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ABSTRACT

Endometrial Cancer (EC) is one of the most common female cancers. Genome-
wide association studies (GWAS) have been investigated to identify genetic 
polymorphisms that are predictive of EC risks. Here we utilized a meta-dimensional 
integrative approach to seek genetically susceptible pathways that may be associated 
with tumorigenesis and progression of EC. We analyzed GWAS data obtained from 
Connecticut Endometrial Cancer Study (CECS) and identified the top 20 EC susceptible 
pathways. To further verify the significance of top 20 EC susceptible pathways, we 
conducted pathway-level multi-omics analyses using EC exome-Seq, RNA-Seq and 
survival data, all based on The Cancer Genome Atlas (TCGA) samples. We measured the 
overall consistent rankings of these pathways in all four data types. Some well-studied 
pathways, such as p53 signaling and cell cycle pathways, show consistently high 
rankings across different analyses. Additionally, other cell signaling pathways (e.g. 
IGF-1/mTOR, rac-1 and IL-5 pathway), genetic information processing pathway (e.g. 
homologous recombination) and metabolism pathway (e.g. sphingolipid metabolism) 
are also highly associated with EC risks, diagnosis and prognosis. In conclusion, the 
meta-dimensional integration of EC cohorts has suggested some common pathways 
that may be associated from predisposition, tumorigenesis to progression.

INTRODUCTION

Endometrial cancer (EC) arises from the 
endometrium, the inner lining of the uterus. It is the most 
prevalent gynecologic malignancy and one of the most 
common cause of deaths of women’s cancers. In 2016, 
it is estimated that there will be 60,050 new cases of EC, 
and an estimated 10,470 people will die of this disease in 
the US. Patients with later stage EC have higher risks of 
tumor recurrence and lower 5-year survival rates (Stage 
I and Stage II 69% - 88%, Stage III and Stage IV 15% 
- 58%) [1]. To seek genetic causality of EC, a series of 

genome-wide association studies (GWAS) have been 
conducted recently [2–4], with the focus on the association 
between single nucleotide polymorphisms (SNPs) and EC, 
however, inconsistencies abound in these studies.

Besides the lack of replicability exemplified by 
the EC studies above, there exist other issues of SNP-
based GWAS approach. For example, highly significant 
SNPs usually can only explain a small proportion of 
heritability while moderately significant SNPs may also 
harbor predictive information [5–7]. Set-level GWAS is an 
appropriate approach to allow the consideration of effects 
from the moderately significant SNPs. It summarizes 

                   Research Paper



Oncotarget55250www.impactjournals.com/oncotarget

SNPs within certain common biological function sets, 
such as pathways, and then identifies the disease-
associated sets. This design enables us to better uncover 
the genetic architectures of complex traits, as well as better 
understanding of the disease mechanisms [8]. Various 
methods for pathway-level GWAS analysis have been 
explored [9–12]. Based on the testing hypotheses, they 
can be categorized into two groups [10]: 1) Competitive 
hypothesis, which compares variants or genes within a 
given pathway with those outside of this pathway. 2) Self-
contained hypothesis, which only considers elements in 
pathways of interest and compares them to the null (non-
associated) genomic background [13].

Beyond genetic predisposition, other alteration 
events including somatic mutation and gene expression 
changes also have consequences on the development of 
EC [14, 15]. The idea of integrating different data types 
from multiple domains has been applied before [15–18]. 
Somatic mutation, the acquired mutations on the germline 
genetic background, can be measured by technologies such 
as exome-Seq. Gene expression at the transcriptome level 
can be measured via RNA-Seq platform. Furthermore, 
survival analysis enables the assessments of the prognostic 
value of pathways [19, 20]. Beyond the gene-level, 
pathway-level statistical tests have been applied to gene 
expression data type and prognosis analysis [19, 20]. By 
cross-comparison the results among various data types, we 
can better evaluate pathways through different stages of 
EC.

In this study, we first conducted pathway-level 
GWAS analyses of EC with four different methods, and 
combined their results by Monte-Carlo simulations [21]. 
Accordingly, we selected 20 top pathways based on 
their combined p-values. A further stratification analysis 
on EC patients based on these pathways identifies two 
subgroups. To evaluate the overall importance of these 20 
pathways across EC development stages, we sequentially 
performed pathway-level analyses on exome-Seq somatic 
mutation, RNA-Seq gene expression, and survival analysis 
from The Cancer Genome Atlas (TCGA). We integrated 
results across these four data types based on average 
rankings and confirmed the significance of some cancer-
associated pathways, such as p53 signaling and cell cycle 
pathways. Moreover, we also reveal that other pathways, 
including IGF-1/mTOR signaling, IL-5, and sphingolipid 
metabolism may also be overall highly relevant to EC 
susceptibility, diagnosis and prognosis.

RESULTS

GWAS analysis on EC data

We first conducted SNP-level analysis, however, 
obtained no single SNP with genomic-control corrected 
p-value (GC-P) < 1e-8 (Supplementary Figure 1). Seven 
SNPs exceeded the moderate threshold of GC-P < 1e-5 

(Supplementary Figure 1, Supplementary data 1). They are 
rs6707690, rs11735301, rs919927, rs1830175, rs4725999, 
rs4594727, and rs4689789. These SNPs lie within the 
following four genes: CTNNA2, SORCS2, GBX1, and 
ZNF676. We then tested the interactions among top 50 
SNPs, using Multifactor Dimensionality Reduction 
(MDR) [22, 23]. Among them, rs6707690 (CTNNA2), 
rs2019978 (CASP3) and rs9541072 (LOC105370246) 
showed most significant interactions, and was ranked the 
best in six out of ten times of cross-validation (empirical 
P = 0.0099). Caspase-3, encoded by gene CASP3, can 
cleave β-catenin in the process of cellular apoptosis 
[24]. CTNNA2 encodes α-catenin and was reported as 
a tumor repressor gene frequently mutated in head and 
neck cancers [25]. Our result suggests that the SNPs in 
CTNNA2 and CASP3 may have a synergistic effect 
on EC risk. Next, we performed the gene-level GWAS 
analysis and obtained more than 800 significant genes 
with empirical P < 0.05 (Supplementary data 2). Genes of 
interest are discussed later within the context of pathways 
of interest.

We subsequently conducted pathway-level GWAS 
analyses (Figure 1A). Briefly, we applied four pathway-
level packages that are based on either competitive 
hypothesis or self-contained hypothesis: PLINK set-based 
test [11], INRICH [9], GenGen [10] and GSEA Pre-ranked 
test [12]. In each method, we employed permutations 
to generate empirical p-values (or nominal p-values in 
GSEA). We used a total of 403 KEGG and BIOCARTA 
pathways for pathway-level annotations. In all, PLINK 
set-based test, GenGen, INRICH and GSEA Pre-
ranked test gave 20, 24, 11 and 20 significant pathways 
with empirical P < 0.05, respectively (Supplementary 
data 3). The correlation matrix of p-values based on 
the four methods is shown in Supplementary Figure 
2. Since the best pathway-level association method is 
still controversial, we combined these p-values using 
Monte-Carlo simulations (10,000 times). We chose the 
top 20 pathways (all combined P < 0.05, Figure 1B) 
for subsequent analyses. The scatter plot based on the 
average vs. standard deviation (SD) of rankings across 
four methods shows that the top 20 pathways have high 
rankings consistently, regardless of the computational 
methods (Supplementary Figure 3).

To investigate if our results are confounded by 
other factors, we performed a series of evaluations. First, 
we compared the pathway size (number of genes) with 
combined p-values and obtained no strong correlation 
(Pearson’s r = 0.03, Supplementary Figure 4A). Next, 
in the light that genes heavily connected in the network 
tend to have more SNPs measured on common genotype 
platforms [26], we examined the likelihood that genes 
with higher SNP frequencies are annotated by more 
pathways. We did not see a clear relationship between 
the SNP frequencies and the pathway annotation degree 
among genes at either original or log scales (Pearson’s 
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r = 0.08, Supplementary Figure 4B). Thirdly, we 
investigated the relationship between the average SNP 
frequency of each gene and gene-level p-value and we 
obtained no clear relationship at the original or log scales 
(Pearson’s r = 0.02, Supplementary Figure 4C). Finally, 
to investigate if the top 20 pathways tend to have higher 
average SNP frequency (0.202) than the expectation, 
we used a bootstrap resampling method to estimate the 
background distribution of the average frequency of SNPs 
among 20 random pathways. The bootstrap p-value is 
0.4155 (Supplementary Figure 4D), demonstrating that 
the top 20 pathways do not have significantly higher 
SNP frequencies. Therefore, we conclude that the GWAS 
results are reliable.

We further categorized the top 20 pathways into 
six functional super-groups (Supplementary data 1), 
based on BRITE hierarchy of KEGG and BIOCARTA 
pathway category. These super-groups are: cell signaling 
and cell cycle regulation, metabolism, immunology, 
blood coagulation, genetic information processing, and 
others. As expected, some pathways belong to more 
than one functional group. Among them, cell signaling 
and cell cycle regulation includes the largest number 
(seven) of pathways, and p53 signaling pathway is 
most significant (combined P = 0.0006, Figure 1B). 
Alteration of processing genetic information is commonly 
observed in cancers, especially the deficiency of DNA 

repairing. This is reflected by homologous recombination, 
with a significant combined P = 0.0135. The link between 
the deficiency of immune system and cancer has been well 
established [27], and here it is evident by the statistical 
significance in immunology related pathways, such as 
IL-5 pathway (combined P = 0.0105). We also observed 
sphingolipid metabolism difference in our result. 
Sphingolipid metabolism is one of the lipid metabolic 
pathways that have been related to cancers [28].

To investigate if there are subpopulations among 
the EC GWAS cohort, we conducted Non-negative 
Matrix Factorization (NMF) based clustering using 
the normalized SNP counts of the top 20 pathways. We 
identified two subgroups of EC patients (Figure 2A) 
based on consensus clustering (Cophenetic Coefficient 
= 0.91). We then checked which pathways contributed 
to this stratification by student’s t-test. We obtained 
eight pathways with P < 0.05 (Figure 2B–2I) and 
interestingly, four blood coagulation pathways gave the 
highest significance (Figure 2B–2E). Blood coagulation 
abnormalities were reported in cancer patients and even 
affect the therapeutic options [29–34].

We next extracted the contributing SNPs of top 
20 pathways based on PLINK results and mapped them 
to genes. Based on the pathway- and gene-level results 
(Supplementary data 2), we created a pathway-gene 
mapping network using Cytoscape [35]. Such network 

Figure 1: GWAS workflow and pathway-level results. A. Workflow of GWAS analysis. PLINK trend test is applied for basic 
association test at SNP level. PLINK set-based test is applied for gene-level and pathway-level analysis. Additionally, three other pathway-
level analysis methods are used: GSEA Pre-ranked test, INRICH and GenGen. B. Results from four different pathway-level computational 
methods and combined p-values. All p-values are log0.05 transformed and a log0.05 transformed p-value greater than 1 is significant with 
p-value < 0.05.
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provides a direct depiction of the connections among top 
20 pathways by common genes (Figure 3). As expected, 
pathways within the same super-group tend to connect 
with each other, such as the blood coagulation pathways.

Pathway-level analysis of TCGA exome-Seq data

We were interested to see if any pathway with an 
increased susceptibility to EC also had preferable somatic 
mutations [36]. To study this, we investigated EC exome-
Seq data from TCGA. We used MutSigCV [37] to identify 
gene-level significance of somatic mutations, and then 
performed GSEA Pre-ranked test to conduct pathway-
level significance analysis. A total number of 12734 
genes were used for GSEA Pre-ranked test, and 415 
genes were included in top 20 pathways. Among these 
pathways determined by the GWAS analysis, three have 
FDR < 0.05: p53 signaling pathway, rac-1 pathway and 
IGF-1/mTOR. IL-5 pathway also has FDR < 0.1 (Table 1, 
Supplementary data 3). All these four pathways belong to 

the cell signaling and cell cycle regulation super group 
(Supplementary data 1). Interestingly, IGF-1/mTOR 
pathway in our study overlaps with PI3K/AKT pathway, 
one of the most frequently mutated pathways in EC 
reported by TCGA [15].

Pathway-level analysis of TCGA RNA-Seq data

Our next question was whether the pathways 
subjective to EC-susceptibility also have measurable 
changes in gene expression, such as those shown 
by eQTL studies [38]. To answer this, we utilized 
TCGA RNA-Seq data from paired tumor/adjacent 
normal tissues. We used paired samples, instead of the 
population-based tumor and normal control cohort, to 
reduce the noise in the RNA-Seq data [39]. We applied 
Pathifier algorithm to obtain pathway deregulation score 
(PDS) for each pathway within each patient, as reported 
before [19]. We then performed pairwise permutations 
(tumor/adjacent normal) on PDS, by randomly assigning 

Figure 2: NMF-based subgroups of EC GWAS cohort. A. Heat map of consensus matrix when rank = 2, where two consensus 
subgroups are observed. B. ~ (I) Violin plots of each pathway with t-test P < 0.05 between the two subgroups from (A).
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the paired PDSs to pathways. This allowed us to obtain 
empirical p-values of pathways, followed by FDR based 
multiple-hypothesis testing. Among the GWAS top 20 
pathways, two of them have FDR < 0.05: p53 signaling 
pathway and cell cycle pathway. Additionally, three 
pathways have FDR < 0.1: rac-1 pathway, VitCB pathway 
and Platelet APP pathway (Table 1, Supplementary data 
3). Both VitCB and Platelet APP pathways are in blood 
coagulation super-group.

Pathway-level analysis of TCGA relapse-free 
survival data

A more downstream potential impact of genetic 
predisposition pathways is cancer patient’s relapse-
free survival (RFS) [40]. To explore this, we conducted 
pathway-based RFS analysis using all EC primary tumor 
RNA-Seq data. Similarly, we transformed the gene-based 
RNA-Seq data to a pathway-based PDS matrix and then 
performed individual RFS analysis. We dichotomized 
the patients into high-risk (higher PDS) and low-risk 
(lower PDS) groups, by the median PDS. We used 
Kaplan-Meier curves to present RFS of the high- and 
low-risk groups (Figure 4 and Supplementary Figure 
5). The survival difference between the two groups is 

calculated by Wilcoxon log-rank p-value, followed by 
FDR-based multiple hypothesis testing. Interestingly, 
among top 20 GWAS pathways, four separate the patients 
into higher vs. lower risk groups with FDR < 0.05: p53 
signaling pathway, cell cycle pathway, IL-5 pathway and 
T-Cytotoxic pathway. Three additional pathways have 
FDR < 0.1 (Table 1, Supplementary data 3). IL-5 pathway 
gives the most significant result (FDR = 0.0247, Figure 4). 
The importance of IL-5 is justifiable since previous studies 
showed that IL-5 enhanced cancer invasion and migration 
[41, 42].

Integrative analysis of all four data types

Before integration, we first ranked all pathways 
based on the results from four different data types 
mentioned above. Then we calculated the average rankings 
followed by the permutation test. The permutation-based 
empirical p-value represents the overall consistency 
of pathway significance across different EC data types 
(Supplementary data 4). Anchoring on the top 20 
pathways obtained from GWAS analysis, we observed 
four pathways with empirical P < 0.05 and five pathways 
< 0.1 (Figure 5 and Supplementary data 4). Impressively, 
p53 signaling pathway achieves the most consistent highly 

Figure 3: The network of top 20 pathways and their genes. Genes (blue) are mapped from contributing SNPs in PLINK set-based 
test. The significance level of a gene or pathway (red) is represented by the size of the node, based on the log0.05 transformed. Genes with 
pink outlines are significant with empirical p-value < 0.05.
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rankings across all data types, followed by cell cycle 
pathway and IGF-1/mTOR (Figure 5). IGF-1/mTOR 
plays critical roles in the regulation of cell proliferation, 
survival and energy metabolism [43]. Six genes (mapped 
by contributing SNPs) contributed in this pathway majorly 
and three of them are significant in the gene-level analysis: 
IGF1, EIF2B5 and EIF2S1 (Figure 3, Supplementary 
data 2). Figure 6A shows the topological relationship of 
these genes: IGF1 can activate AKT and further influence 
the eukaryotic translation initiation factor 2’ isoforms 
(encoded by genes including EIF2B5 and EIF2S1). 
Sphingolipid metabolism shows an overall consistency 
empirical p-value of 0.0986 across the four data types, 
and the topological pathway view is illustrated in Figure 
6B. Two metabolites in this pathway, sphingosine-1 
phosphate (S1P) and ceramide, are well studied in cancer 
development [44]. S1P acts as a survival factor whereas 
ceramide as a tumor-suppressing factor. Three genes 
(SGPP1, SGMS2 and GALC) that encode the metabolic 
enzymes of these two metabolites are significant at the 
gene level (Figure 3, Figure 6B).

DISCUSSION

Meta-dimensional data integration to study 
genotype-phenotype relationship

Our study here represents an exemplification of 
using systems-genomics approach to interrogate molecular 
mechanisms of diseases [18, 45]. Comparing to other 
studies, this study is unique in several aspects. First, we 
investigated data generated from different populations and 
different data types: GWAS from one cohort, and somatic 
mutation exome-Seq, tumor-adjacent tissue RNA-Seq, 
relapse-free survival from TCGA. Secondly, we have 
implemented a pathway-based modeling scheme for each 
data type, so that biological significance of pathways is 
straightforwardly demonstrated. Thirdly, we developed a 
model-based integration framework, where each data type 
is individually modeled and then integrated at the post-
model statistical level. This framework is different from 
other methods such as CONEXIC [46] and PARADIGM 
[20], which are restricted to data generated from the same 

Table 1: GWAS top 20 pathways and their significance levels in other data sets

Pathway GWAS Comb. P exome-Seq FDR RNA-Seq FDR Survival FDR

p53 signaling pathway (KEGG) 0.0006 0.036356 0.02015 0.027883

Hematopoietic cell lineage (KEGG) 0.0031 0.652337 0.542707 0.068472

AMI pathway (BIOCARTA) 0.0038 0.837747 0.11669 0.31534

IL-5 pathway (BIOCARTA) 0.0105 0.083992 1 0.024749

Intrinsic pathway (BIOCARTA) 0.0106 0.741155 0.399023 0.151369

Homologous recombination (KEGG) 0.0135 0.600056 0.11669 0.162814

Basal transcription factors (KEGG) 0.0143 0.856576 0.820071 0.806224

Rac-1 pathway (BIOCARTA) 0.0154 0.001747 0.090195 0.556147

Parkinson’s disease (KEGG) 0.016 0.297392 0.541898 0.71187

Cell cycle pathway (BIOCARTA) 0.0207 0.389954 0.029553 0.033771

Glutathione metabolism (KEGG) 0.0216 0.974187 0.307288 0.310803

ECM-receptor interaction (KEGG) 0.0217 0.849114 0.762493 0.066176

VitCB pathway (BIOCARTA) 0.0266 0.311884 0.084054 0.406027

AKAP95 pathway (BIOCARTA) 0.0274 0.838687 0.250959 0.05903

IGF-1/mTOR (BIOCARTA) 0.0275 0.000913 0.461597 0.165714

T-Cytotoxic pathway (BIOCARTA) 0.0287 0.82339 1 0.04847

GATA3 pathway (BIOCARTA) 0.0289 0.179809 0.155 0.713263

Platelet APP pathway (BIOCARTA) 0.0301 0.526359 0.0806 0.254728

alpha-Linolenic acid metabolism (KEGG) 0.0325 0.433548 1 0.289216

Sphingolipid metabolism (KEGG) 0.0342 0.391808 0.175326 0.171003
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Figure 4: Kaplan-Meier survival curves of IL-5 pathway with FDR. Patients are dichotomized by the median PDS into higher- 
vs. lower- risk groups. The Wilcoxon log-rank p-value is calculated to detect the survival difference between these two groups, then 
adjusted by FDR.

Figure 5: Rankings of top 20 GWAS pathways across different data sets. (Left) Heat map refers to pathway rankings in four 
different data sets. (Right) The corresponding stacked bar plot of each pathway. *** P < 0.001; ** P < 0.01; * P < 0.05; ∙ P < 0.1 from the 
permutation test.
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cohort. Rather, our model-based integration can be applied 
to various data sources [18].

We hypothesize that some pathway alterations that 
predispose the population to EC may be manifested at the 
somatic levels and impact the disease progression [47, 48], 
since it was observed that 40% of genes predisposing the 
population to cancers are frequently mutated at the somatic 
level [49]. Under this assumption, we initiated our study 

by first investigating the EC risk susceptibility and focused 
on pathway-level analysis. We avoided the bias in each 
pathway-level GWAS analysis method by combining the 
results from four different computational methods using 
Monte-Carlo simulations. This approach generates more 
conservative yet less biased results than simple procedures 
such as Fisher’s combined tests. We also conducted 
pathway-level analyses on other omic data types: somatic 

Figure 6: Illustration of two representative pathways. A. IGF-1/mTOR. Genes mapped by contributing SNPs (yellow), genes 
mapped by contributing SNPs and also with empirical P < 0.05 (red). B. Sphingolipid metabolism. Genes mapped by contributing SNPs 
(yellow and underline), genes mapped by contributing SNPs and also with empirical P < 0.05 (red and underline), survival factor metabolite 
(blue) and apoptosis factor metabolite (green).
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mutation, tumor/adjacent gene-expression. Although the 
cases and controls are different given different cohorts (a 
very frequent dilemma that researchers face), our previous 
studies provide evidence that information aggregated on 
the pathway level can overcome the barriers of different 
omics data types, and perhaps is a generic approach to 
integrate different omics data sets [19, 50].

Relevance of detected top pathways to the 
etiology of endometrial cancer

We utilized average rankings with permutation-
based empirical p-values to measure the overall 
significance of the top 20 pathways across different data 
types. Cell signaling and cell cycle regulation related 
pathways are ranked top four (Figure 5, Supplementary 
data 4). One pathway that stands out as significant in all 
data types is p53 signaling pathway. This is not surprising, 
as TP53 accounts for one of the highest mutation rates in 
most cancers, including EC [15, 51]. And CASP3 in this 
pathway was found with high significance, corresponding 
to our MDR analysis result. Interestingly, caspase 3 
was reported to mediate the stimulation of tumor cell 
repopulation during cancer radiotherapy [52]. The second 
most significant pathway, cell cycle pathway, is significant 
in all other analyses, except exome-Seq data. This is also 
expected, as cell cycle dysregulation is a hallmark of 
cancer [53, 54].

IGF-1/mTOR is significant in both GWAS and 
exome-Seq data. In this pathway, IGF1 and its downstream 
targets, EIF2S1 and EIF2B5 are significantly associated 
with EC (Figure 6A). IGF1 plays an important role in the 
growth of multiple tumors as well as in the prevention for 
cells from apoptosis [55]. Supporting our findings, other 
studies also reported that the level of IGF1 was associated 
with endometrial cancer as well as other cancer types 
[56–58]. In addition, we also observed genes mapped by 
contributing SNPs, such as PIK3CA, PIK3R1, and IGF1R, 
which were reported as commonly mutated genes in EC 
on somatic level by TCGA [15]. Drugs that target IGF-1/
mTOR pathway, such as mono-clone antibodies for IGF-
1R, may have therapeutic values in EC treatment [59–62].

Other pathways that may be of therapeutic targets 
are IL-5 pathway and sphingolipid metabolism. IL-5 
pathway gives significant results in GWAS, survival data, 
and has FDR < 0.1 in exome-Seq data. The survival result 
shows its important value in EC relapse prognosis. The 
binding of IL-5 to IL-5Rα receptor induces the migration 
of cancer cells was reported [41], and corresponding genes 
showed significant results in our GWAS analysis. On the 
other hand, few studies discussed sphingolipid metabolism 
alterations in EC specifically [63], although the 
relationship between sphingolipid metabolism and other 
cancers was well-studied [64]. Here we have identified 
that this pathway and multiple genes that are involved 
in ceramide and S1P metabolism (e.g., GALC, SGPP1, 

and SGMS2) also potentially predispose the individuals 
to EC risks. Sphingolipid metabolism is not only likely to 
contribute to EC progression and chemoresistance [63], 
but also associated with higher risks at the genetic level.

Perhaps most surprising finding of this study is 
that four blood coagulation pathways clumped together 
in GWAS network can significantly differentiate the 
two subgroups among EC patients. Blood coagulation 
disorders were observed in some of the cancer patients 
before [31–34], and it is worth paying attention to 
especially considering its influence on therapeutic 
treatments [29, 30]. A recent study has shown direct 
evidence that patients with myoma and especially those 
with endometrial cancer have hypercoagulability [65]. We 
thus suspect that genetics may explain part of the observed 
hypercoagulability. Several genes, such as F7 and F10 
were significant in GWAS results (Figure 3), and may lead 
to susceptibility to EC. The binding of F7 to tissue factor 
(F3) initiates the blood coagulation cascade [66] and F3 
plays a critical role in cancer development [32, 34]. On 
the other hand, elevating of F10 protein was observed in 
clinical cancer cases as well as cell lines [67].

Conclusions and future work

Our meta-dimensional, pathway-level analysis offers 
a systematic way of studying the influence of genetic 
variants in EC, through multiple sources of information 
that include GWAS, exome-Seq, RNA-Seq, survival 
analysis. It has confirmed the importance of most well-
studied cancer-associated pathways, such as p53 signaling 
pathway and cell cycle pathway. Moreover, it also sheds 
light on some less well-studied pathways in relation to 
EC, such as IGF-1/mTOR, sphingolipid metabolism, and 
IL-5 pathway. The impacts of these pathways may be 
associated with EC susceptibility, tumor development, and 
progression. It would be interesting to conduct follow-up 
population studies to investigate the association between 
these pathways and EC risks. Additionally, pathway level 
stratification in EC patients identified blood coagulation 
as the top functional super-group differentiating the 
subpopulations. It will be of great interest to confirm 
this in other cohorts, as well as associating it with other 
clinical outcomes. From the study design point of view, a 
comprehensive study in the future which obtains different 
types of data from the same population will likely yield 
more consistent pathway-level results. Some limitations 
of the pathway-based integration include the incomplete 
knowledge about pathways currently, as well as lacking 
topology information in the current pathway metrics. One 
alternative method is to derive functional units using the 
graph-based network approach [20]. Nevertheless, we 
speculate that by marrying prior biological knowledge 
with the powerful integration of meta-dimensional data 
sets, it is possible to better understand the etiology of 
diseases such as EC.
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MATERIALS AND METHODS

Data sets

GWAS data

We obtained data from Connecticut Endometrial 
Cancer Study (CECS) [68], a population-based case-
control study on 668 incident cases with type I endometrial 
cancer and 674 population controls. DNA samples were 
genotyped using the HumanOmniExpress BeadChips 
(Illumina, Inc., San Diego, CA). We filtered the SNPs 
with completion rates < 90%, minor allele frequencies < 
1%, and Hardy–Weinberg equilibrium violation of p-value 
< 0.0001 in controls. Subsequently, 482 cases and 571 
controls with 649,351 SNPs were selected for the GWAS 
analysis [69]. The race composition is dominantly white, 
accounting for 1044 out of 1053 samples.
Exome-Seq data

We downloaded TCGA public Illumina GA_
DNASeq level 2 data sets from Broad Institute (BI). A 
total number of 194 patients with both primary solid tumor 
samples and normal samples (4 tumor adjacent normal 
samples and 190 blood samples) were used in the analysis. 
Only the variants unique to the tumor but not the normal 
sample of each patient were used for downstream analysis.
RNA-Seq data

We downloaded TCGA public IlluminaGA_
RNASeqV2, and IlluminaHiSeq_RNASeqV2 data sets 
from University of North Carolina (UNC). We used 23 
pairs of tumor/adjacent normal samples for pathway-
level gene expression analysis. Additionally, we used 457 
primary tumor samples with their clinical information 
for pathway-level survival analysis (downloaded on 
03/24/2015).
Pathway data

We downloaded pathways from Molecular Signature 
Database (MsigDB) (http://www.broadinstitute.org/gsea/
msigdb/index.jsp) [12]. In this study, we considered 186 
KEGG and 217 BIOCARTA pathways in total. To further 
characterize the functional super-groups of pathways, 
we used KEGG BRITE hierarchy (http://www.genome.
jp/kegg/brite.html) and BIOCARTA pathway category 
(http://www.biocarta.com/genes/index.asp).

GWAS analysis

SNP-level association analysis

We used Cochran-Armitage trend test for the 
association analysis between the single locus and the 
disease, by taking different genotypes into consideration. 
To test the SNP-SNP interactions associated with EC, we 
used Multifactor Dimension Reduction (MDR) [22, 23], a 
10-fold cross-validation will be conducted to get a cross 

validation consistency of SNP pairs and permutation test 
to calculate their significant levels.
Gene-level analysis

We used PLINK set-based test for the GWAS 
data at the gene level. First, we created set files, which 
contain SNPs associated with a particular gene based on 
their locations (within +/-20 kb of the gene body). To 
minimize the bias from correlated SNPs in the same set, 
we employed linkage disequilibrium (LD) prune so that 
SNPs under consideration are relatively independent. We 
selected top 5 (default setting) SNPs with p-values ≤ 0.05 
to represent the genes. We used the average chi-square 
statistics of selected SNPs to represent the set statistics. 
To obtain the empirical p-values for sets, we applied 
permutations (N = 10,000) on the phenotype labels. After 
each permutation, pseudo statistics were re-calculated for 
the SNPs as well as the SNP set statistics. The empirical 
p-values were determined as the percentages of permuted 
set statistics exceeding the original statistics.
Pathway-level analysis

Four pathway-level packages were used for this 
purpose: PLINK set-based test, GenGen, INRICH and 
GSEA Pre-ranked test. We elaborate the details of each 
method below:

Pathway-level PLINK set-based test summarizes 
N SNPs per set (pathway). Given that a smaller N 
leads to a larger number of significant pathways, we 
examined the effect of a series of Ns on the pathway 
outcomes, and determined the optimum N = 20, as it is 
the elbow point (the point of changing slopes) based on 
pathways vs. N (Supplementary Figure 6). Like gene-
level analysis, we associate SNPs to genes within 20 kb 
upstream/downstream of gene bodies (window length). We 
performed 10,000 permutations on the case/control labels.

GenGen is a software which extends Gene Set 
Enrichment Analysis (GSEA) [12] on the GWAS data. 
It maps the most significant SNP to each gene and 
applies the GSEA approach to summarize the pathway-
level result. We considered all pathways within the size 
interval of [1, 500] and performed 1,000 permutations on 
phenotype labels. All other parameters were set to default 
values.

INRICH takes a set of independent genomic 
intervals created by PLINK. It calculates the primary 
enrichment statistic for each pathway, depending on the 
number of intervals that overlap at least one target gene 
[9]. We used PLINK LD-based clumping (threshold 
0.5) to create the interval data. We set the significance 
thresholds of index SNPs (p1) as 0.01 and clumped SNPs 
(p2) as 0.05. We ran 10,000 times of permutations by 
randomly assigning intervals to genomic locations, with 
the constraints that each null interval ri ∈ R approximately 
matches the original interval Ii ∈ I (i = 1, …, k) for the 
number of SNPs and overlapping genes; we also ensured 
approximately similar SNP densities per kb.
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GSEA Pre-ranked test was adapted from the gene-
level results of PLINK set-based test. We removed the 
genes contain no significant SNP (empirical P = 1), then 
sorted genes in the descending order of log0.05 transformed 
empirical p-value. We conducted GSEA Pre-ranked test 
based on gene ID permutations.

As solid evidence of methodological superiority 
is lacking [13], we calculated combined p-values based 
on a Monte-Carlo simulation method (http://comisef.
wikidot.com/tutorial:correlateduniformvariates), which 
also allowed us to control the false positive rates. We 
first applied Pearson’s correlation test on the results from 
these four methods to generate the correlation matrix A, 
and then performed Choleski decomposition (A = L’L) on 
the correlation matrix A. We then ranked all pathways by 
their p-values across methods and calculated their average 
rankings. Using rankings instead of p-values ensures all 
methods being treated equally [21]. We simulated (N = 
10,000) the null p-values from a uniform distribution 
[0, 1], while keeping the correlations of four methods 
by multiplying the upper-triangle matrix L. Next we 
calculated the combined p-value per pathway as the 
percentages of simulated average rankings that surpassed 
the original average rankings.
Evaluation of potential confounding factors

To check if our GWAS results were confounded 
by other factors, such as pathway size and gene size, we 
performed a series of evaluations on different factors. 
Pathway size is the number of genes in a pathway and gene 
size is the number of SNPs in a gene. SNP frequency is 
calculated as SNP counts per 1kb of gene length. Pathway 
annotation degree of a gene is the number of pathways 
this gene is assigned to. We also estimated the significance 
level of the average SNP frequency in top 20 pathways, 
by comparing to the simulated null-distribution of average 
SNP frequency in random 20 pathways (bootstrap 10,000 
times).
Pathway-based subpopulation identification

We used the R-package NMF [70] to identify 
subpopulations in the GWAS EC patient data. For each 
patient, we summed all SNPs to pathway level in the 
top 20 pathways, and applied Z-score normalization for 
each pathway. Since NMF requires non-negative values, 
we subtracted the minimum value for the entire matrix. 
We determined the optimal number of subgroups by 
Cophenetic Coefficient. We then performed student’s t-test 
between the subgroups to identify significant pathways.
Data availability

The raw genotype data are submitted to the 
Epidemiology of Endometrial Cancer Consortium (E2C2) 
under NCI (National Cancer Institute), which has initiated 
the data submission to dbGaP (accession number assigned 
phs000893.v1). Additionally, the pre-computed p-values 

of SNPs are on the website: garmiregroup.org/data. Other 
processed data can be found in Supplementary data.
Network visualization

We extracted contributing SNPs of top 20 pathways 
from PLINK results and mapped them to genes. 
Corresponding empirical p-values were also extracted 
from PLINK results. To visualize the relationship of 
genes and pathways, we used Cytoscape [35] to build a 
customized network, where the log0.05 (empirical P) are 
represented by the size of the nodes.

TCGA exome-Seq somatic mutation analysis

We applied MutSigCV [37] to the EC somatic 
mutation data from TCGA. We used full coverage file and 
calculated the background mutation rate per gene. We then 
conducted a log0.05 transformation of the p-values of genes 
generated by MutSigCV, and removed the genes with 
log0.05 p-value equal to 0 (original p-value = 1), since they 
didn’t contribute meaningful mutations. We then sorted 
the genes and used them for GSEA Pre-ranked test at the 
pathway level result.

TCGA RNA-Seq gene expression analysis

For pathway-level analysis on the paired TCGA 
RNA-Seq data, we first applied DESeq2 [71] to normalize 
the expression among samples. We then used Pathifier [72] 
algorithm to transform gene-level expression information 
into pathway-level information, represented by pathway 
deregulation score (PDS) per patient. Personalized PDS 
is derived from the concept of “principal curve” [73]. 
It is a measurement of degrees of deviation from the 
“normal status” along the principal curve. We calculated 
the paired t-statistics on the original PDS matrix for each 
pathway. Then, we conducted pairwise permutation tests 
on the PDS matrix by randomly reassigning PDS for 
each patient, where the pair information was kept intact 
during permutation. The null hypothesis for this pairwise-
permutation test (coupling the tumor/adjacent tissue from 
the same patient with the same pathway assignment) is 
that the PDS obtained from a particular pathway is the 
same as PDS generated from other pathways which are 
reassigned randomly. We ran 10,000 permutations to 
obtain the empirical p-values for each pathway, and 
adjusted all p-values by FDR.

Survival analysis based on the TCGA RNA-Seq 
data set

Relapse-free survival analysis was used to study the 
prognostic associations of pathways based on EC TCGA 
RNA-Seq data set. A total of 537 samples had clinical 
information, and among them 457 samples had relapse 
free survival information (downloaded 03/24/2015). 
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Patients without relapse events during the study were 
considered censored. To realize pathway-level survival 
analysis, we first applied Pathifier to summarize the 
expression values from the gene level to pathway level. 
We then dichotomized the patients by median PDS, and 
assigned the patient with a higher PDS than median to a 
higher-risk group; otherwise, we assigned this patient to a 
lower-risk group. We used Kaplan-Meier curves to present 
the prognosis of the higher- and lower-risk groups. The 
Wilcoxon log-rank test was then conducted on the Kaplan-
Meier curves to detect the survival difference between 
these two groups. All survival analysis was conducted 
using the R package Survival [74, 75]. All log-rank 
p-values were then adjusted by FDR.

Integrative analysis of top pathways

To evaluate the overall significances of the top 20 
pathways, we ranked them based on their results from four 
different data types and calculated the average rankings. 
We then conducted resampling for 10,000 times on the 
rankings from each data type, and calculated the average 
rankings. This generated a null-distribution of average 
rankings which can be used to calculate the empirical 
p-value of each pathway. Pathway empirical p-values 
represent the overall consistency across different data 
types.
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