinically available signatures are prognostic for adverse 
prostate cancer outcomes and contain genes that are 
over-expressed in aggressive prostate cancers and genes 
that are under-expressed in aggressive prostate cancers. 
Figure 4 depicts correlations between these genes and 

quantitative imaging features. 445 of these correlations 
have a significant unadjusted p-value (p<0.05) and 64 
correlations have a significant p-value after adjustment 
for multiple testing using False Discovery Rate (FDR) 
adjustment.

Genes in these signatures that are over-expressed in 
aggressive cancers are indicated by a dark red box over 
the gene’s column while those that are down-expressed 
are indicated with a blue box. Groups of radiomic features 
are indicated along the dendrogram on the left: Group1 
(left) connects the radiomic feature with location (TZ, PZ 
and ROI) and Group 2 is related to the image modality: 
T2w, ADC and DCE-MRI. The primary cluster of the 
genes segregates them into genes over-expressed in more 
aggressive cancers (left cluster) and under-expressed 
in aggressive cancers (left cluster). The over-expressed 
cluster is further subdivided into two clusters, where the 
right side is enriched for CCP genes (28/31 genes). As 
expected the CCP genes are highly positively correlated 
to each other and hence have similar relationships with the 
radiomic features. Both Decipher and GPS contain genes 
that represent the expression patterns found in each of 
these three main clusters, capturing signal from the under-
expressed genes, CCP, and other over-expressed genes.

The radiomic features in Figure 4 clusters into 
2 main groups. The top group is enriched for TZ and 
volumetric features which are mainly positively correlated 
to the prostate cancer genes over-expressed in more 
aggressive cancers. The bottom cluster contains mainly 

Figure 3: Hierarchical clustering of Genomic and Radiomic features and patient samples. A. Hierarchical clustering on 
expression of the Decipher genes and patient samples. Note how biopsies are grouped by Gleason Score. Decipher genes, known to be 
highly expressed in more aggressive cancers (marked in dark red) are more highly expressed in higher GS samples and vise versa; B. 
Unsupervised clustering of all radiomic features revealed mostly clustering by patient.
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PZ and ROI features. Both the top and bottom clusters 
are further subdivided into radiomic features which are 
positively and negatively associated with cell cycle 
progression genes.

Association of radiomic and genomic data

The relationship between genomic and radiomic 
features was further investigated by summarizing the 1.4M 
probesets to 22,011 annotated genes, using Affymetrix core 
level summaries, and filtering for significant expression by 
removing any genes with median expression <0.25 and 
Interquartile Range (IQR) <0.5. Pearson’s correlation 
distances were applied between the remaining 212 
genomic and 49 radiomic features. Two-way hierarchical 
clustering of these distances is illustrated as a heatmap in 
Figure 5A. Interestingly, 79/212 (37%) of these genes, 

marked with black bars along the top of the heatmap, were 
prostate cancer related and tended to cluster together. The 
two clusters, marked with TZ and PZ, display a degree 
of reciprocal trends: of the 212 selected genes, 121 had 
a significant positive correlation to radiomic features 
related to the PZ and a significant negative correlation to 
radiomic features related to the TZ (Supplementary Table 
S1). A two-way hierarchical clustering of correlation 
distances between radiomic features and only those 
genes that are prostate cancer related (annotated as black 
bars at the top in Figure 5A) is depicted in Figure 5B. 
Notably, one group of genes with very strong negative 
correlations (≤-0.9, Supplementary Table S2) to radiomic 
features were found to be associated with the AR signaling 
genes: KLK2, KLK3, HOMER2, BMPR1B, or belong to 
validated prostate cancer classifiers: [4, 14] CHRNA2, 
MT1H, DPP4, MYBPC1. Genes with very high positive 

Table 2: Description of imaging features, extracted from various prostate regions utilizing mpMRI. Patient-specific 
features are shown in the upper part of the table; radiomic features of the targeted biopsy region are shown below

Prostate Region(s) Imaging Modality Imaging Feature (units) Number of 
features

PA
T

IE
N

T
(T

ot
al

 F
ea

tu
re

s =
 2

5)
(1) Prostate

(2) Peripheral Zone
(3) Transition Zone

T2w Volume (cc) 3

(1) NAT-PZ
(2) NAT-TZ

T2w
ADC

Mean, StDev, Median 12

(1) NAT-PZ
(2) NAT-TZ

DCE-MRI Ktrans(min-1)
kep(min-1)

ve(%)

6

Probability Maps:
(1) Low
(2) Mid
(3) High

DCE-MRI/ADC Volume (cc) 3

Extracapsular
Extension

T2w Yes vs No 1

B
IO

PS
Y

 S
PE

C
IF

IC
 R

O
I

(T
ot

al
 F

ea
tu

re
s =

 2
4)

ROI T2w/Ultrasound Volume (cc) 1

T2w
ADC

Mean, Median, StDev, Q5, Q95, 
Integral Skewness, Kurtosis

16

DCE-MRI Ktrans(min-1)
kep(min-1)

ve(%)

3

ROI ∩ ProbMaps:
(1) Low
(2) Mid
(3) High

DCE-MRI/ADC Volume (cc) 3

ROI location T2w PZ vs TZ 1

Abbreviations: ADC = Apparent Diffusion Coefficient; TZ = Transition Zone; DCE-MRI = Dynamic Contrast Enhanced 
MRI; NAT = Natural Appearing Tissue; mpMRI = multiparametric MRI; PZ = Peripheral Zone; ROI = Region of Interest.
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Figure 4: Pearson’s correlation analysis of imaging features and 65 genes from commercially available prostate cancer 
classifiers. Hierarchical clustering on Pearson’s correlation distance between radiomic features and genes from commercially available 
prostate cancer classifiers: CCP (Cell Cycle Progression), Decipher and GPS (Genomic Prostate Score). Genes in these signatures that 
are up-expressed in aggressive cancers are indicated by a dark red box over the gene’s column while those that are down-expressed are 
indicated with a blue box. Groups of radiomic features are indicated along the dendrogram on the left. Group1 (left) connects the radiomic 
feature with location (TZ, PZ and ROI); Group 2 is related to the image modality/function: T2w, ADC and DCE-MRI.

Figure 5: Pearson’s correlation analysis identified genomic features that were highly associated with the imaging 
features. A. Hierarchical clustering on Pearson’s correlation distance between radiomic features and genes with significant expression 
values. Prostate cancer related genes are indicated in black along top dendrogram. Two clusters with reciprocal behavior are related mostly 
to PZ and TZ radiomic features; B. Prostate cancer gene enriched region of the heatmap in (A). Groups of radiomic features are indicated 
along the dendrogram on the left. Group1 (left) connects the radiomic feature with location (TZ, PZ and ROI); Group 2 is related to the 
image modality: T2w, ADC and DCE-MRI.
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correlations (≥ 0.9) to radiomic features were: TRPM8, 
DPP4, GCNT1.

Gene ontology (GO) analysis further identified 
distinct GO biological processes, associated with prostate 
radiomic features (Figure 6). [15, 16] PZ and TZ radiomic 
features (highlighted in red), biological processes such 
as immune/inflammatory and cell-stress responses 
were significantly enriched GO terms (red bar). This 
relationship suggests a potential field effect related to 
tumor-induced stress responses in the prostate. A series 
of metabolic and biosynthetic processes, indicated by 
the blue bars, were associated mainly with volumetric 
radiomic features, including those of the tumor habitats 
(probability maps volumes). Again, these processes 
could be activated in response to the growing tumor and 
its modulating effect on its microenvironment. Lastly, 
several fluid transport (yellow bar) and adhesion (green 
bar) processes are associated with the ROI radiomic ADC 
features.

DISCUSSION

Prostate cancer is often multifocal and 
heterogeneous, and thus presents a challenge in identifying 
regions for biopsy that are most likely to be determinate 
of outcome. Herein, we describe a two-step process to 
identify regions of prostate cancer most likely to harbor 
aggressive disease and, thus, both mitigate the impact 
underdiagnosis and reduce the personal and health system 
costs of unnecessary prostate biopsies.

Standard transrectal ultrasound (TRUS) guided 
prostate biopsies are imprecise with 30% or more of 
prostate tumors sampled being isoechoic [17] and 
a roughly 50:50 chance of documenting cancer in 
hypoechoic lesions [18]. Since the needle biopsy cannot 
be directed reliably to a tumor focus, a template systematic 
biopsy of the gland is now routinely used, but even in 
these settings, the highest grade and/or volume lesions 
are often missed. Furthermore, high grade and high 

Figure 6: Enrichment analysis using Database for Annotation, Visualization and Integrated Discovery (DAVID) 
identified enrichment of radiomic features for different Gene Ontology (GO) biological processes. Enrichment analysis 
was performed for each radiomic feature using the list of significantly expressed genes with a significant correlation to that radiomic 
feature. Significantly enriched (p-value < 0.05) biological processes are shown in black. radiomic features with no enriched processes are 
not shown. The association between radiomic features and biological processes are denoted with the same color. For example, for PZ and 
TZ radiomic features (highlighted in red), biological processes such as immune/inflammatory and cell-stress responses were significantly 
enriched GO terms (red bar).
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volume index lesions, even when identified may not be 
determinate of outcome [19], suggesting that alternative 
strategies are needed. Most recently, mpMRI has emerged 
as the best modality to localize cancer within the prostate, 
allowing us to sample directly from regions of the prostate 
that are most likely to harbor an aggressive tumor. There 
is still concern for tumor heterogeneity within a specific 
MRI target, and identifying sub-targets within a region of 
suspicion on the MRI remains a challenge.

While advances have been made in structuring 
the assessment and biopsy of abnormalities in the 
prostate using mpMRI via PI-RADS [20], there 
remains considerable subjectivity and no incorporation 
of quantitative information. We hypothesized that 
quantitative imaging characteristics may be applied to 
better characterize imaging phenotypes or habitats in the 
prostate. We linked radiomic features to existing genomic 
and clinical information to improve risk stratification, as 
has been previously described by us [10] and others for 
different tumor types [11].

Prostate “habitats” were identified using images, 
acquired with multiple acquisition parameters assuming 
that distinct combinations of these quantitative parameters 
represent different physiologies. This approach has 
successfully improved outcome prediction in glioblastoma 
[21] and sarcoma [22]. In our implementation, habitats 
suspicious for malignancy were delineated based on 
reduced diffusion and increased perfusion. While intra and 
inter-patient reproducibility of DCE-MRI is of concern, 
a partial mitigating factor for DCE-MRI use is that all 
patients in the study were scanned on the same magnet 
with the same sequences and analyzed with the same 
algorithm. T2w was not included in the procedure as T2w 
information is not strictly orthogonal to DCE-MRI and 
DWI information.

The analysis of the Pearson correlations between 
genomic and radiomic features confirmed the presence 
of strong prostate cancer signal in the radiomic features. 
The significant correlations between quantitative 
imaging features and the genes in the three clinically 
available signatures associated with adverse outcome 
confirm the relevance of the radiomics features to 
cancer aggressiveness. Interestingly, the Gene Ontology 
(GO) analysis revealed that from all radiomics features 
of the biopsy region, the ADC values were most highly 
associated with distinct biological processes. With increase 
of the sample size and the robustness of the analysis, the 
developed workflow can be utilized to identify features 
with the highest added value for associations with gene 
expression and gene ontology.

For radiomic analysis, the normal appearing 
regions in the prostate are also considered. The rationale 
for this novel use of imaging data, is that the tumor 
microenvironment selects for cancers with distinct 
phenotypes and that physiologically distinct regions 
observed in images reflect underlying pathophysiologies. 

For the prostate, stromal epithelial interactions have 
been shown to contribute to tumor behavior, [23] 
demonstrating the importance of the microenvironment. 
On the other hand, the phenomenon of field cancerization 
has been observed in prostate cancer on both genomic 
and proteomic levels [24]. To the best of our knowledge, 
this is the first radiomic study that includes extraction of 
imaging features from Normal Appearing Tissue (NAT). 
Gene Ontology (GO) analysis revealed that series of GO 
biological processes are distinctly associated with PZ and 
TZ radiomic features, suggesting that NAT regions may 
contribute to tumor phenotype or vice versa. These results 
are highly intriguing and warrant further investigation in 
larger studies. While some of the covariates on patient 
level are linked and raise concerns about oversampling, 
in this exploratory analysis we aimed to create a pipeline 
for comprehensive analysis of the imaging data of the 
prostate. As such, we extracted and retained imaging 
characteristics potentially important for the tumor 
environment. With an increased number of patients and 
biopsy samples, the concern about oversampling will be 
diminished.

In conclusion, quantitative features derived from 
mpMRI guided biopsies are associated with established 
clinical-pathologic characteristics (e.g., Gleason score). 
Further, radiomic features were correlated with known 
prognostic gene expression patterns in prostate cancer. 
The novelty of this application is threefold: (i) integration 
of radiomic features from multiple MRI sequences; (ii) 
extraction of radiomic features from 3D volumes (rather 
than from a single image slice); and (iii) identification 
of radiomic features in normal appearing tissues that are 
associated with high risk gene expression profiles. While 
encouraging, validation of this approach in a larger dataset 
is required to demonstrate significant improvement over 
existing clinic-pathological and genomic risk stratification.

MATERIALS AND METHODS

Patients

This retrospective study was HIPAA compliant and 
approved by the institutional review board with a waiver 
of written informed consent.

Multiparametric MRI of the prostate

T2w MRI provides an excellent depiction of prostate 
anatomy with lower signal intensity in prostate cancer. 
[25] Diffusion Weighted Imaging (DWI) is sensitive 
to water molecule diffusion and the derived Apparent 
Diffusion Coefficient (ADC) values are significantly lower 
in tumor than in normal prostate due to restricted water 
diffusion. The lower the ADC value, the greater the chance 
of diagnosing Gleason score (GS) 7 disease [26-28]. 
Dynamic contrast enhanced (DCE)-MRI has also been 
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applied to discriminate normal from malignant prostate 
tissues, with earlier and greater enhancement followed by 
washout seen in the latter. DCE-MRI measures vascularity 
and hence angiogenesis. Both DWI and DCE have a 
relatively high sensitivity and specificity for prostate 
cancer [26, 29-31]. mpMRI that includes T2-weighted, 
T1 non-contrast, DCE-MRI, and DWI sequences results 
in higher sensitivity, specificity and accuracy of tumor 
localization [32].

mpMRI of the prostate was performed on a 
Discovery MR750 3.0T MR scanner (GE Medical 
Systems, Milwaukee, WI, USA) with 32-channel phased 
array pelvis coil. A typical exam consisted of:

 •  Axial T2w-MRI of the male pelvis: resolution 
1.25×1.25×2.5 mm; Field of View: 320×320 
mm; slice thickness - 2.5 mm (no gap); 72 slices; 
repetition time (TR) 10800 ms/echo time (TE) 83 
ms; flip angle 120°;

  •  Axial T1w gradient echo MR images are 
acquired with identical spatial resolution, spacing 
and image size as the T2w MR images. Sequence 
parameters are: TR/TE 4.1/2.8 ms; flip angle 12°;

  •  DWI - Single-shot echo-planar imaging is 
performed utilizing the diffusion-module and 
fat-suppression pulses. Water diffusion in four 
directions is measured by using b values of 50, 
500, and 1000 s/mm2, TR/TE 9500/53, a parallel 
imaging factor of two, 36 sections, 2.5-mm-thick 
sections, and an in-plane resolution of 2.5×2.5 
mm. ADC maps were automatically calculated 
utilizing software onboard the GE MRI console 
with use of all three b values;

  •  DCE-MRI - Prior to contrast material injection, 
one set of T1 MRI are acquired as pre-contrast 
image set. The rest of the data are acquired 
following intravenous bolus injection of a 
paramagnetic gadolinium chelate - 0.1 mmol of 
gadobenate-glumine (Bracco Diagnostics Inc., 
Princeton, New Jersey) per kilogram of body 
weight. The contrast is administered with a power 
injector (Spectris, Medrad Inc., Warrendale, 
Pennsylvania) at 2 mL/s and followed by a 20-
mL saline flush. Eleven to twelve post-contrast 
imaging datasets are collected.

Delineation of regions of interest on mpMRI for 
biopsy targets

Regions of Interest (ROIs) based on established 
mpMRI analysis criteria and informed by software 
showing habitats suspicious for harboring tumor were 
contoured in ProFuse (Eigen, Sun Valley, CA) multi-
modality image fusion software. The procedure is 
illustrated in Figure 2A. The prostate volume is outlined 
(yellow).

mpMRI-ultrasound fused targeted biopsy

MRI/Ultrasound image fusion in Artemis system 
(Eigen, CA) is part of the planning process during the 
biopsy procedure [33]. A 3D transrectal ultrasound (TRUS) 
is acquired just prior to biopsy by reconstructing sweeps 
of 2D to 3D. The prostate volume is semiautomatically 
segmentated on TRUS and both these volumes are fused 
after specification of four or more corresponding points 
along the gland boundary. The triangulated gland surfaces 
from both modalities are registered using an adaptive 
focus deformable model [34]. During biopsy, as the 
operator visualizes the real time ultrasound volume on 
screen, motion correction runs automatically every few 
hundred milliseconds to compensate for any movement 
of the prostate after the acquisition of the 3-D volume. 
Finally, the original 3-D TRUS volume and warped MRI 
volume are both readjusted to correspond with the real 
time 2D ultrasound image. Figure 2B shows the results 
of co-registration, where MRI targets are visualized on 
TRUS. The lesion is targeted using ultrasound monitoring 
to ensure the correct depth and course of the needle. The 
system computes the needle trajectory, its core position 
and depth with a high degree of accuracy (Figure 2C). 
Importantly, the XYZ coordinates of the biopsy site are 
recorded in 3D for future reference, treatment planning 
and monitoring.

Prostate habitats

The concept and practice of defining specific 
‘habitats’ from radiological images was relatively 
recently introduced and we used the approach to facilitate 
applying radiomics to prostate cancer analysis [10]. This 
approach requires the combination of co-registered images 
from multiple modalities, with each one contributing a 
piece of orthogonal information. For this reason, MRI 
is a technique of choice because multiple pieces of co-
registered orthogonal data can be generated in a single 
exam. For example, DCE-MRI identifies regional 
distributions of blood flow, and lack of blood flow. ADC, 
measured via diffusion MRI, is a powerful method to 
interpolate the density of diffusion barriers (i.e. cells) and 
hence provides information that may be biologically, but 
not physically, related to DCE-MRI. T2 is sensitive to 
microsocopic perturbations in the magnetic field; this is 
affected by blood flow and cell density, but in a non-linear 
fashion. Hence, T2 information is not strictly orthogonal 
to DCE-MRI and ADC and in the current implementation 
reduced diffusion and increased perfusion are considered 
for delineation of habitats suspicious for malignancy. 
The habitats concept was initially introduced to map the 
tumor heterogeneity [35]. Tumors can be described as 
complete ecosystems, containing cancer cells, stromal 
cells, vasculature, structural proteins, signaling proteins 
and physical factors such as pH and oxygen [36]. In this 
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work, we extend the use of habitat’s concept to the entire 
prostate as an important component of tumor environment, 
including ‘normal’ appearing tissues in the PZ and TZ.

First, the prostate, PZ and urethra were manually 
contoured in 3D in MIM software (Supplementary 
Figure S3A). Contrast-vs-time curves were extracted 
from all pixels in the prostate volume and unsupervised 
pattern recognition approach decomposes the data as a 
product of several temporal patterns and their relative 
contribution, amplitude in each pixel [37]. Let A be the 
amplitude of the ‘tumor’ pattern, which is associated 
with the well perfused temporal pattern (rapid wash in 
and gradual wash out of the contrast). Thresholds for 
areas of high, mid and low risk for aggressive tumor are 
estimated as mean(A)+k*stdev(A), where k=2, 1.5 and 
1. The tresholded maps of A are overlaid in pink (high 
risk); green-yellow (mid) and blue (low) on the earliest 
enhancing image in the DCE-MRI (Supplementary Figure 
S3B). Similarly, the ADC map was thresholded at 800, 
1000 and 1200 μm2/s based on literature and empirical 
observations in our group [38-43]. The tresholded maps 
are overlaid on the ADC map in pink (high risk); green-
yellow (mid) and blue (low) (Supplementary Figure S3C). 
Finally, the areas of intersections between perfusion and 
diffusion were considered the volumes of high, mid and 
low probability for high risk cancer (Supplementary 
Figure S3D). ROI, NAT_PZ and NAT_TZ are presented 
in red, green and orange in Supplementary Figure S3E.

Extraction of radiomic features

The summary of radiomic features is presented in 
Table 2. A total of 49 features were computed for these 
volumes of interest. The volumes of prostate, PZ, TZ 
and ROI were estimated in MIM (n=4) (Supplementary 
Figure S3A, S3D). Mean, median and stdev of the 
intensities of T2w and ADC in NAT_PZ, NAT_TZ and 
ROI were calculated (n=18). In addition, for the ROI, 
the top and bottom 5 percentile (Q5 and Q95), skewness, 
kurtosis and integral were recorded for both T2w and 
ADC (n=10). The ‘extended Tofts model’ [44, 45] was 
applied to the averaged DCE-MRI curves within NAT_
PZ, NAT_TZ and ROI. Using synthetic Parker fixed 
population average Arterial Input Function (AIF) [46] 
we have shown that a valid compartmental modeling can 
be carried out even at the lower temporal resolution of 
the data [47]. Three features from the pharmacokinetic 
analysis (Ktrans – Volume transfer constant between plasma 
and Extracellular Extravascular Space (EES), kep – Rate 
constant between EES and plasma and ve – the fraction 
of the EEC) were estimated for NAT_PZ, NAT_TZ and 
ROI (n=9). The volumes of the probability maps and their 
intersections with ROI were also included (n = 6). Two 
semantic features were also included in the analysis: extra 
capsular extension and location of the lesion (n=2). Further 
we investigated the radiomics features for redundancy. In 
Supplementary Figure S4 the auto-correlation matrix of the 

49 features is presented as a heat-map. Mean and medians 
of intensities were highly correlated as well as volumes of 
the prostate, peripheral zone and transition zone. Overall, 
there were less than 4% of pairs (46/1176 comparisons) 
of significantly correlated imaging features (p-value 
(Holm's p-value adjustment) cutoff of 0.05). As the goal 
of this exploratory analysis was to create a pipeline for 
comprehensive analysis of the imaging data of the prostate 
and in view of the small number of redundant pairs, we 
retained all radiomics features for subsequent analysis.

RNA extraction and microarray hybridization

From the original study (n = 19), RNA was available 
for microarray from 17 biopsies (6 unique patients). As 
previously described [4, 48], after histopathological re-
review by an expert genitourinary pathologist, tumor was 
macrodissected from surrounding stroma from 3–4 10 μm 
tissue sections from a region with maximum tumor content 
for total RNA extraction.

RNA extraction and microarray hybridization 
was performed using clinical-grade techniques in a 
Clinical Laboratory Improvement Amendments (CLIA)-
certified laboratory facility (GenomeDx Biosciences, 
San Diego, CA, USA). CLIA certification was obtained 
through the Centers for Medicare and Medicaid Services 
through standard procedures, and laboratory facilities 
satisfied all criteria required for certification. Total RNA 
was subjected to amplification using the WT-Ovation 
Formalin Fixed Paraffin Embedded (FFPE) v2 kit 
together with the Exon Module (NuGen, San Carlos, 
CA) according to the manufacturer’s recommendations 
with minor modifications. Amplified products were 
fragmented and labeled using the Encore Biotin Module 
(NuGen, San Carlos, CA) and hybridized to Human 
Exon 1.0 ST GeneChips (Affymetrix, Santa Clara, CA) 
following manufacturer’s recommendations. Human 
Exon GeneChips profile coding and non-coding regions 
of the transcriptome using approximately 1.4 million 
probe selection regions (PSRs), hereinafter referred to 
as features. All of the samples with available tissue and 
RNA, passed initial quality control. Quality control for 
microarray data was performed with Affymetrix Power 
Tools packages [49] and with internally developed metrics 
including percent present- the percentage of probes 
detected above the limit of detection [50]. The positive 
versus negative area under the curve (AUC) was used 
as an additional metric to assess microarray quality by 
measuring the signal between positive control probes, 
which measure the expression of housekeeping genes, 
and negative control probes, which measure anti-genomic 
sequences and hence should exhibit background intensity 
levels. The percent present observed in these biopsy 
samples was higher than the typical range seen in FFPE 
radical prostatectomy samples. The Human Exon 1.0 ST 
array data have been deposited in the Gene Expression 
Omnibus database under accession number GSE80683.
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Microarray normalization, removal of unreliable 
features and batch effect correction

Feature summarization and normalization were 
performed using the Single Channel Array Normalization 
(SCAN) algorithm, which normalizes each sample 
individually by modeling and removing probe- and 
array-specific background noise [51]. To calculate gene 
expression, we used Affymetrix Core level summaries 
for annotated genes. In order to remove known batch 
effects in the microarray data, the ComBat method from 
the sva package (sva_3.8.0) was used [52]. Features were 
further filtered for significant expression by removing any 
features with median expression < 0.25 and Interquartile 
Range (IQR) < 0.5.

Radiogenomic analysis

In order to uncover the relationship between genomic 
features and radiomic features, Pearson’s correlation 
distances between radiomic features and genomic features 
with significant expression were computed. The number 
of significant positive and negative correlations was 
determined using an FDR adjusted p-value cut-off of 0.05. 
To assess the correlation between radiomic features and 
existing clinical and genomic risk stratification biomarkers 
the features from three clinically available signatures were 
used. For visualization of the results, heatmaps were 
generated using two-way hierarchical clustering on the 
distances.

Sample clustering analysis was performed to 
evaluate clustering patterns of samples and patients. 
Hierarchical clustering was performed on Pearson 
correlation distances of all significantly expressed genes.

Gene Ontology enrichment analysis was 
performed using The Database for Annotation, 
Visualization and Integrated Discovery (DAVID) 
v6.7 along with RDAVIDWebServices R package 
(RDAVIDWebService_1.6.0) to identify biological 
processes that are associated with radiomic features. Genes 
that were significantly correlated (p-value < 0.05) with each 
radiomic feature were analyzed in DAVID and biological 
processes that were significantly enriched (p-value < 0.05) 
for each radiomic feature were identified.
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