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ABSTRACT
Chromosomal instability is a hallmark of human cancers, and is characterized by 

large structural variations in the genome. Such large structural variations are expected 
to create intrinsic collateral stress due to gene dosage changes in many genes that are 
co-deleted or co-amplified in large chromosomal segments (onco-passenger genes). We 
show that the tumor-toxic effects of gene dosage changes of onco-passenger genes are 
compensated by the uncoupling of their copy number variations from their expression by 
means of selective DNA methylation. For example, collateral co-amplification of genes 
in tumor suppressor pathways, such as the TGF-β and inflammatory signaling pathways, 
are compensated by DNA hypermethylation to suppress their overexpression, while 
collateral deletion of pro-oncogenic genes are compensated by DNA hypomethylation 
to promote their expression from the single remaining allele. Our work reveals an 
important tumorigenic mechanism of regulation of toxic gene copy number imbalance 
in tumor cells arising from chromosomal instability, and suggests that targeting the 
DNA methylation machinery may prevent compensatory regulation of onco-passenger 
gene expression in chromosomally unstable cancers, and re-activate dormant tumor 
suppressor pathways for effective therapy.

INTRODUCTION

Transformation to malignancy partly relies on 
the innovation of novel gene expression programs 
by tumor cells. A common mechanism employed by 
tumor cells to acquire novel gene expression programs 
is by structural genomic variations (SGVs). Many 
cancers are characterized by extensive genomic 
structural rearrangements that result in the gain or 
loss of chromosomal segments [1, 2]. Such structural 
rearrangements are thought to target specific “driver” 
genes, i.e. oncogenes or tumor suppressors, whose gain/
loss of expression confers selective growth advantages to 
the transformed cell. However, structural rearrangements 
often involve large chromosomal segments [1], and 
therefore affect many other genes in the vicinity of the 
driver genes, leading to their copy number variations 
(CNVs). For example, loss of the PTEN tumor suppressor 
in many cancers is often accompanied by the loss of the 

entire chromosome 10 p-arm. Similarly, amplification 
of the MYC oncogene is usually associated with the 
amplification of the entire q-arm of chromosome 8, 
leading to the copy number gains of many hundreds of 
genes (Supplementary Figure S1). We call such genes 
“onco-passengers”, as their CNVs usually accompany 
the structural rearrangements involving the driver gene. 
Although the surge in the recent years, primarily owing 
to cancer genomics efforts such as The Cancer Genome 
Atlas (TCGA), have resulted in the identification of a 
large number of driver genes and processes in cancers 
[1–5], significantly less focus has been given to the 
onco-passenger genes. One notable study addressing the 
possible role of onco-passenger genes in cancers has found 
strong correlations of recurrent large structural changes 
with the density of oncogenes and tumor suppressor genes 
in the respective chromosomal segments [6, 7]. A more 
recent study has found that genes co-deleted with TP53 
on chromosome 17 in human cancers also have important 
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roles in tumor suppression [8], suggesting that the onco-
passenger genes may have previously unappreciated roles 
in tumor progression.

RESULTS

Onco-passenger gene expressions shape the 
tumor transcriptome

Changes in the expression of hundreds, or 
sometimes thousands, of co-amplified or co-deleted 
onco-passenger genes are expected to significantly 
affect the tumor transcriptome and have deleterious 
effects due to the gene copy number imbalances and 
collateral disruption of homeostatic processes [9]. First, 
we sought to assess the contribution of onco-passenger 
CNVs to the transcriptomic profiles of tumors associated 
with an oncogene amplification. For this purpose, we 
considered breast cancers, where amplifications of ERBB2 
(Chromosome 17), CCND1 (Chromosome 11) and MYC 
(Chromosome 8) oncogenes are frequently observed 
(~15%, 11% and 38%, respectively in the TCGA cohort). 
We measured the extent to which the transcriptomes of 
breast tumors with amplifications of ERBB2, MYC or 
CCND1oncogenes are due to the accompanying onco-
passenger CNVs. To this end, we calculated two genome-
wide metrics for each of the oncogenes above: 1) co-
amplification profile: the correlation of its amplification 
with the CNV of every other gene in the genome (CNV-
CNV correlation), and 2) co-expression profile: correlation 
of its amplification with the mRNA expression of every 
other gene in the genome (CNV-mRNA correlation). In the 
first, we measure the correlation of CNV of the oncogene 
of interest (i.e. ERBB2, CCND1 or MYC) with the CNV 
of every other gene in the genome, and in the second, we 
measure the correlation of CNV of the oncogene with 
the mRNA levels of every other gene in the genome. The 
first metric captures the repertoire of co-amplified genes 
(onco-passengers) with the respective oncogenes, and 
the second metric captures the transcriptomic changes 
associated with each oncogene amplification. A correlation 
of the two metrics, therefore, is expected to reveal the 
extent to which the transcriptomics changes associated 
with an oncogene amplification (e.g. ERBB2) are due to 
the accompanying onco-passenger CNVs, as opposed to 
downstream pathway effects of the oncogene activation 
(e.g. PI3K/Akt or Ras/MAPK signaling). Intriguingly, we 
found that the two metrics have a very high correlation 
in each case (Figure 1A), suggesting that a significant 
portion of gene expression changes associated with 
ERBB2-, MYC- and CCND1-amplifying breast tumors 
are due to onco-passenger CNVs, which is also confirmed 
with an enrichment-based statistical test (Figure 1B). 
These observations indicate that the co-variations of 
onco-passenger gene copies are non-neutral, and have a 
substantial effect on the tumor transcriptomes. 

Many onco-passenger genes’ expressions are 
uncoupled from their CNVs

It is conceivable that onco-passenger genes 
associated with the amplifications of large chromosomal 
segments may contain genes that are deleterious to tumor 
viability. Similarly, deletions of large chromosomal 
segments may result in the co-deletion of genes with 
essential roles in tumor progression. In both of these 
cases, the expression of respective onco-passenger genes 
is expected to be actively uncoupled from their CNVs in 
tumors to allow for successful tumor progression. Indeed, 
for example in ERBB2-amplifying breast cancers, there 
are many genes within the ERBB2 amplicon that are not 
co-expressed, despite high copy number co-amplification, 
with ERBB2 CNV (Figure 1C). A similar pattern is 
observed with the onco-passengers of other oncogenes 
(e.g. MYC) and in other cancers as well (Supplementary 
Figure S2A). To test this phenomenon at a global level, 
we performed an analysis of correlations of onco-
passenger CNVs with their respective mRNAs across a 
panel of cancers using TCGA datasets. In accordance with 
Figure 1C, we found that while many onco-passenger 
genes’ expressions in breast cancers changed in accordance 
with their copy number gains and losses (i.e. high CNV ~ 
mRNA correlation), still many were insensitive to their 
CNVs (i.e. low CNV ~ mRNA correlation, Figure 1D), a 
pattern that was repeated in other cancers (Supplementary 
Figure S2B). Moreover, the onco-passenger genes could be 
clearly classified into two groups based on the correlation 
of their expression changes with their CNVs (Figure 1D 
and Supplementary Figure S2B), with a distinct group of 
onco-passengers (CR-low: low CNV ~ mRNA correlation) 
whose mRNA expression did not correlate with their copy 
number variations (see Figure 1E for examples of a CR-
high and CR-low genes that are co-amplified with ERBB2 
on Chromosome 17). These observations suggest that 
tumors actively uncouple the expression of many onco-
passenger genes from their CNVs, perhaps due to selective 
tumorigenic advantage.

Onco-passenger gene expression reflects tumor 
advantage

Survival analysis of patients with high and low 
expression of the CR-high (PSMD12) and CR-low 
(STAC2) (see Figure 1E) genes that are co-amplified with 
ERBB2 showed that while the expression of CR-high 
genes predicted poor survival, and hence more malignant 
cancer phenotype, expression of the CR-low gene had 
a better clinical prognosis, indicating less malignant 
cancer phenotype (Figure 2A). This suggests that CNV-
mRNA correlation of onco-passenger genes may reflect 
tumorigenic advantage. To test this hypothesis, we 
measured the correlation of expression of every onco-
passenger with clinical survival of patients in different 
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cancers. Strong positive correlation of a gene’s expression 
with poor survival reflects its possible role in conferring 
a malignant cancer phenotype, while a strong negative 
correlation would imply its role in suppressing tumor 
malignancy. Strikingly, we found that while amplified CR-
high genes’ expression consistently correlates with poor 
survival, that of amplified CR-low genes predicts better 
clinical survival in many cases (Figure 2B, 2D–2E and 
Supplementary Figure S3A), suggesting that amplified 
CR-low genes have tumor suppressor roles. This pattern 
was completely reversed in genes with copy number 
losses (Figure 2C), where the expression of CR-low genes 
predicted worse outcome, and hence more malignant 
phenotype, while CR-high genes predicted better clinical 
outcome (Figure 2C–2E), which was also observed in 

other, though not all, cancers (Supplementary Figure S3A). 
These observations suggest that collateral deleterious 
effects of gross structural changes in the tumor genome 
are at least partially compensated by active uncoupling of 
expressions of onco-passenger genes from their CNVs to 
achieve optimal tumor transcriptome.

Onco-passenger gene expression is fine-tuned by 
DNA methylation

To gain insight into the mechanisms of uncoupling 
of onco-passenger CNVs from their expression, we 
asked if the expression of amplified CR-low genes 
is actively suppressed, or the remaining copies of 
hemizygously deleted ones are actively induced, to 

Figure 1: Patterns of onco-passenger gene expression. (A) Correlations of co-amplification (DNA) and co-expression (mRNA) 
profiles of indicated oncogenes (ERBB2, MYC and CCND1) among each other (see text and Methods). High correlation indicates that genes 
that are co-expressed with the oncogene are also generally co-amplified. (B) Fractions of genes that are overexpressed with the indicated 
oncogene (at P-value of difference  < 0.001) that are also co-amplified with the oncogene (in cis and trans). P-values reflect enrichment 
by hypergeometric distribution (P ~ 0: machine zero). (C) Co-amplification (CNV) and co-expression (mRNA) profiles of genes on 
chromosome 17 with ERBB2 CNVs. Y-axis shows correlation t-statistic; high “DNA” value indicates that the gene is co-amplified with 
ERBB2, while high “mRNA” value indicates it is co-expressed with ERBB2 amplification (i.e. overexpressed when ERBB2 is amplified). 
A portion of the chromosome 17 surrounding ERBB2 gene is zoomed to show some genes (circled) that are not over-expressed, despite 
co-amplification with ERBB2. (D) Density plot of correlation (Pearson’s r) of gene CNVs with their corresponding mRNA expression (i.e. 
how does change in CNV for a gene X correlate with the mRNA expression of gene X). CR-high and CR-low genes are defined by cutoff 
at the valley between the two distinct hills (usually at around r = 0.4). (E) CNV-mRNA scatter plots of a representative CR+ (top) and 
CR- (bottom) genes that are frequently co-amplified with ERBB2 on chromosome 17. Fraction of samples with CNV gain is colored in red. 
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compensate for their CNV. Epigenetic regulation through 
DNA methylation is a common mechanism of gene 
expression innovation in cancers [10]. Therefore, to 
test if DNA methylation plays a role in the uncoupling 
of CNVs of onco-passengers from their expression, we 
measured the correlation of DNA methylation of onco-
passenger genes with their CNV. Strikingly, CNV-DNA 
methylation correlations showed a marked coherence 
with CNV-mRNA correlations of onco-passenger genes 
(Figure 3A). We found that most of amplified CR-high 

genes have loss of their DNA methylation, while many 
amplified CR-low genes have gains. Similarly, remaining 
copies of many hemizygously deleted CR-high genes 
are hyper-methylated, while many of hemizygously 
deleted CR-low genes are hypomethylated (Figure 3A 
and Supplementary Figure S3B) (see examples in 
Figure 3B). One possible explanation for this observation 
is that the DNA methylations of amplified CR-high 
genes are not maintained in the amplified extra copies, 
thereby manifesting as a hypomethylation phenotype. 

Figure 2: Analysis of the effect of CR-high and CR-low genes’ expression on clinical outcome. (A) Kaplan-meier survival 
plots of a CR-low (STAC2) and CR-high (PSMD12) gene in breast cancer (BRCA). (B) Top: Scatter plots of CNV-mRNA correlation and 
COX regression z-scores of genes that are frequently amplified in BRCA. Red lines show the linear regression slope and ρ is Spearman’s 
rank correlation coefficient. Bottom: Violin plots showing the distribution of CNV-mRNA correlation of genes that predict better (COX 
z-score < -2) and poor (COX z-score > 2) survival in BRCA, or have no strong predictive power (NS, |COX z-score| < 2). (C) Same as in 
(B), but with frequently deleted (CN loss) genes in GBM. Note the reversal of patterns from those in (B). (D) Survival and CNV-mRNA 
plots of some representative CR-high and (E) CR-low genes. Note reversal of survival impacts in CR-low genes with CN gain and loss. 
Chromosomal locations of genes are indicated.
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Similarly, the hemizygous deletion of CR-high genes 
might lead to the concentration of DNA methylation on 
the remaining allele, manifesting as a hypermethylation 
phenotype. However, CR-low genes, whose expressions 
are uncoupled from their CNVs, might maintain the DNA 
methylation of the amplified gene copies to suppress their 
over-expression, while deleted CR-low genes might lose 
DNA methylation in the remaining copy to maintain their 
expression. Nevertheless, these findings are intriguing, 
as they suggest that DNA methylation changes have a 
major role in the expression outcome of CN variations in 
cancers. 

Amplified CR-high onco-passengers code 
for oncogenic pathways, while CR-low onco-
passengers code for tumor suppressor pathways

To test if CR-high and CR-low genes in different 
cancers are commonly associated with pro- or anti-
tumorigenic pathways, we performed a pathway-level 
analysis of CNV-RNA correlations of commonly amplified 
genes using our previously developed network-based data 
analysis method, NetWalk [11, 12], in breast (BRCA), 
brain (GBM), lung (LUAD) and skin (melanoma, SKCM) 

cancers (see Methods). A heatmap of pathway scores 
reflecting enrichment of respective pathways in amplified 
CR-high or CR-low genes shows many expected pathways 
among amplified CR-high genes, such as increased CDK 
activity pathway in GBM and increased MAP kinase 
pathway in SKCM (Figure 4A). Intriguingly, in BRCA, 
in addition to the oncogenic ERBB2 signaling, the most 
prominent pathways associated with CR-high genes were 
involved in different aspects of protein homeostasis, 
including signal transduction (S6K1 signaling), protein 
synthesis (Ribosome) and degradation (Proteasome), many 
of which were co-amplified with ERBB2 on chromosome 
17, with CCND1 on chromosome 11 or with MYC on 
chromosome 8 (Figure 4B). 

In addition, a large subnetwork of CR-high genes 
in BRCA was involved in G-protein coupled receptor 
(GPCR) signaling through Gs and Protein Kinase A (PKA) 
(see Figure 4B). It is important to note that PNMT, a CR-
high gene that is found within the same amplicon and 
almost always co-amplified with ERBB2 on Chromosome 
17, encodes phenylethanolamine N-methyltransferase, a 
critical enzyme in the synthesis of catecholamines (http://
www.ncbi.nlm.nih.gov/gene/5409). Catecholamines, such 
as epinephrine, signal through β-adrenergic receptors to 

Figure 3: DNA methylation controls the expression of onco-passenger genes. (A) For every gene, correlation of its CNV with 
its DNA methylation was measured. The scatter plots illustrate the relationship between CNV-mRNA and CNV-Methylation correlations, 
with red lines showing linear regression curve. (B)  CNV-DNA methylation plots of an amplified CR-low (up) and CR-high (bottom) gene 
in BRCA. The boxplots to the right show quantification of changes in methylation beta values upon copy number gain.
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Figure 4: CR-low genes encode tumor suppressor pathways. (A) Heatmap of pathway flux scores produced by NetWalk analyses 
of CNV-mRNA correlations of frequently amplified genes in BRCA, LUAD, SKCM and GBM. The interpretation of Pathway Flux 
scores are the same as in regular gene expression analyses, high positive score reflects the enrichment for CR-high genes, and a negative 
score reflects enrichment for CR- genes. (B) Network plot of some of the highest scoring (i.e. associated with CR-high genes) molecular 
interactions produced by NetWalk for BRCA. Node coloring reflects chromosomal locations. (C) Network plot of some most negative (i.e. 
associated with CR- genes) pathway scores in SKCM, see heatmap in (A). Node coloring is same as in (B). NetWalk analyses and network 
plots were produced in NetWalker [9]. (D) Boxplot of expression of GZMA in SKCM samples with low (< 30%-ile), medium (< 60%-ile) 
and high (> 60%-ile) expression of HLA-A. GZMA expression reflects infiltration by cytolytic cells, such as Natural Killer and CD8+ T 
cells. (E) DNA methylation beta values (probe indicated) of HLA-A gene in samples with no copy number gain (2N) and with copy number 
gain.

activate the Gs-PKA pathway, which further supports the 
hypothesis that GPCR-PKA signaling plays a major role 
in breast cancers. 

Pathways associated with CR-low genes, on the 
other hand, were often involved in innate and adaptive 
immune signaling (see Figure 4A), especially in SKCM 
(Figure 4C), where adaptive anti-tumor immunity plays 
a major role in tumor suppression [13]. Copy number 
gains in chromosome 6p are common in melanomas [14], 
although the driver oncogene(s) within this region are 
not well-defined. Interestingly, this region also harbors 
onco-passenger genes involved in MHC class I antigen 
presentation (see Figure 4C), a crucial mechanism 
required for T-cells to detect foreign (mutated) antigens in 
transformed cells. Accordingly, expression of these genes 
strongly correlates with local immune cell infiltration, 
as assessed by the expression of cytolytic cell (Natural 

Killer and CD8+ T cell) marker granzyme A (GZMA) 
(Figure 4D). However, expressions of these genes are 
uncoupled from their copy number gains, at least partly 
due to hypermethylation of their promoters (Figure 4E), 
thereby avoiding immune cell infiltration and anti-tumor 
activity. Overall, our pathway analyses confirm pro- and 
anti-tumorigenic roles of amplified CR-high and CR-low 
genes, respectively, and shed light on the mechanisms of 
their role in tumor progression.

DISCUSSION

Structural changes due to genomic instability in 
cancers are usually non-selective, and can result in copy 
number gains or losses of hundreds of genes [1, 2, 15]. 
The research efforts in cancer genomics have mainly 
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focused on the driver genes, and less attention has been 
given to the onco-passengers that have undergone similar 
CNVs as the driver genes. Previously, we showed that 
the pathway expression landscape of breast cancers 
with ERBB2 amplifications is largely driven by gene 
CNVs [16]. In this study, we confirm this finding at a 
broader scale, and show that onco-passenger gene 
expression has a significant contribution to the tumor 
transcriptomes. However, still many onco-passengers’ 
expressions are actively uncoupled from their CNVs to 
shield the deleterious effects of their CNVs on tumor 
survival. Indeed, we found that some amplified onco-
passenger genes code for tumor suppressor pathways, 
such as TGF-β and inflammatory signaling, whose 
expression predicts less malignant disease and better 
patient survival. These genes are thus actively repressed 
upon their amplification, at least partly through promoter 
hyper-methylation, which avoids “collateral” activation 
of tumor suppressor pathways. 

Methylation of CpG sites on DNA is a major 
mode of epigenetic control of gene expression, and its 
role in the suppression of tumor suppressor genes has 
been established [10]. Our results here show that DNA 
methylation has a role in fine-tuning the effects of gross 
SGVs, and that it cooperates with gene copy number 
changes in shaping the optimal tumor transcriptome. Thus, 
these observations further strengthen the rationale for 
targeting of DNA methylation in human cancers [17, 18], 
especially those with gross SGVs, which could lead to the 
re-activation of onco-passenger tumor suppressor genes.

MATERIALS AND METHODS

Datasets

All of the datasets were obtained from TCGA 
data portal. CNV of genes were obtained from the 
segmentation data of SNP 6.0 arrays by CNTools package 
for R. RNAseq V2 datasets were used for gene expression 
data (Normalized count data). For methylation data, the 
Infinium 27 k array data were used for all, except SKCM 
(where 27 k data were not available), datasets. For SKCM, 
Infinium 450 k data were used with the 27 k probes for 
consistency with other datasets. Datasets used and their 
sample sizes are shown in Supplementary  Table S1. 

Computational analyses

In all analyses, genes with CNV gain were defined 
as those that had 90%-ile (among all patients) CNV (log 
ratio as measured in SNP6 array) of > 0.50, and those 
with CNV loss were defined as genes that had 10%-ile 
CNV of < −0.50. To exclude genes that are constitutively 
suppressed in a given cancer type, only genes that have 
expression > 30 normalized counts in at least 10% of the 
tumor samples were included in the analysis. Survival 

analyses were conducted with COX regression analysis 
using R package survival (coxph function).

Pathway analyses

Pathway analyses were conducted in NetWalker 
[11] using the CNV-mRNA correlation values for NetWalk 
scoring. Briefly, CNV-mRNA correlation values, where 
CR-high genes were defined as those having correlation 
r-values of > 0.4, were transformed by substracting 0.4  
(f(x) = x – 0.4), so that CR-high genes now have positive 
values and CR-low genes have negative values (for 
more intuitive separation of CR-high and CR-low genes/
pathways). Then, the data were transformed by f(x) = 2x prior 
to NetWalk to make the data positive and centered around 1 
(a requirement of NetWalk, see ref.10). NetWalk was run on 
the resultant values using default parameters in NetWalker to 
obtain Pathway Flux scores for each pathway. The heatmap 
in Figure 4A is a clustered heatmap of Pathway Flux scores 
from selected most positive (enriched in CR-high) and most 
negative (enriched in CR-low) scoring pathways.
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