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AbstrAct
Insulin-like growth factor-I (IGF-I)/IGF-I receptor (IGF-IR) system has been 

largely involved in the pathogenesis and development of various tumors. We have 
previously demonstrated that IGF-IR cooperates with the G-protein estrogen receptor 
(GPER) and the collagen receptor discoidin domain 1 (DDR1) that are implicated 
in cancer progression. Here, we provide novel evidence regarding the molecular 
mechanisms through which IGF-I/IGF-IR signaling triggers a functional cross-talk 
with GPER and DDR1 in both mesothelioma and lung cancer cells. In particular, we 
show that IGF-I activates the transduction network mediated by IGF-IR leading 
to the up-regulation of GPER and its main target genes CTGF and EGR1 as well as 
the induction of DDR1 target genes like MATN-2, FBN-1, NOTCH 1 and HES-1. Of 
note, certain DDR1-mediated effects upon IGF-I stimulation required both IGF-IR 
and GPER as determined knocking-down the expression of these receptors. The 
aforementioned findings were nicely recapitulated in important biological outcomes 
like IGF-I promoted chemotaxis and migration of both mesothelioma and lung 
cancer cells. Overall, our data suggest that IGF-I/IGF-IR system triggers stimulatory 
actions through both GPER and DDR1 in aggressive tumors as mesothelioma and lung 
tumors. Hence, this novel signaling pathway may represent a further target in setting 
innovative anticancer strategies.

INtrODUctION

Lung cancer is the most frequent cause of cancer 
incidence and mortality worldwide at least in part due 
to the increasing number of risk factors in diverse 
developing countries [1-2]. To date, smoking has been 
considered the main etiologic factor for lung cancer [3-
4], however, several environmental contaminants like 
asbestos, arsenic, cadmium, nickel and silica, play an 
important role toward the development of this neoplasia 
[5]. Among the aforementioned environmental pollutants, 
asbestos has been particularly acknowledged as prompting 

factor in malignant mesothelioma (MM), which is an 
aggressive cancer that arises from mesothelial cells lining 
lung, pleura or peritoneum [6-7]. Chronic inflammatory 
processes caused by the deposition of asbestos fibers and 
the subsequent release of cytokines and growth factors by 
macrophages and mesothelial cells have been shown to 
play an active role toward the development of both pleural 
MM and lung cancer [7-8]. 

In this vein, the IGF system, the complex system 
involving the insulin-like growth factors (IGFs) and 
related receptors as well as IGF-binding proteins, has been 
established as an important regulator of tumor initiation 
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and progression in several malignancies, including pleural 
MM and lung cancer [9-13]. In particular, the IGF-I 
receptor (IGF-IR), which is often overexpressed in diverse 
cancer cell types, affects tumor development, progression 
and resistance to therapies [11, 14-16]. Moreover, a 
dysregulated IGF system has been shown to be implicated 
in various chronic diseases, such as pulmonary fibrosis 
[17-18]. 

An increasing body of data has demonstrated that 
the biological responses mediated by IGF-I involve 
functional interactions of IGF-IR with diverse signal 
molecules belonging to other members of the receptor 
tyrosine kinase (RTK) family [19-20]. In this context, we 
recently discovered a novel functional cross-talk between 
IGF-IR and the collagen receptor discoidin domain 
receptor 1 (DDR1), a molecule also overexpressed in 
diverse malignancies, including lung carcinomas, and 
implicated in cancer progression [21]. Interestingly, this 
cross-talk occurs also independently of the collagen 
binding actions of DDR1 and, in human breast cancer 
cells, amplifies the stimulatory biological effects of IGF-I 
toward proliferation, migration and colony formation. 
Moreover, through a signaling pathway involving Akt/
miR-199a-5p, IGF-I is able to upregulate DDR1 [12, 22]. 

In addition to RTKs, IGF-IR interacts with other 
important signaling molecules like G protein-coupled 
receptors (GPCRs) [19, 23]. These functional interactions 
have also important implications in the development 
and progression of diverse types of tumors [23-24]. In 
particular, we found that IGF-IR activation engages the 
G protein estrogen receptor (GPER/GPR30)-mediated 
signaling toward the stimulation of proliferation 
and migration of different cancer cell types [25-26]. 
Interestingly, high expression levels of GPER were 
detected in lung cancer cells and involved in growth 
stimulatory effects [24, 27-28]. To date, other signaling 
molecules have been implicated in the development of 
MM including the estrogen receptor (ER)β that may act 
as a tumor suppressor [29-30]. Therefore, the multifaceted 
mechanisms and the transduction network of factors 
involved in the progression of the aforementioned 
malignancies remain to be fully understood. 

In this study, we found that mesothelioma and 
lung cancer cells show a new complex functional cross-
talk involving IGF-IR, GPER and DDR1, which affects 
gene expression and biological effects in response to 
IGF-I. Our data, therefore, further extend the molecular 
mechanisms by which IGF-I may affect tumor progression 
in mesothelioma and lung cancer, hence providing novel 
targets in the aforementioned aggressive malignancies.

rEsULts

IGF-I stimulates GPEr expression through IGF-
Ir/ErK/p-38 transduction signaling

On the basis of previous studies showing that IGF-I 
triggers stimulatory effects in malignant mesothelioma as 
well as in lung cancer cells [31-32], we began our study 
evaluating the transduction signaling activated by IGF-I 
in IST-MES1 mesothelioma and A549 lung cancer cells, 
which were used as model system. First, we determined 
that in both cell types IGF-I induces the phosphorylation 
of IGF-IR (Figure 1A) and both ERK (Figure 1B) and 
p-38 (Figure 1C). As expected, these responses were 
no longer observed after IGF-IR silencing (Figure 1 
A-1E). The activation of ERK triggered by IGF-I was 
abolished in the presence of the IGF-IR inhibitor AG 
and the MEK inhibitor PD, but it still persisted using 
the p-38 inhibitor SB (Figure 1F). The phosphorylation 
of p-38 was prevented by AG and SB, but not in the 
presence of PD (Figure 1G). In addition, we assessed 
that the phosphorylation of IGF-IR induced by IGF-I is 
inhibited exclusively by AG, but not in the presence of 
PD and SB (data not shown), then suggesting that the 
activation of both ERK and p-38 relies directly on IGF-IR 
phosphorylation upon IGF-I exposure. On the basis of our 
previous data showing that IGF-I signaling cooperates with 
several GPCR family members, including GPER, toward 
cancer progression [19, 25], we evaluated whether IGF-I 
regulates GPER expression in IST-MES1 and A549 cells. 
In this regard, time-course experiments demonstrated that 
IGF-I up-regulates GPER at both mRNA (Figure 2A) and 
protein levels (Figure 2B). Moreover, we ascertained that 
these responses to IGF-I occurred through IGF-IR, as the 
induction of GPER mRNA (data not shown) and protein 
levels (Figure 2C-2E) was abolished by knocking-down 
IGF-IR expression. Recapitulating the aforementioned 
findings, the transactivation of the GPER promoter by 
IGF-I was prevented by IGF-IR silencing (Figure 2F), 
and the IGF-I induced GPER protein up-regulation was 
abrogated in the presence of AG, PD and SB (Figure 2G). 
Taken together, these results indicate that the IGF-I/IGF-
IR transduction pathway stimulates GPER expression 
through ERK and p-38 signaling. In order to further 
investigate this functional cross-talk between IGF-IR and 
GPER, we performed co-immunoprecipitation studies 
determining that IGF-I triggers also a direct interaction 
between these receptors in both IST-MES1 and A549 cells 
upon either 1 h (data not shown) or 8 h treatment with 
IGF-I (Figure 2H-2I), thus suggesting that the interaction 
between IGF-IR and GPER may occur without a newly 
protein expression of GPER.
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Figure 1: rapid activation of transduction signaling by IGF-I in Ist-MEs 1 and A549 cells. IGF-IR A., ERK b. and p-38 c. 
phosphorylation in cells transfected for 24 h with shRNA or shIGF-IR treated with vehicle (-) or 100 ng/ml IGF-I for 15 min. D.-E. Efficacy 
of IGF-IR silencing. ERK F. and p-38 G. activation in cells treated for 15 min with vehicle (-) or 100 ng/ml IGF-I alone and in combination 
with either 1 μM IGF-IR inhibitor tyrphostin AG1024 (AG), or 1 μM MEK inhibitor PD98059 (PD) or 1 μM p38 inhibitor SB202190 (SB). 
Side panels show densitometric analysis of the blots normalized to β-actin, ERK2 and p38 that served as loading controls respectively for 
pIGF-IR, pERK and p-p38. Data shown are the mean ± SD of three independent experiments. (■) p < 0.05 for cells receiving vehicle (-) 
versus treatments.
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Figure 2: IGF-I up-regulates GPEr expression in Ist-MEs 1 and A549 cells. A. mRNA expression of GPER in cells treated 
with either vehicle (-) or 100 ng/ml IGF-I, as evaluated by real-time PCR. Results obtained from experiments performed in triplicate were 
normalized for 18S expression and shown as fold change of RNA expression compared to cells treated with vehicle. b. GPER protein levels 
were evaluated by immunoblotting in cells treated with either vehicle (-) or 100 ng/ml IGF-I, as indicated. c. GPER protein expression 
in cells transfected for 24 h with either shRNA or shIGF-IR and then treated for 8 h with vehicle (-) or 100 ng/ml IGF-I. D.-E. Efficacy 
of IGF-IR silencing. F. Cells were transfected for 24 h with shRNA or shIGF-IR together with the GPER promoter construct. Then, cells 
were treated for 18 h with vehicle (-) or 100 ng/ml IGF-I. The luciferase activities were normalized to the internal transfection control, and 
values of cells receiving vehicle (-) were set as one fold induction upon which the activity induced by treatments was calculated. G. GPER 
protein levels in cells treated for 8 h with vehicle (-) or 100 ng/ml IGF-I alone or in combination with 1 μM IGF-IR inhibitor tyrphostin 
AG1024 (AG), 1 μM MEK inhibitor PD98059 (PD) and 1 μM p38 inhibitor SB202190 (SB). Side panels show densitometric analysis of 
the blots normalized to β-actin. H.-I. Co-immunoprecipitation studies performed in cells treated for 8 h with vehicle (-) or 100 ng/ml IGF-I, 
as indicated. In control samples, non-specific IgG was used instead of the primary antibody. H. Side panel show densitometric analysis of 
the blot normalized to IGF-IR. I. Side panel show densitometric analysis of the blot normalized to GPER. Data shown are the mean ± SD 
of three independent experiments. (■) p < 0.05 for cells receiving vehicle (-) versus treatments.



Oncotarget52714www.impactjournals.com/oncotarget

IGF-I triggers the expression of GPEr target 
genes

In our previous study [33] we established that GPER 
mediates a specific gene signature, therefore, we evaluated 

whether, in IST-MES1 and A549 cells, IGF-I is able to 
affect the expression of certain GPER target genes like 
CTGF and EGR1, which have been involved in fibrotic 
responses in mesothelioma and lung cancer cells [34-
36]. Indeed, in time-course experiments we found that 

Figure 3: IGF-I up-regulates ctGF and EGr1 expression in Ist-MEs 1 and A549 cells. (A-B) mRNA expression of CTGF 
and EGR1 in cells treated with either vehicle (-) or 100 ng/ml IGF-I, as evaluated by real-time PCR. Results obtained from experiments 
performed in triplicate were normalized for 18S expression and shown as fold change of RNA expression compared to cells treated with 
vehicle. CTGF c. and EGR1 D. protein levels were evaluated by immunoblotting in cells treated with vehicle (-) or 100 ng/ml IGF-I, as 
indicated. Side panels show densitometric analysis of the blots normalized to β-actin and each data point represents the mean ± SD of three 
independent experiments. (■) p < 0.05 for cells receiving vehicle (-) versus treatments.
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IGF-I increases the mRNA (Figure 3A-3B) and protein 
levels (Figure 3C-3D) of both CTGF and EGR1. Next, 
we determined that this action of IGF-I involves not 
only the IGF-IR but also GPER, as the silencing of each 
of these receptors prevented gene changes (Figure 4A-
4H). In accordance with these observations, the IGF-I 
transactivation of CTGF (Figure 4I) and EGR1 (Figure 
4J) promoters required both IGF-IR and GPER, as 
demonstrated by knocking down the expression of these 
receptors. As c-fos plays a main role in the up-regulation 
of GPER target genes [33, 37], we next determined that 
the promoter transactivation of both CTGF and EGR1 
is abrogated by co-transfecting a dominant-negative 
form of c-fos (DN/c-fos) in IST-MES1 and A549 cells 
(Figure 4K). Collectively, these findings provide novel 
mechanisms through which IGF-I/IGF-IR transduction 
signaling regulates GPER target genes like CTGF and 
EGR1 in mesothelioma and lung cancer cells. 

IGF-Ir and GPEr are both involved in IGF-I 
regulation of DDr1 target genes

Considering that in diverse model systems IGF-I 
stimulates the synthesis of collagen [38-40], we next 
established that IGF-I regulates in both IST-MES1 and 
A549 cells the mRNA expression of COL1A1 (Figure 5A) 
that encodes the major component of type I collagen [41]. 
We previously reported that IGF-IR functionally interacts 
with DDR1, which is activated by various collagen types 
including type I collagen. Therefore, we first ascertained 
that, in both IST-MES1 and A549 cells, several DDR1 
target genes such as matrilin-2 (MATN-2), fibrillin-1 
(FBN-1), NOTCH 1 and HES-1, are induced by the DDR1 
agonist COL1 (Figure 5B-5C) and abrogated by the DDR1 
inhibitor (DDR1 IN) (Figure 5D-5E). Then, we assessed 
that these DDR1 target genes are also stimulated by IGF-I 
(Figure 6A-6B) and that this response was inhibited by 
DDR1 IN (Figure 6C-6D) as well as by silencing IGF-IR 
(Figure 6E-6F) or GPER (Figure 6G-6H). In accordance 
with these findings, we determined that the NOTCH 1 
protein induction by COL1 and IGF-I is prevented in the 
presence of the DDR1 IN in IST-MES1 and A549 cells 
(Figure 7). Accordingly, IGF-I was not able to trigger 
NOTCH 1 protein expression when IGF-IR (Figure 8A-
8C) or GPER (Figure 8D-8F) were silenced. Altogether, 
these results indicate that, in both mesothelioma and lung 
cancer cells, IGF-I may up-regulate DDR1 target genes, 
and this action involves not only IGF-IR but also a cross-
talk with GPER.

DDr1, IGF-Ir and GPEr contribute to the 
chemotaxis and migration of mesothelioma and 
lung cancer cells

Previous studies have reported that IGF-I stimulates 
chemotactic and chemokinetic motility in mesothelioma 
cells [32]. Moreover, DDR1 also plays an important role 
in promoting cell-cell interactions and cell migration in 
various cell contexts [42-45]. Further extending these 
data, in IST-MES1 cells, we found that both IGF-I and 
COL1 induce chemotactic motility, which requires 
DDR1, as these responses were abolished by DDR1 
IN (Videos 1-6). Moreover, we ascertained that the 
chemotactic motility induced by IGF-I requires also IGF-
IR and GPER as the aforementioned effect was prevented 
silencing the expression of these receptors (Videos 7-12). 
Similar findings occurred in A549 cells (data not shown). 
Likewise, we determined that IST-MES1 and A549 cell 
migration induced by both IGF-I and COL1 is abolished 
using DDR1 IN (Figure 9A), whereas the silencing of 
IGF-IR or GPER abolished cell migration triggered by 
IGF-I, as determined by Boyden chamber assay (Figure 
9B). Collectively, our data indicate novel cross-talk and 
biological functions exerted by IGF-I toward tumor 
progression.

DIscUssION

In the present study we provide novel evidence 
regarding the molecular mechanisms by which IGF-I 
triggers biological responses in mesothelioma and lung 
cancer cells. In particular, we show a complex functional 
cooperation involving IGF-IR, GPER and DDR1 through 
which IGF-I up-regulates first the expression of COL1A1 
and certain DDR1 target genes, thereafter stimulating 
cancer cell motility and chemotactic response (Figure 10). 

Lung cancer is a highly heterogeneous tumor that 
can arise in different sites of the bronchial tree [1-2]. 
The incidence of lung cancer depends on toxic effects 
of inhaled substances such as tobacco, asbestos, arsenic, 
cadmium, nickel and silica [46]. The environmental 
pollutant asbestos is also considered the main cause of the 
insurgence of malignant mesothelioma (MM), which is a 
rare and aggressive tumor that springs from mesothelial 
cells lining lung, pleura or peritoneum [5-7, 47-48]. The 
deposition of asbestos fibers has been also related to 
chronic inflammatory processes as well as to pulmonary 
fibrosis, which in turn may create a favorable environment 
for the development of lung and pleura malignancies [6, 
49]. As it concerns the multifaceted mechanisms and 
factors involved in pulmonary fibrosis and neoplasia, an 
increased expression and activation of DDR1 have been 
reported [50-53]. To date, DDR1 has been shown to play 
an important role in cancer progression by regulating 
the interactions of tumor cells with the surrounding 
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Figure 4: IGF-Ir and GPEr mediate ctGF and EGr1 stimulation by IGF-I in Ist-MEs 1 and A549 cells. A.-F. CTGF 
and EGR1 protein levels in cells transfected for 24 h with shRNA, shIGF-IR or shGPER and then treated for 8 h with either vehicle (-) or 
100 ng/ml IGF-I. Efficacy of IGF-IR c.-D. and GPER G.-H. silencing. Side panels show densitometric analysis of the blots normalized 
to β-actin. I.-J. Cells were transfected for 24 h with shRNA, shIGF-IR or shGPER together with the CTGF or EGR1 promoter construct. 
Then, cells were treated for 18 h with vehicle (-) or 100 ng/ml IGF-I. K. Cells were transfected for 24 h with a dominant negative form of 
c-fos (DN/c-fos) together with the CTGF or EGR1 promoter construct. Then, cells were treated for 18 h with vehicle (-) or 100 ng/ml IGF-I. 
The luciferase activities were normalized to the internal transfection control, and values of cells receiving vehicle (-) were set as one fold 
induction upon which the activity induced by treatments was calculated. Data shown are the mean ± SD of three independent experiments. 
(■) p < 0.05 for cells receiving vehicle (-) versus treatments. 
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Figure 5: A. mRNA expression of COL1A1 in IST-MES 1 and A549 cells treated with vehicle (-) or 100 ng/ml IGF-I, as evaluated 
by real-time PCR. mRNA expression of MATN-2, FBN-1, NOTCH 1 and HES-1 in IST-MES 1 b., D. and A549 c., E. cells treated 
with vehicle (-) or 10 μg/ml COL1 alone or in combination with 1 μM DDR1 inhibitor (DDR1 IN), as indicated. Results obtained from 
experiments performed in triplicate were normalized for 18S expression and shown as fold change of RNA expression compared to cells 
treated with vehicle. (■) p < 0.05 for cells receiving vehicle (-) versus treatments.
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Figure 6: IGF-Ir and GPEr mediate the IGF-I induced up-regulation of cOL1A1/DDr1 target genes in Ist-MEs 1 
and A549 cells. A.-D. mRNA expression of MATN-2, FBN-1, NOTCH 1 and HES-1 in cells treated with vehicle (-) or 100 ng/ml IGF-I 
alone or in combination with 1 μM DDR1 inhibitor (DDR1 IN), as indicated. E.-H. mRNA expression of MATN-2, FBN-1, NOTCH 1 and 
HES-1 in cells transfected for 24 h with shRNA, shIGF-IR or shGPER and then treated for 8 h with vehicle (-) or 100 ng/ml IGF-I. Results 
obtained from experiments performed in triplicate were normalized for 18S expression and shown as fold change of RNA expression 
compared to cells treated with vehicle. (■) p < 0.05 for cells receiving vehicle (-) versus treatments.
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collagen matrix, therefore leading to pro-migratory and 
pro-invasive responses [21]. Furthermore, collagen 
activated DDR1 triggers diverse pro-survival pathways 
toward anti-apoptotic, proliferative and aggressive 
features in cancer cells [21]. In this regard, it should be 
noted that several types of collagen are able to bind to 
and activate DDR1, which then regulates cell and tissue 
homeostasis acting as a collagen sensor [21, 54]. Of note, 
an abnormal expression and deposition of collagen has 
been associated with cancer development [55-56]. As it 
concerns the synthesis and extracellular accumulation of 
diverse types of collagen, cytokines and growth factors 
like IGF-I, the epidermal growth factor (EGF) and the 
transforming growth factor-βl have been reported to 
promote these effects [38-40, 57]. Notably, we previously 
showed that, in breast cancer cells, IGF-I may upregulate 
DDR1 expression through a signaling pathway involving 
the DDR1 regulatory miR-199a-5p [12]. Moreover, the 
activation of one of the main IGF-I transduction signaling, 
the IGF-IR/PI3K/Akt cascade, inhibits miR-199a-5p 
expression, thus relieving its inhibition upon DDR1 
gene and allowing DDR1 upregulation. In turn, DDR1 
increases IGF-IR expression through post-transcriptional 
mechanisms and amplifies IGF-I downstream signaling 
and biological effects, such as proliferation, migration 
and colony formation [12]. Indeed, we previously showed 
that DDR1 directly interacts with IGF-IR, and that this 
interaction is enhanced by IGF-I stimulation, which 
promotes rapid DDR1 tyrosine-phosphorylation and co-
internalization of the DDR1 - IGF-IR complex [22]. This 
interaction was shown to occur in a panel of human breast 
cancer cells as well as in mouse fibroblasts (R- cells) co-
transfected with the human IGF-IR and DDR1, indicating 
that it is not cell-specific. Notably, the formation of this 
DDR1 - IGF-IR complex did not require the presence 
of collagen, the canonical DDR1 ligand. In addition, the 
critical role of IGF-IR in DDR1 activation and biological 
actions is supported by the finding that collagen-dependent 
DDR1 phosphorylation was impaired in the absence of 
IGF-IR [22].

Extending these previous studies, we now show 
that IGF-I through the cognate receptor IGF-IR is able 
to induce COL1A1 expression [54]. Moreover, a panel 
of DDR1 target genes could be also induced by IGF-I 
through the previously described functional cross-
talk involving IGF-IR and DDR1. Taken together, 
these findings show that DDR1, besides enhancing the 
activation of typical IGF-IR downstream cascades, the 
PI3K/Akt and the ERK1/2 cascades, following cell 
exposure to IGF-I, modifies significantly these IGF-I 
effects by allowing the induction of typical DDR1 target 
genes. These effects confirm the relevance of DDR1 in 
the amplification and diversification of IGF-I signaling 
pathways in cancer. We have previously demonstrated 
that IGF-IR may also functionally interact with the non-
canonical estrogen receptor GPER. Indeed, through the 

IGF-IR/PKCδ/ERK/c-fos/AP1 transduction pathway, 
IGF-I up-regulates GPER, which plays an important role 
in sustaining proliferation and migration in response to 
IGF-I in breast and endometrial human cancer cells [25]. 
In close accordance with these findings, we now show that 
the functional cooperation between IGF-IR and DDR1 
also requires GPER, and that both DDR1 and GPER are 
critical to the chemotactic motility stimulated by IGF-I 
in mesothelioma and lung cancer cells. Notably, we now 
show that GPER and IGF-IR co-immunoprecipitate in 
lung and mesothelioma cells (Figure 2), indicating that 
GPER and IGF-IR also interact. Taken together all these 
data strongly suggest the possible formation of a ternary 
functional complex involving IGF-IR - DDR1 - GPER. 
However, further studies are needed to fully elucidate 
this aspect. These data may be of a particular interest 
as GPER expression has been associated with negative 
clinical features and poor survival rates in diverse types of 
malignancies [58-61]. In the last years, extensive studies 
were therefore performed in order to better characterize 
the role of GPER in cancer development, including the 
mechanisms and factors involved in its expression. For 
instance, we determined that EGF and IGF-I, insulin and 
further tumorigenic factors like hypoxia and endothelin-1 
up-regulate GPER expression in diverse cancer cell 
contexts [25, 62-68]. 

Our present findings provide significant new insights 
on the well-established role played by the IGF axis in 
cancer [9-11, 14-16, 20, 23, 69-71] that involves also the 
interaction of IGF-IR with other RTKs and GPCRs in 
diverse tumor histotypes [19, 23, 72-73]. In particular, our 
findings might be relevant in devising new therapeutical 
strategies in cancers with a dysregulated IGF system. In 
the last decade, much effort has been made in targeting 
the IGF-IR in these malignancies [74]. In particular, both 
small-molecule IGF-IR tyrosine kinase inhibitors, and 
humanized monoclonal antibodies with blocking activity 
to the IGF-IR, have been investigated in Phase III trials of 
advanced non-small cell lung cancers [13]. Unfortunately, 
in spite of very promising preclinical studies, clinical 
trials have clearly indicated that only a small minority of 
malignancies do respond to target therapies when IGF-IR 
is the sole target [75], because the frequent occurrence of 
resistance mechanisms arising by the complex signaling 
network involving the IGF-IR [76]. 

Overall, on the basis of our data the multifaceted 
signaling network between IGF-IR, GPER and DDR1 
could be taken into account in setting innovative combined 
strategies targeting these pathways in mesothelioma and 
lung cancers.
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Figure 7: cOL1 and IGF-I stimulate NOtcH 1 expression through DDr1 in Ist-MEs 1 and A549 cells. A. NOTCH 1 
protein levels in cells treated with vehicle (-) or 10 μg/ml COL1, as indicated. b. NOTCH 1 protein levels in cells treated for 8 h with vehicle 
(-) or 10 μg/ml COL1 alone and in combination with 1 μM DDR1 inhibitor (DDR1 IN). c. NOTCH 1 protein levels in cells treated with 
vehicle (-) or 100 ng/ml IGF-I, as indicated. D. NOTCH 1 protein levels in cells treated for 8 h with vehicle (-) or 100 ng/ml IGF-I alone 
and in combination with 1 μM DDR1 inhibitor (DDR1 IN). Side panels show densitometric analysis of the blots normalized to β-actin and 
each data point represents the mean ± SD of three independent experiments. (■) p < 0.05 for cells receiving vehicle (-) versus treatments.
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Figure 8: IGF-Ir and GPEr mediate the IGF-I induced up-regulation of NOtcH 1 in Ist-MEs 1 and A549 cells. 
NOTCH 1 protein levels in cells transfected for 24 h with shIGF-IR A. or shGPER D. and then treated for 8 h with vehicle (-) or 100 ng/
ml IGF-I. Efficacy of IGF-IR b.-c. and GPER E.-F. silencing. Side panels show densitometric analysis of the blots normalized to β-actin. 
(■) p < 0.05 for cells receiving vehicle (-) versus treatments.
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Figure 9: cOL1 and IGF-I stimulate Ist-MEs 1 and A549 cell migration through DDr1, IGF-Ir and GPEr. A. The 
migration of IST-MES 1 and A549 cells upon 8 h treatment with vehicle (-), 10 μg/ml COL1 or 100 ng/ml IGF-I alone and in combination 
with 1 μM DDR1 inhibitor (DDR1 IN), as evaluated by Boyden Chamber assay. b. The migration of IST-MES 1 and A549 cells induced by 
8 h treatment with 100 ng/ml IGF-I was prevented knocking down IGF-IR and GPER expression, as evaluated by Boyden Chamber assay. 
Efficacy of IGF-IR c.-D. and GPER E.-F. silencing. Values represent the mean ± SD of three independent experiments. (●) indicates p < 
0.05 for cells treated with vehicle (-) versus treatments.

Figure 10: schematic representation of the signaling network between IGF-Ir, GPEr and DDr1 activated by IGF-I. 
IGF-I stimulates the expression of GPER and its target genes, then IGF-IR and GPER trigger the IGF-I regulation of DDR1 target genes. 
The functional cross-talk of IGF-IR, GPER and DDR1 contributes to the chemotaxis and migration observed in cancer cells.
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MAtErIALs AND MEtHODs

reagents

IGF-I, SB202190 (SB) and collagen I from rat 
tail were obtained from Sigma-Aldrich Inc. (Milan, 
Italy). PD98059 (PD) and 3-bromo-5-t-butyl-4-
hydroxybenzylidenemalonitrile (AG1024) were purchased 
from Calbiochem (DBA, Milan, Italy). All compounds 
were solubilized in dimethylsulfoxide, except PD and 
IGF-I, which were dissolved in ethanol and in water, 
respectively. DDR1 IN 1 dihydrochloride (DDR-1 in) was 
purchased from Tocris Bioscience (Space, Milan, Italy).

cell cultures

IST-MES1 malignant mesothelioma cells were 
kindly provided by Dr. Orengo (Istituto Nazionale per la 
Ricerca sul Cancro, Genova, Italy). Cells were previously 
characterized [77] and were grown in Nutrient Mixture 
F-10 Ham (Ham’s F-10) medium supplemented with 
10% fetal bovine serum (FBS) and 100 μg/ml penicillin/
streptomycin. A549 lung cancer cells were obtained by 
ATCC, used < 6 months after resuscitation and maintained 
in DMEM/F12 (Dulbecco’s modified Eagle’s medium) 
supplemented with phenol red 10% FBS and 100 μg/ml 
penicillin/streptomycin. All cell lines were cultured at 
37°C in 5% CO2 and switched to medium without serum 
the day before immunoblots and reverse transcription-
PCR experiments.

Plasmids and luciferase assays

The GPER luciferase expression vector 
(promGPER) was previously described [65]. The CTGF 
luciferase reporter plasmid (promCTGF) (-1999/+ 36)-
luc was a gift from Dr. Chaqour. EGR1-luc plasmid, 
containing the -600 to +12 5’-flanking sequence from 
the human EGR1 gene, was kindly provided by Dr. Safe 
(Texas A&M University). The plasmid DN/cfos, which 
encodes a c-fos mutant that heterodimerizes with c-fos 
dimerization partners but does not allow DNA biding 
[78], was a kind gift from Dr C Vinson (NIH, Bethesda, 
MD, USA). The Renilla luciferase expression vector 
pRL-TK (Promega, Milan, Italy) was used as internal 
transfection control. Cells (1x105) were plated into 24-
well dishes with 500 μl/well culture medium containing 
10% FBS. Transfection were performed using X-treme 
GENE 9 DNA transfection reagent as recommended by 
the manufacturer (Roche Diagnostics, Milan, Italy), with a 
mixture containing 0.5 μg of reporter plasmid and 10 ng of 
pRL-TK. After 24 h, treatments were added and cells were 
incubated for 18 h. Luciferase activity was measured using 

the Dual Luciferase Kit (Promega, Milan, Italy) according 
to the manufacturer’s recommendations. Firefly luciferase 
activity was normalized to the internal transfection control 
provided by the Renilla luciferase activity. Normalized 
relative light unit values obtained from cells treated 
with vehicle were set as 1-fold induction upon which the 
activity induced by treatments was calculated. 

Gene silencing experiments

Cells were plated onto 10-cm dishes and transfected 
by X-treme GENE 9 DNA Transfection Reagent for 
24 h before treatments with a control vector, a specific 
shRNA sequence for each target gene. The shIGF-IR and 
the respective control plasmids (shRNA) were purchased 
from SA Bioscience Corp. (Frederick, MD, USA) and 
used according to the manufacturer’s recommendations. 
The short hairpin (sh)RNA constructs to knock down the 
expression of GPER and the unrelated shRNA control 
construct have been described previously [64]. 

Gene expression studies

Total RNA was extracted and cDNA was synthesized 
by reverse transcription as previously described [79-80]. 
The expression of selected genes was quantified by real-
time PCR using Step One sequence detection system 
(Applied Biosystems, Milan, Italy). Gene-specific primers 
were designed using Primer Express version 2.0 software 
(Applied Biosystems Inc. Milan, Italy) and are as follows: 
GPER Fwd 5′- ACACACCTGGGTGGACACAA-3′ 
and Rev 5′-GGAGCCAGAAGCCACATCTG-3’; HES-
1 Fwd 5′-TCAACACGACACCGGATAAA-3′ and 
Rev 5′-CCGCGAGCTATCTTTCTTCA-3′; NOTCH 
1 Fwd 5′-AATGGCGGGAAGTGTGAAGC-3′ and 
Rev 5′-GCATAGTCTGCCACGCCTCT-3′; MTN-
2 Fwd 5′-CTCCGAGTGGGCCAGTAAAG-3′ and 
Rev 5′- CTGGCTCAGATTCTGTTGGCT-3′; FBN-
1 Fwd 5′-GCCGCATATCTCCTGACCTC-3′ and 
Rev 5′-GTCGATACACGCGGAGATGT-3′; 18S 
Fwd 5′- GGCGTCCCCCAACTTCTTA-3′ and Rev 
5′-GGGCATCACAGACCTGTTATT-3′. Assays were 
performed in triplicate and the results were normalized 
for 18S expression and then calculated as fold induction 
of RNA expression. 

Western blot analysis

Cells were processed according to a previously 
described protocol [81] to obtain protein lysate that was 
electrophoresed through a reducing SDS/10% (w/v) 
polyacrylamide gel, electroblotted onto a nitrocellulose 
membrane and probed with primary antibodies against 
antiphosphotyrosine antibody (4G10) (Merck Millipore, 
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Milan, Italy), IGF-IR (7G11), GPER (N-15), CTGF 
(L-20), phosphorylated ERK1/2 (E-4), ERK2 (C-14), 
NOTCH 1 (C-20), EGR1 (588), phosphorylated p-38 (D-
8), p-38 (A-12), β-actin (C2), (Santa Cruz Biotechnology, 
DBA, Milan, Italy). Proteins were detected by horseradish 
peroxidase-linked secondary antibodies (DBA, Milan, 
Italy) and revealed using the ECL System (GE Healthcare).

co-immunoprecipitation

Cells were lysed using 200 µl RIPA buffer 
with a mixture of protease inhibitors containing 
1.7mg/ml aprotinin, 1mg/ml leupeptin, 200mmol/L 
phenylmethylsulfonyl fluoride, 200mmol/L sodium 
orthovanadate, and 100mmol/L sodium fluoride. A total 
of 100 μg proteins were incubated for 2 h with 2 μg of 
the appropriate antibody (GPER, N-15; IGF-1R, 7G11) 
and 20 μl of protein A/G agarose immunopreciptation 
reagent (Santa Cruz Biotechnology, DBA, Milan, Italy). 
Samples were centrifuged at 13,000 rpm for 5 min at 4°C 
to pellet beads. After four washes in PBS, samples were 
resuspended in RIPA buffer with protease inhibitors and 
SDS sample buffer. Western Blot analysis was performed 
as described above.

Migration assay

Migration assays were performed using Boyden 
chambers (Costar Transwell, 8 mm polycarbonate 
membrane, Sigma Aldrich, Milan, Italy). Cells were 
transfected in regular growth medium. After 8 h, cells were 
trypsinized and seeded in the upper chambers. Treatments 
were added to the medium without serum in the bottom 
wells where applicable, cells on the bottom side of the 
membrane were fixed and counted 8 hours after seeding.

time-lapse microscopy

Cells (1 × 105) were seeded in 6-well plates and 
maintained in regular growth medium for 24 h. For 
knockdown experiments, cells were transfected for 
24 h with shRNA constructs directed against IGF-
IR or GPER and with an unrelated shRNA construct. 
Thereafter, cells were treated and transferred into a time-
lapse microscopy platform, equipped with a heated stage 
chamber (Cytation™3 Cell Imaging Multi-Mode Reader, 
Biotek, Winooski, VT). Cells were maintained at routine 
incubation settings (37 °C, 5% CO2) using temperature 
and gas controllers. To evaluate chemotaxis the images 
were recorded using Cytation 3 Cell Imaging Multimode 
Reader and the software Gen5 (BioTek, Winooski, VT) 
in 10 min intervals for 8 hours. Then, the images were 
processed as a movie using the software Adobe Creative 
Cloud Premier Pro CC. Frames collected every 10 minutes 

are displayed at a rate of 10 frames s-1.

statistical analysis

Statistical analysis was performed using ANOVA 
followed by Newman-Keuls’ testing to determine 
differences in means. P < 0.05 was considered as 
statistically significant.
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