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ABSTRACT
In the past ten years, great successes have been accumulated by taking 

advantage of both candidate-gene studies and genome-wide association studies. 
However, limited studies were available to systematically evaluate the genetic 
effects for lung cancer risk with large-scale and different ethnic populations. We 
systematically reviewed relevant literatures and filtered out 241 important genetic 
variants identified in 124 articles. A two-stage case-control study within specific 
subgroups was performed to assess the effects [Training set: 2,331 cases vs. 3,077 
controls (Chinese population); testing set: 1,937 cases vs. 1,984 controls (European 
population)]. Variable selection and model development were used LASSO penalized 
regression and genetic risk score (GRS) system. Further change in area under the 
receiver operator characteristic curves (AUC) made by the epidemiologic model with 
and without GRS was used to compare predictions. It kept 38 genetic variants in our 
study and the ratios of lung cancer risk for subjects in the upper quartile GRS was 
three times higher compared to that in the low quartile (odds ratio: 4.64, 95% CI: 
3.87–5.56). In addition, we found that adding genetic predictors to smoking risk 
factor-only model improved lung cancer predictive value greatly: AUC, 0.610 versus 
0.697 (P < 0.001). Similar performance was derived in European population and the 
combined two data sets. Our findings suggested that genetic predictors could improve 
the predictive ability of risk model for lung cancer and highlighted the application 
among different populations, indicating that the lung cancer risk assessment model 
will be a promising tool for high risk population screening and prediction.

INTRODUCTION

Lung cancer is one of the most commonly diagnosed 
malignancies and the leading cause of cancer-related 
deaths in the world, with almost 1.6 million deaths per 
year (19.4% of total cancer mortality) [1]. As well as 
known that the major environmental cause is tobacco 
smoking accounting for over 80% of all lung cancer 
cases. However, only less than 20% of smokers developed 

lung cancer cases, suggesting that individual variation 
in genetic susceptibility may play an important role [2]. 
Over the past ten years, both candidate-gene studies 
and genome-wide association studies (GWAS) have 
successfully identified dozens of loci associated with lung 
cancer risk. Although researchers have tested whether 
genetic variants identified from previous papers increased 
the models’ predictive ability of such common disorders: 
cardiovascular disease [3], breast cancer [4, 5], prostate 
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cancer [6–8] and diabetes [9], limited studies were 
available to systematically evaluate the genetic effects for 
lung cancer risk with large scale populations [10–12].

Despite significant advances in medical therapy, 
prognosis of lung cancer remains poor with a five-year 
survival rate of 16.6% [13], as most cases are diagnosed 
at advanced stage. Indeed, when lung cancer is detected 
before metastasis, the five-year survival rates should be 
60–80% [14]. Therefore, early detection and diagnosis for 
lung cancer was the focus of our future research. In this 
respect, screening high risk population of lung cancer is 
an important element.

As a result, we systematically reviewed all the relevant 
literatures and screened out the genetic variants associated 
with lung cancer risk. Then we performed a two-stage case-
control design with nearly ten thousand samples to assess 
the effects of selected genetic predictors  This study showed 
that genetic predictors could improve the predictive ability 
of risk model for lung cancer among different populations, 
facilitating the clinical and public health. 

RESULTS

General description of subjects

NJMU GWAS contains 2 331 lung cancer cases and 
3 077 healthy controls, which was used as the training set to 
construct the model, while EAGLE study containing 1 937 
cases and 1 984 controls was used to validate the model. 
Compared to controls with 52.66% smoking rate, cases had 
a significantly higher rate of smoking with 76.85% among 
the two data sets (Supplementary Table S1).

General information of genetic risk score

Forty of 241 lung cancer-associated SNPs were 
statistically significantly associated with lung cancer 
risk in this study at P less than 0.05 through univariate 
analysis (data not shown). Further, LASSO penalized 
regression based on univariate analysis selected 38 
SNPs in the training set as shown in Table 1. To assess 
the cumulative risk values for the genetic predictors, 
we calculated a “genetic risk score” (GRS). For all the 
population combining European with Chinese samples, 
the mean of risk score among lung cancer cases (1.04 ± 
0.14) was higher than that among cancer-free controls 
(0.99 ± 0.15), with an average risk score of 1.01 ± 0.15 for 
all population. We further split the GRS for lung cancer 
into two subgroups according to its 90% percentage: 
low risk group (GRS < 1.21), high risk group (GRS ≥ 
1.21). Based on the classification of the GRS system, 
we found that in all the population (9,329 individuals), 
8,446 population were classified into the low risk group 
with 3,792 (44.90%) lung cancer cases and 883 population 
were classified into the high risk group with 476 (53.91%) 
lung cancer cases. 

Cumulative effects of genetic and environmental 
factors with lung cancer

The odds ratios for lung cancer were examined by 
percentiles of GRS and the total effect combining the 
smoking statue. In the discovery stage, the estimated OR 
of subjects in the upper quartile GRS was 4.64 (95% CI: 
3.87–5.56) compared to the low quartile (P for trend: 
7.52E–69). When combined the smoking factor, we 
found that the risk increases more obviously (P for trend:  
5.41E–94, Table 2). In addition, this trend was validated 
in the external data, the risk for lung cancer increased 4.36 
times when combined smoking factor with GRS (P for 
trend: 1.81E–53).

Discrimination performance

To further assess the discriminative accuracy of the 
model, we measured the area under curves by C-statistic 
(Table 3). We found that the model based only on the 
smoking factor has low discriminatory accuracy in the 
training data set (AUC = 0.610, Table 3). However, 
when combining the genetic factors, the performance 
improves (AUC = 0.697, Table 3, Figure 1A), whether in 
squamous cell carcinoma, adenocarcinoma or other type 
of lung cancer (Supplementary Figure S2A–S2C)). Similar 
performance was also derived among testing samples 
[C statistics: 0.625 (95% CI: 0.613–0.637) vs. 0.647 (95% 
CI: 0.630–0.664), P = 0.004, Figure 1B] and combining the 
two data sets [C statistics: 0.625 (95% CI: 0.615–0.634) vs. 
0.658 (95% CI: 0.647–0.669), P < 0.001, Figure 1C]. We 
used the Hosmer-Lemeshow goodness-of-fit test to assess 
the extended model, indicating that it was an adequate 
model with P value > 0.05 (Table 3). In addition, we 
found that the genetic model performed moderately with 
an AUC of 0.604 among non-smokers in the two data sets 
(Supplementary Figure S2D).

DISCUSSION

In this study involving 4,268 lung cancer cases and 
5,061 cancer-free controls, 38 of 241 SNPs identified 
systematically by previous studies were used to calculate 
genetic risk score. Risk assessment models combining 
the genetic variants and smoking factor were a good tool 
to predict the risk value for lung cancer. In our present 
study, we find that the model with only the smoking factor 
shows low discriminatory accuracy (AUC = 0.610, in the 
discovery data set). However, when we plus a genetic risk 
score based on 38 SNPs into the model, the AUC increases 
to 0.697 (P < 0.001), indicating that genetic predictors 
could improve the discriminatory ability of the traditional 
risk model. Furthermore, these results were validated in 
the external data set EAGLE study and the combined data 
sets, which mean this risk prediction model can be applied 
in the European population directly. 
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Table 1: Association of 38SNPs stained by lasso with lung cancer risk in the training data set
SNP Position Allelea MAFb P  (HWE)b OR (95% CI)c Pc βd Author PMID

rs17728461 chr22:30598552 C/G 0.17 0.70 1.37  (1.24–1.51) 8.50E-10 0.0535 Zhibin Hu 21725308
rs465498* chr5:1325803 A/G 0.16 0.11 0.75  (0.67–0.84) 6.83E-07 0.0523 Zhibin Hu 21725308
rs753955 chr13:24293859 A/G 0.29 0.76 1.23  (1.13–1.35) 1.33E-06 0.0482 Zhibin Hu 21725308
rs2895680 chr5:146644115 T/C 0.28 0.62 1.21  (1.11–1.32) 1.04E-05 0.0415 Dong J 22797725

rs12296850* chr12:100820085 A/G 0.25 0.14 0.82  (0.75–0.90) 3.09E-05 0.0402 Dong J 23341777
rs4488809 chr3:189356261 C/T 0.47 1.00 1.21  (1.12–1.31) 2.39E-06 0.0375 Zhibin Hu 21725308
rs2736100 chr5:1286516 A/C 0.41 0.30 1.20  (1.11–1.30) 8.84E-06 0.0374 Chen XF 22370939
rs9439519 chr1:5364634 T/C 0.27 0.93 1.18  (1.08–1.29) 2.18E-04 0.0361 Dong J 22797725
rs383362 chr16:79245820 G/T 0.15 0.62 1.17  (1.05–1.30) 3.97E-03 0.0357 Huang D 22693020
rs6573* chr1:112255389 C/A 0.13 0.47 0.82  (0.73–0.93) 1.27E-03 0.0346 Zu Y 23232114

rs247008* chr5:131447104 G/A 0.47 0.06 0.83  (0.77–0.90) 6.27E-06 0.0343 Dong J 22797725
rs4809957 chr20:52771171 G/A 0.35 0.20 1.18  (1.09–1.28) 7.11E-05 0.0341 Dong J 22797725
rs4246215* chr11:61564299 G/T 0.41 0.85 0.82  (0.76–0.89) 2.04E-06 0.0335 Ming Yang 19618370
rs1663689* chr10:9025195 T/C 0.42 0.97 0.85  (0.79–0.92) 8.03E-05 0.0313 Dong J 22797725
rs7086803 chr10:114498476 G/A 0.28 0.62 1.16  (1.06–1.26) 1.06E-03 0.0297 Lan Q 23143601
rs4083914 chr6:153427706 G/C 0.14 0.19 1.16  (1.04–1.29) 7.36E-03 0.0293 Li H 23228068
rs2286455* chr4:16020162 C/T 0.23 0.14 1.15  (1.05–1.26) 3.70E-03 0.0284 Mei Cheng 23715500
rs3764340 chr16:78466437 C/G 0.07 1.00 1.20  (1.04–1.39) 0.012 0.0283 Huang D 22693020
rs36600 chr22:30337586 C/T 0.09 0.82 1.39  (1.22–1.58) 8.38E-07 0.0281 Zhibin Hu 21725308
rs842461 chr3:195535614 T/G 0.27 0.27 1.18  (1.09–1.29) 1.19E-04 0.0253 Zili Zhang 24204934
rs2285053 chr16:55512377 C/T 0.24 0.25 0.90  (0.82–0.99) 0.029 0.0247 GA Patricia 22455335

rs2131877* chr3:194858374 A/G 0.44 0.07 0.91  (0.84–0.99) 0.025 0.0240 Kyong-Ah 
Yoon 20876614

rs1801133 chr1:11856378 G/A 0.44 0.36 1.16  (1.07–1.26) 1.76E-04 0.0232 Lian-Hua Cui 21342495
rs3866958* chr17:19281006 C/A 0.15 0.44 0.87  (0.78–0.97) 0.015 0.0225 Fuman Qiu 23804708
rs1800625 chr6:32152442 A/G 0.13 0.75 1.12  (1.00–1.26) 0.046 0.0218 Wang X 23071492
rs9387478* chr6:117786180 C/A 0.5 0.86 0.91  (0.84–0.98) 0.013 0.0216 Lan Q 23143601
rs743572 chr10:104597152 G/A 0.4 1.00 1.09  (1.01–1.18) 0.026 0.0209 Zhang Y 22658813
rs4291 chr17:61554194 A/T 0.37 0.08 1.10  (1.02–1.20) 0.015 0.0208 Gao Min 22538550

rs10845498* chr12:12394574 A/G 0.18 0.11 0.89  (0.80–0.98) 0.023 0.0202 Dehou Deng 24843317

rs7326277* chr13:28876214 T/C 0.33 0.65 0.91  (0.84–0.99) 0.038 0.0189 Wang H 24891316

rs931127* chr11:65405300 G/A 0.48 0.08 0.91  (0.84–0.99) 0.028 0.0189 Chenli Xie 23661532

rs2016520 chr6:35378778 T/C 0.27 0.47 1.10  (1.01–1.20) 0.037 0.0161 Eric A. 
Engels 17596594

rs25406* chr20:5099636 G/A 0.36 0.56 0.91  (0.84–0.99) 0.025 0.0158 J.A Doherty 23565320

rs2240688* chr4:15970349 T/G 0.26 0.58 0.91  (0.83–1.00) 0.040 0.0134 Mei Cheng 23715500

rs34843907 chr6:32610059 G/T 0.33 0.39 1.09  (1.00–1.18) 0.041 0.0121 Takashi 
Kohno 20061363

rs2070600* chr6:32151443 C/T 0.23 0.29 0.91  (0.83–1.00) 0.046 0.0109 Wang X 23071492

rs189037 chr11:108093833 G/A 0.43 0.07 1.08  (1.00–1.18) 0.049 0.0080 Jing Liu 25541996

rs3817963 chr6:32368087 T/C 0.25 0.07 1.08  (0.99–1.18) 0.078 0.0075 Shiraishi K 22797724
aAllele means the change from major allele to minor allele;
bMinor allele frequency among controls; HWE among controls;
cLogistic regression with adjustment for age, sex, pack year and PCA1;
dThe coefficient derived from LASSO by adjusting age, sex, smoking statue and PCA1,* means the β coefficient was transformed into the reverse correspond 
to the risk allele.
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Risk prediction models have improved our ability of 
diagnosis, treatment, and even prevention for diseases by 
screening high-risk individuals [15]. Recently, a lot of risk 
prediction models about lung cancer have been developed, 
such as Bach, LLP and Etzel models [16–18], but most 

predictors focused on traditional factors (age, smoking 
status, family history, occupational exposure and so on) 
with a moderate predictive ability (AUC: 0.55–0.70). As 
we all know, these models were constructed based on 
the European population, wondering whether that can be 

Table 2: Cumulative effects of associated SNPs and environmental risk factors on the risk of lung 
cancer

Case  (%) Control  (%)
OR  (95% CI)b Pb P for trend

4268 5061
Training set

GRSa

0 (< Q25) 251 (10.77) 775 (25.19) 1
1 (Q25–Q50) 430 (18.45) 768 (24.96) 1.80 (1.48–2.19) 2.85E-09
2 (Q50–Q75) 590 (25.31) 761 (24.73) 2.48 (2.05–2.99) 3.14E-21

3 (≥ Q75) 1060 (45.47) 773 (25.12) 4.64 (3.87–5.56) 4.04E-62 7.52E-69
Smoke + GRS

0 (< Q25) 204 (8.75) 773 (25.12) 1
1 (Q25–Q50) 337 (14.45) 767 (24.93) 1.78 (1.44–2.20) 1.22E-07
2 (Q50–Q75) 557 (23.90) 768 (24.96) 2.99 (2.43–3.66) 1.28E-25

3 (≥ Q75) 1233 (52.90) 769 (24.99) 7.01 (5.72–8.58) 3.54E-79 5.41E-94
Testing setc

GRS
0 (< Q25) 363 (18.74) 496 (25.00) 1

1 (Q25–Q50) 442 (22.82) 494 (24.90) 1.19 (0.98–1.46) 7.77E-02
2 (Q50–Q75) 531 (27.41) 496 (25.00) 1.50 (1.23–1.82) 4.23E-05

3 (≥ Q75) 601 (31.03) 498 (25.10) 1.66 (1.37–2.01) 2.08E-07 1.68E-08
Smoke + GRS

0 (< Q25) 148 (7.64) 496 (25.00) 1
1 (Q25–Q50) 388 (20.03) 493 (24.85) 2.67 (2.12–3.36) 4.31E-17
2 (Q50–Q75) 625 (32.27) 497 (25.05) 4.35 (3.48–5.43) 1.50E-38

3 (≥ Q75) 764 (39.44) 493 (24.85) 5.36 (4.30–6.68) 2.36E-50 1.81E-53
All
GRS

0 (< Q25) 536 (12.56) 1268 (25.05) 1
1 (Q25–Q50) 944 (22.12) 1266 (25.01) 1.70 (1.48–1.94) 2.35E-14
2 (Q50–Q75) 1271 (29.78) 1264 (24.98) 2.17 (1.90–2.47) 4.62E-30

3 (≥ Q75) 1517 (35.54) 1263 (24.96) 2.31 (2.02–2.64) 1.51E-34 1.31E-34
Smoke + GRS

0 (< Q25) 390 (9.14) 1256 (24.82) 1
1 (Q25–Q50) 728 (17.06) 1272 (25.13) 1.91 (1.65–2.22) 5.43E-18
2 (Q50–Q75) 1223 (28.66) 1260 (24.90) 3.39 (2.93–3.92) 2.31E-61

3 (≥ Q75) 1915 (44.87) 1268 (25.05) 5.38 (4.66–6.21) 4.40E-116 4.27E-134
aGRS means the genetic risk score with adjustment for age, sex, smoking statue and PCA1;
bAdjust for age, sex and PCA1;
cFor the testing set  (the EAGLE study), the smoking status has five missing data.
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applied in the Chinese population directly. In addition, 
genetic information might be used to improve the prediction 
accuracy of above models which offer the stability of the 
risk prediction during the individual lifetime.

Many studies have indicated that genetic variants 
might play an important role for lung cancer risk [19, 20]. 
So far, GWAS have identified some important lung cancer 
susceptibility loci: 22q12 (MTMR3-HORMAD2), 3q28 
(TP63) and 5p15 (TERT-CLPM1L) [21–23]. Of the 38 
SNPs evaluating the clinical utility in the present study, 
we found that the top 3 genetic variants with a strong 
signal depending on the β coefficient were mainly located 
on these loci. The variant rs17728461 included in our 
model was located in the intron at 22q12.2, a region 
which includes the HORMA domain-containing protein 
2 (HORMAD2). The putative functions of the gene 

include mitotic checkpoints, chromosome synapsis and 
DNA repair. And also HORMAD2 has been identified 
as a CT (cancer-testis) gene by silico methods [21] 
which indicate that HORMAD2 may contribute to the 
lung adenocarcinoma risk [24]. The SNP rs753955 was 
located in the intron at 13q12.12 region between MIPEP 
and TNFRSF19 identified as a risk locus of lung cancer 
by recent GWA studies [21]. The protein of MIPEP 
is primarily involved in the maturation of oxidative 
phosphorylation –related proteins and TNFRSF19 which 
is a member of the TNF-receptor superfamily actives JNK 
signaling pathway when overexpressed in cells. 

The 5p15 region containing TERT and CLPM1L 
genes was thought to be related to lung cancer risk by 
recent GWA studies in European [22, 25–27], East Asian 
and African – American populations [23, 28]. The marker 

Table 3: Area under curves  (AUC) as a measure of predictive strength for risk-prediction models 
based on different indicators

AUC 95% CI PAUC Pa

NJMU GWAS
Epidemiologic model 0.61 0.597–0.623 1

Genetic model 0.653 0.639–0.668 < 0.001
The extended model 0.697 0.683–0.711 < 0.001 0.483

The EAGLE study
Epidemiologic model 0.625 0.613–0.637 1

Genetic model 0.558 0.540–0.576 < 0.001
The extended model 0.647 0.630–0.664 0.004 0.662

The two data sets
Epidemiologic model 0.625 0.615–0.634 1

Genetic model 0.604 0.593–0.616 < 0.001
The extended model 0.658 0.647–0.669 < 0.001 0.792

aCalculated by Hosmer-Lemeshow test.

Figure 1: The area under curves (AUCs) for lung cancer risk predicting models calculated by risk score method in the 
two data sets (A) For Chinese GWAS; (B) For the EAGLE study; (C) For the combined data set.
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of lung cancer rs465498 [21] located in CLPM1L encoding 
the cleft lip and palate-associated transmembrane 1 like 
protein had strong contribution to our genetic risk model. 
Of the 38 SNPs included in our model, the β coefficient 
calculated by LASSO was from 0.0075 to 0.0535, this 
suggested that the genetic variants only show a small 
contribution risk in our risk prediction model when 
considered alone, and are of little value in the application.

Recently, several studies have been published that 
a better prediction could be achieved if we combined 
genetic determinants into traditional approaches to 
assess an individual risk [10–12]. Weissfeld et al. 
[12] constructed a lung cancer risk prediction model 
and found that the area under the receiver operator 
characteristic curve improved from 0.717 to 0.725 
when adding GWAS susceptibility regions to an age and 
smoking risk factor-only model. However, only six SNPs 
were included into risk prediction model. In our current 
study, more genetic variants were incorporated even 
though the performance of the risk assessment model 
was limited. The AUC increased from 0.610 to 0.697 
when adding the 38-GRS to the smoking risk factor-only 
model in our discovery set.

This study has several notable strengths. First, 
this risk prediction model developed in our Chinese 
population and externally validated in both European and 
Asian populations, which means this model has a good 
extrapolation. Therefore, we are able to use the model 
to predict the risk of lung cancer among different ethnic 
populations. Furthermore, to our knowledge, this study 
constructed the risk prediction model by the system of 
screening and evaluating genetic susceptibility from the 
past papers that has high predictive ability accuracy. The 
38-SNP GRS has public health utility by screening high-
risk individuals. As shown in Table 2, the risk for lung 
cancer in the highest GRS increases 131% compared 
with the lowest for combing Chinese and European 
populations. It can help us make a better decision about 
whether to be screened by locating themselves along the 
spectrum of lung cancer risk [29]. In addition, for never 
smokers the predictive value of the genetic model was 
moderate and for all population our risk model combining 
genetic variants with smoking factor can improve the 
ability of prediction significantly. Therefore, we use the 
risk model with GRS combining multiple loci to improve 
the identification of persons at high risk for lung cancer.

However, some limitations in our study should 
be noted. This research only included smoking statue 
as the traditional non-genetic factors, which led to the 
poor discrimination. Some other studies, such as Spitz 
MR et al. were concentrated on the data of other clinical 
information such as family history of lung cancer and 
asbestos-exposure besides of tobacco smoke [18]. 
Moreover, GWAS and candidate-gene studies mainly 
focus on common proxy SNPs with many rare and low 
frequency loci or copy number variants for lung cancer to 

be discovered. Combing these additional variants might 
result in improvement in classification of lung cancer risk. 

In conclusion, this is the first attempt to explore the 
risk predictive effects of genetic risk factors associated 
with lung cancer in both Chinese and European 
populations. In our study, 38 genetic variants identified 
by GWAS or candidate-gene strategies were used to 
construct the risk prediction models. Risk predictive 
models that incorporate both a genetic risk score based 
on these SNPs and smoking factors for lung cancer may 
be useful in identifying high-risk populations for targeted 
cancer prevention. More genetic risk variants and other 
epidemiological factors should be well evaluated and 
incorporated into the risk-predicting models to improve 
the ability of personalized risk assessment.

MATERIALS AND METHODS

Study subjects

For the training set, derived from a lung cancer 
GWAS in NJMU (Nanjing Medical University) [21, 30] 
2,331 lung cancer cases and 3,077 cancer-free controls 
were enrolled in this model; for the testing set, 1,937 
cases and 1,984 controls were used to validate the risk 
prediction model, which were derived from NCI GWAS: 
Environment and Genetics in Lung Cancer Etiology 
(EAGLE) [25].

Subjects used in the two stages were genotyped 
using the Affymetrix Genome-Wide Human SNP Array 
6.0 microarray [21, 30] and Illumina Human660W-
Quad v1.0 DNA Analysis BeadChip platform (Illumina, 
San Diego, CA, USA) [25] respectively. To facilitate 
further analysis, imputation analysis were performed by 
IMPUTE2 software taking 1000 Genomes Project data 
(Phase III) as reference set. We implemented a 4-Mb 
sliding window to impute across the genome, resulting 
in 744 windows. A pre-phasing strategy with SHAPEIT 
software version 2 was adopted to improve the imputation 
performance. The phased haplotypes from SHAPEIT were 
fed directly into IMPUTE2.

Literature review strategy and SNP selection

Eligible studies were identified by performing a 
literature search on the PubMed (last search in June 30, 
2015 by using the following keywords: “Lung cancer 
AND polymorphism”. Furthermore, we scrutinized 
the full text of each paper to follow these criteria 
(Supplementary Figure S1): i) The studies were about 
human population and the publishing language was 
English; ii) these papers had an observational (case-
control or cohort) study design (the sample size was at 
least 500 vs 500); iii) the authors offered odds ratios 
(ORs) and their 95% confidence intervals (CIs) of 
the relevant SNPs. In cases where the studies met the 
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inclusive criteria, 241 genetic variants in 124 papers were 
selected in our study. 

We screened all the SNPs based on the relevant 
papers mentioned above followed three criteria 
(Supplementary Figure S1): (i) SNP with imputed INFO 
≥ 0.8; (ii) minor allele frequency (MAF) in controls ≥ 0.05 
and P value for HWE in controls ≥ 0.05; (iii) only the 
SNP with the lowest P value was selected when multiple 
SNPs were observed in a moderate or strong linkage 
disequilibrium (LD) (r2 ≥ 0.5, LD window: 200 kb). In 
total, 148 SNPs passed quality control. 

Public database

PLINK 1.07, http://pngu.mgh.harvard.edu/~purcell/
plink/index.shtml;

R software 3.1.1, http://www.cran.r-project.org/;
IMPUTE2 software, http://mathgen.stats.ox.ac.uk/

impute/impute_v2.html;
1000 Genomes Project, http://www.1000genomes.org/;
SHAPEIT software version 2, 
http://mathgen.stats.ox.ac.uk/genetics_software/

shapeit/shapeit.html;
Environment and Genetics in Lung Cancer Etiology 

(EAGLE), 
http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/

study.cgi?study_id=phs000093.v2.p2.

Statistical analyses

We used the NJMU GWAS samples as the training 
set to guide model development and the European samples 
as the validation set to assess the accuracy of the risk 
model. Four steps were performed to develop the risk 
model (listed in Supplementary Figure S1). Step I SNPs 
screening. 40 significant SNPs (P < 0.05) were picked out 
using PLINK 1.07 through univariate analysis. Further, we 
used the Least Absolute Shrinkage and Selection Operator 
(LASSO) penalized regression model in the discovery 
stage (2,331 cases/3,077 controls) and 38 genetic 
variants were included in our predictive models. Step II 
Model construction. To evaluate the contribution of the 
genetic factors, we conducted 2 risk models, one was the 
epidemiologic model (containing smoking factor only) 
and the other was the extended model (adding genetic 
variants evaluated by genetic risk score). In this model, 
“genetic risk score” (GRS) means the cumulative effect of 
multiple genetic risk variants as follows:

β i
i

k *SNPi,
=∑ 1

Where k is the number of SNPs replicates in the 
study; SNPi is the number of the risk alleles (0, 1, 2); βi 
is the regression coefficient for SNPi, which was derived 
by using LASSO selection. It’s worth noting that we 
rescaled the weighted score to reflect the number of risk 

allele: each point of the genetic risk score corresponded 
to one risk allele. Step III Model evaluation. Model 
discrimination was evaluated by receiver-operator 
characteristic curves (ROC) and the C statistics. A 
nonparametric approach was used to compare the area 
under the receiver operating characteristic (ROC) 
curves (AUC) for the two models [31]. To quantify 
discriminatory improvement for models with and 
without the genetic risk score, we also set a cut-off 
value of the genetic risk score (GRS). Step IV Model 
validation. We validated the risk model in the EAGLE 
samples (1,937 cases vs 1,984 controls) with the same 
risk predictors and evaluation strategies. 

All statistical analyses were performed with PLINK 
1.07 and R software (version 3.1.1; The R Foundation for 
Statistical Computing). P < 0.05 was used as the criterion of 
statistical significance and all statistical tests were two sided.
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