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INTRODUCTION

In Head and Neck Squamous Cell Carcinoma 
(HNSCC), about two-thirds of patients present an advanced 
stage disease at diagnosis, either due to a regional lymph 
node involvement, and/or a large tumor size [1]. Aggressive 
treatment protocols, such as surgery, followed by radiation 
therapy (RT) with or without concomitant chemotherapy 
(CT) [2] are used in this curative situation. Cisplatin based 
chemoradiotherapy remains one of the great standard of 

care in this situation, as the same matter as carboplatin  
+ 5-Fluorouracil or cetuximab in combination.  However 
cisplatin scheme is related to long-term severe side effects 
or premature CT disruption. Suboptimal CT dosing may 
impact negatively on disease-free survival [3]. In parallel, 
targeted therapies now take a major place in anti-cancer 
treatment, particularly in HNSCC where Epidermal 
Growth Factor Receptor (EGFR)’s overexpression, is 
associated with a poor prognosis [4]. Cetuximab, a mouse-
human chimeric monoclonal antibody directed against 
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ABSTRACT
Cancer Stem Cells (CSCs) in Head and Neck Squamous Cell Carcinoma (HNSCC) 

have extremely aggressive profile (high migratory and invasive potential). These 
characteristics can explain their resistance to conventional treatment. Efficacy of 
photon and carbon ion irradiation with addition of cetuximab (5 nM) is studied on 
clonogenic death, migration and invasion of two HNSCC populations: SQ20B and 
SQ20B/CSCs. SQ20B express E-cadherin and overexpress EGFR while SQ20B/CSCs 
express N-cadherin and low EGFR. Cetuximab strongly inhibits SQ20B proliferation 
but has no effect on SQ20B/CSCs. 2 Gy photon irradiation enhances migration and 
invasiveness in both populations (p < 0.05), while cetuximab only stops SQ20B 
migration (p < 0.005). Carbon irradiation significantly inhibits invasion in both 
populations (p < 0.05), and the association with cetuximab significantly inhibits 
invasion in both populations (p < 0.005). These results highlight CSCs characteristics: 
EGFRLow, cetuximab-resistant, and highly migratory. Carbon ion irradiation appears to 
be a very promising therapeutic modality counteracting migration/invasion process 
in both parental cells and CSCs in contrast to photon irradiation.

               Research Paper



Oncotarget47739www.impactjournals.com/oncotarget

EGFR, significantly improves locoregional control, 
progression-free survival, and overall survival when 
used concomitantly with RT [5]. If targeted therapies are 
increasingly used, cetuximab is the only drug that have 
proved efficacy in association with radiation therapy. But 
whatever the therapeutic management, HNSCC is still 
associated with a high rate of recurrences [6]. The relative 
failure of conventional therapies led to the emergence of 
hadrontherapy in head and neck cancer management. Since 
two decades, clinical trials with carbon ion hadrontherapy 
assessed the benefit to treat photon resistant cancers, with 
an acceptable toxicity [7]. Carbon ion radiation is efficient 
in some types of head and neck cancer such as reported in 
the phase II trial published by Mizoe et al. [8]. Ongoing 
clinical trials are combining photon and carbon radiations 
with cetuximab in oro-pharynx or larynx carcinomas [9].

However, metastatic disease remains the leading 
cause of death in cancer [10]. If carbon ion irradiation 
proved benefit in local control, metastasis recurrences were 
not decreased. Cell migration and invasion is a substantial 
step of the metastatic phenomenon, several in vitro studies 
demonstrated that cells’ invasion/migration could be 
increased by photon radiation [11–13]. A subpopulation 
of cancer cells, the cancer stem cells (CSCs), has shown 
a high migratory potential [14]. These cells are present in 
HNSCC [15], and overexpress CD44 and ALDH proteins, 

which are now considered as a HNSCC CSCs’ marker 
[16]. Up to now, data on HNSCC CSCs’ invasiveness are 
scarce. Data on migration are of particular interest on cells 
exposed to cetuximab and photon or carbon ion radiation.

Thus, the aim of the present work is to investigate, 
in vitro, the impact of a combined treatment associating 
photon or carbon radiation plus cetuximab, on proliferation 
and invasiveness, for both, parental and stem cells 
subpopulations. 

RESULTS

Cell proliferation and survival after treatment 
by photon radiation 

In basal conditions, the SQ20B parental cell lines 
have proliferated about 25% faster than the SQ20B/CSCs 
subpopulation (Figure 1A). The 2 Gy photon irradiation 
did not inhibit cell proliferation whether parental SQ20B 
or SQ20B/CSCs (Figure 1B). Both mono-treatment 
with cetuximab or combined treatment reduced SQ20B 
proliferation but not SQ20B/CSCs proliferation. The 
calculated SF2 of SQ20B was significantly decreased 
with cetuximab (0.81 vs 0.62 without and with cetuximab, 
respectively, p = 0.007) in contrast to SQ20B/CSCs (0.77 
vs 0.73, with and without cetuximab respectively p = 0.62).

Figure 1: (A) Doubling time of parental SQ20B cells and its subpopulation SQ20B/CSCs in basal conditions.  Effect of 5 nM cetuximab 
and 2 Gy photon radiation (IR) on proliferation of (B) SQ20B cells and its subpopulation (C) SQ20B/CSCs. Proliferation was measured 
with absorbance during 7 days. *p < 0.05, **p < 0.01.
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Expression of EGFR and downstream signaling

EGFR in SQ20B/CSCs subpopulation was under-
expressed compared with SQ20B cells. This result was 
confirmed with conventional western blotting experiments 
(data not shown). This receptor was phosphorylated on 
Tyrosine 1068 in basal condition in both, SQ20B cells and 
SQ20B/CSCs subpopulation (Figure 2A, 2B). In parallel, 
SQ20B cells express phospho-AKT while SQ20B/CSCs 
express phospho-MEK1/2 (Figure 2C).

Cell invasion/migration abilities and Epithelio-
Mesenchymal Transition (EMT) markers

SQ20B/CSCs migration and invasion capacities 
were higher to SQ20B parental cells in basal conditions 
(p < 0.005) (Figure 3A, 3B). This is related to their 
mesenchymal phenotype, SQ20B/CSCs exhibiting a high 
N-cadherin expression and a low E-cadherin expression. 
At the contrary, SQ20B parental cells show an epithelial 
phenotype with many cell-cell junctions and a high 
E-cadherin expression (Figure 3C, 3D). 

Effect of photon irradiation and/or cetuximab on 
cell migration/invasion

Migration and invasion were significantly enhanced 
by a 2 Gy irradiation in SQ20B cells (p < 0.01 and 

p < 0.05). Cetuximab reduced both migration and invasion 
(p < 0.01 and p < 0.005), even more when it is associated 
with photon radiation (p < 0.005 and p < 0.01) (Figure 
4A, 4B). The SQ20B/CSCs subpopulation, migrated and 
invaded in Matrigel ten times more than SQ20B cells 
(Figure 4C, 4D). Radiation enhanced slightly more SQ20B/
CSCs migration (p < 0.05) but had no effect on invasion. 
Cetuximab weakly reduced their invasion (p < 0.05) whereas 
its association with photon radiation did not provide benefit.

Effect of Carbon ion irradiation and/or 
cetuximab on cell migration/invasion

Carbon ion radiation reduced survival fraction 
of SQ20B and SQ20B/CSCs, with a relative biologic 
effectiveness (RBE) at 10% survival of 1.6 and 1.8 
respectively. Interestingly, the association of cetuximab with 
carbon ion radiation was highly cytotoxic for SQ20B cells, 
seeing as no colony of more than 64 cells appeared at 2 Gy 
(Figure 5A) whereas it had no effect on the survival fraction 
of SQ20B/CSCs (Figure 5B).

Increased migration and invasion of SQ20B and 
SQ20B/CSCs was not observed after carbon ion exposure 
(Figure 6A, 6B). The association of carbon ion radiation 
with cetuximab fully inhibited migration and invasion in 
SQ20B cells (p < 0.01 and p < 0,005). Migration of SQ20B/
CSCs was significantly decreased by carbon ion radiation 
(p < 0.05) (Figure 6C). A decrease of the invasion in SQ20B/

Figure 2: (A) EGFR basal expression in SQ20B cells and its subpopulation SQ20B/CSCs. Protein expression analysis was done with 
WES™*. (B) Phospho-EGFR of Tyr1068 in basal condition in SQ20B cells and its subpopulation SQ20B/CSCs. Tubulin was used as a 
reference protein. (C) Phospho-AKT (Ser 473) and Phospho-MEK1/2 (Ser217/221) in basal condition in SQ20B cells and its subpopulation 
SQ20B/CSCs. GAPDH was used as a reference protein. *WES is a simple western technique using an automated capillary-based size 
sorting system.
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CSCs subpopulation was observed after the combined 
treatments (p < 0.005) (Figure 6D).

DISCUSSION

This study identifies a subpopulation of HNSCC 
cancer stem cells with a high invasive potential and resistant 
to conventional treatment. The SQ20B/CSCs population 
has extremely high aggressive characteristics such as 
high migratory and invasive potential, associated with a 
mesenchymal phenotype. This study provides the first data 
on radiation efficacy (photon or carbon ions) on HNSCC 
CSCs migration and invasion process.

EGFR expression and downstream signaling

In HNSCC, EGFR is overexpressed in 80–100% 
of the cases [17], and is a central hub of many signaling 
pathways such as Ras-MAPK and AKT-mTOR. EGFR is 
known to play a central role in stemness, particularly in 
colon [18, 19] and lung cancer stem cells [20, 21]. EGFR 
expression, either by binding [22] or immunohistochemistry 

(IHC) [23], appeared as an independent strong prognostic 
factor of locoregional failure in several clinical studies 
[24, 25]. Mutations in the EGFR tyrosine kinase domain 
appear to be rare in HNSCC [26, 27]. EGFRvIII [28] 
truncated mutants have been described in 42% of HNSCC 
patients [29] in one study and were associated with poorer 
prognosis and response to treatment compared to EGFR wild 
type. Yet, the absence of a reliable specific commercialized 
anti-EGFRvIII antibody makes generalization impossible. 
Moreover, the development of skin rash has been correlated 
with a clinical benefit in some tumors [30, 31] but this only 
indicates a potential benefit of continuing cetuximab or 
may suggest increasing the cetuximab dosage. However, 
it does not tell which patients should receive cetuximab at 
initiation of treatment. This aspect is of particular interest 
in our study, where cetuximab strongly inhibits SQ20B 
proliferation where EGFR is overexpressed in contrast 
to SQ20B/CSCs where no drug effect and a low EGFR 
expression are observed (Figure 1B, 1C–2A). If basal 
expression of EGFR is low in SQ20B/CSCs, its activation 
through the phosphorylation of 1068 Tyrosine is observed 
in both cell lines (Figure 2B). This activation leads to the 

Figure 3: (A) Migration and (B) invasion abilities of SQ20B cells and their SQ20B/CSCs subpopulation. 30000 cells were put in each 
transwell, Cells that were below the membrane were counted. ***p < 0.005. EMT phenotype was characterized with E-cadherin and 
N-cadherin expression (C) with WES™* and cellular morphology in optical microscopy (x20) (D). *WES is a simple western technique 
using an automated capillary-based size sorting system.
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PI3K-AKT-mTOR cascade and proliferation, but also to 
the MAPK cascade, through Grb2 protein which is the 
most important pathway activated by 1068 Tyrosine [32]. 
Interestingly, SQ20B parental cells express phospho-AKT 
protein, in contrast to SQ20B/CSCs cells which express 
phospho-MEK1/2. Activation of the MAPK cascade in 
SQ20B/CSCs can explain their motility capacities through 
EMT [33]. Constitutive activation of signaling pathways 
down-stream of EGFR by mutation or upregulation can 
promote survival [34]. For example, high level of activated 
Akt can occur downstream of EGFR inhibition through 
upstream-activated Src, Ras or mutated PTEN [35], 
amplification of the catalytic subunit of PI3K [36], or loss 
of the phosphatase and tensin homolog tumor suppressor 
protein [37]. By these results, we may explain the low 
sensitivity of SQ20B/CSCs to cetuximab, compared with 
the parental cells. These results fit with a recent publication 
on EGFRLow head and neck cells [38]. In SQ20B/CSCs, 
receptor phosphorylation through homo or hetero-
dimerization blocks cetuximab binding, and its therapeutic 
effect. Though, SQ20B/CSCs/EGFRLow population appears 
resistant to cetuximab, and can explain the recurrence rates 
[6], and Bonner’s hypothesis of a resistant subpopulation in 
HNSCC [5, 31]. 

EMT, invasion/migration and radiation 
enhancement

Activation of migration by photon radiation has been 
previously reported in the literature, a result explained by 
EGFR activation [13, 33, 39]. In most of cases, the receptor 
is activated with a ligand, wherein EGF is the major one. 
After photon radiation, EGFR is activated without natural 
ligand but by cellular stress induced by radiation [40]. In 
our study, if migration is low in SQ20B parental cell line, 
it is significantly enhanced by photon radiation (Figure 4). 
In parallel, photon radiation enhances invasion in both 
populations. This radiation enhancement could be 
linked with intracellular signaling pathways activation, 
causing the secretion of matrix metalloproteases (MMP), 
particularly MMP-9 [41]. Moreover, cetuximab effectively 
inhibits migration and invasion in SQ20B cells, which is 
consistent with literature [42]. Migratory capacities are 
linked with the EMT phenotype where parental SQ20B 
cell line presents an epithelial phenotype, and the SQ20B/
CSCs behaves mesenchymal. If SQ20B population strongly 
expresses E-cadherin, an epithelial marker [43], the 
subpopulation of CSCs loses the expression of E-cadherin 
in favor of N-cadherin, the mesenchymal marker (Figure 3). 

Figure 4: Influence of photon radiation and/or cetuximab on migration and invasion abilities of SQ20B parental cells 
and their SQ20B/CSCs subpopulation. (A) SQ20B Migration; (B) SQ20B Invasion; (C) SQ20B/CSCs Migration; (D) SQ20B/CSCs 
Invasion. 30000 cells were put in each transwell, Cetuximab concentration was 5 nM. *p < 0.05, **p < 0.01, ***p < 0.005.
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It is therefore possible to isolate here a subpopulation of 
cells from the same line, having all the characteristics of 
cells with high migratory and invasive potential, to explain 
the metastatic risk. Such phenotypic characteristics are 
close to literature, where CSCs present a mesenchymal 
phenotype [44].

Radiobiological efficacy of carbon-therapy

High linear energy transfer (LET) radiation has 
a two times higher RBE than photons [45]. In our study, 
Carbon ion irradiation increases both SQ20B and SQ20B/
CSCs clonogenic cell death (Figure 5), and decreased CSCs 
proliferation, as reported in the literature in other locations 
[46]. Carbon beam induce DNA damages in hypoxic 
area, and thus inhibits CSCs proliferation and survival, in 
hypoxic niches [47]. In a recent study, carbon-ions appear to 
induce CSCs apoptosis in a glioblastoma cell line, through 
prolonged upregulation of phosphorylated p53 [48]. In 

parallel, carbon-ion irradiation induces apoptosis-related 
Cytochrome C of triple negative breast CSCs [49]. In a 
pancreas cell line, heavy-ion irradiation induces irreparable 
clustered double strand breaks [50]. Data from clonogenic 
assays performed in our study showed a linear response 
with increasing doses with a unique alpha component. It 
is thus a potential weapon against HNSCC CSCs [51]. 
These results reflect the clinical efficacy of carbon ion 
in HNSCC patients, reported in several studies [7, 8]. 
Cetuximab strongly inhibits SQ20B clonogenicity to such 
an extent that no clones could be isolated and counted to 
establish the curve with this combination therapy. Caution 
might be given with this possible therapeutic association 
knowing the toxicities of cetuximab in combination with 
photon radiation [31]. However, no supplementary effect of 
cetuximab associated with the irradiation was observed in 
SQ20B/CSCs, still linked with the low EGFR expression. In 
parallel, no data is found on proton therapy and cetuximab 
efficacy.

Figure 5: Survival curves of (A) SQ20B and (B) SQ20B/CSCs after cetuximab and/or carbon ion radiation exposition (full line: without 
cetuximab/dotted line: with 5 nM cetuximab). No cell colony was obtained when with treated SQ20B cells with cetuximab plus carbon ion 
radiation. 
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In our study, irradiation with high LET reduces 
migration and invasion in both populations SQ20B and 
SQ20B/CSCs (Figure 6) in contrast to that obtained after 
photon irradiation. Hadrontherapy was found to decrease 
migration and invasion in several studies [13, 52], but no 
data exists in HNSCC location. Ogata T et al. were the first to 
introduce heavy ion species in reduction of cell motility [53]. 
Carbon ion irradiation would block cell motility pathways, 
decreasing integrins’ secretion [54], particularly MMP-2 
secretion [52], or Akt phosphorylation [55] in contrast to 
photon irradiation. In a medulloblastoma cell line, Rieken 
S el al. have recently demonstrated that heavy-ions could 
inhibit cell migration through downregulation of MMP-9 
and upregulation of proadhesive cell surface integrin alpha-5 
leading to increased cell adherence to extracellular matrix 
proteins [56]. Carbon ion is also known to reduce levels of 
GTP-bound Rac1 and RhoA, two important regulators of 
cell motility [57]. EGFR downstream signaling seems to be 
targeted by Carbon Ion in Lung Cancer [58], as in our study. 
Cetuximab also inhibits migration and invasion in SQ20B 
population and with a synergistic activity in combination 
with carbon ions. This synergistic effect is curiously found 

significant only on the invasion phenomenon in CSCs 
population. Accessory pathways such as HER2 and HER3 
may play a role in this situation, as it has been hypothesized 
in some studies [59]. 

Emerging new therapeutic modality for HNSCC

To conclude, we isolated here a subpopulation of head 
and neck cancer stem cells characterized by high migratory 
and invasive capacities and an insensibility to cetuximab, 
which could explain local and distant recurrences in 
HNSCC after treatment. This current therapeutic modality 
(concomitant cetuximab with photon radiation) effectively 
targets most of the cells (SQ20B), without impacting the 
1% of SQ20B/CSCs intrinsic population. The low EGFR 
expression in CSCs population explains the inefficiency of 
cetuximab on these clones, which probably remain after a 
radiotherapy treatment and cannot be detected with current 
diagnosis techniques. In this context, hadrontherapy appears 
to be a very promising therapeutic modality in HNSCC, 
counteracting migration/invasion process in both parental 
cells and CSCs in contrast to photon irradiation. 

Figure 6: Influence of 2 Gy carbon ion radiation and/or 5 nM cetuximab on migration and invasion abilities of SQ20B 
parental cells and their SQ20B/CSCs subpopulation. (A) SQ20B Migration; (B) SQ20B Invasion; (C) SQ20B/CSCs Migration; 
(D) SQ20B/CSCs Invasion.  30000 cells were put in each transwell, Cetuximab concentration was 5 nM. *p < 0.05, **p < 0.01, ***p < 0.005.
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MATERIALS AND METHODS

Cell culture

HNSCC SQ20B cell line was derived from a 
recurrent laryngeal cancer (Gift of John B. Little, Boston, 
Massachusetts, USA). This cell line is p53 mutated 
and HPV-negative. CSCs (SQ20B/CSCs), have been 
generated as previously described [51]. Successive cell 
sorting have been done to select SQ20B/CSCs from 
SQ20B parental population using Side Population (SP) 
through Hoechst exclusion, CD44High and ALDHHigh. 
These SQ20B parental cells and the associated SQ20B/
CSCs were maintained in the same conditions than 
previously described [51, 60], less than twenty passages 
for the parental line, and four passages for the SQ20B/
CSCs.

Irradiation 

Photon irradiation has been performed with an 
X-RAD320 irradiator (PrecisionX-ray Inc., NorthBranford, 
USA), at the Lyon-Sud University (UMS2444/US8 
platform, France). The irradiation dose was 2 Gy for 
migration and invasion assays, as it’s usually the case in 
the clinical practice. Cells have been irradiated at 1, 2, 3, 
4 and 5 Gy for the clonogenic cell survival assay at a dose 
rate of 2 Gy/min. 

Carbon ion irradiation (75MeV/n) was performed 
at the Grand Accélérateur National d’Ions Lourds 
(GANIL, Caen, France) (Linear Energy Transfer  
LET = 33.6 keV/µm), as previously described [45, 60]. 
In previous study, the relative biologic effectiveness 
(RBE) was about 2 for SQ20B cells [45]. As Mizoe 
used a fractionation of 4 GyE in his phase II trial [8], we 
irradiated the cells at 2 Gy physical dose so as to mimic 
the clinical condition.  

Cetuximab

Cetuximab (C-225, Merck Serono, Darmstadt, 
Germany) was gently provided by the Pharmaceutical 
Department of the Institut de Cancérologie Lucien Neuwirth 
(St Etienne, France), and Centre Hospitalier Universitaire 
Lyon-Sud (Pierre Bénite, France).

Cell proliferation was checked using the crystal 
violet method, which allowed determining the half maximal 
inhibitory concentration (IC50) of the association cetuximab. 
Cells have been maintained for 72 h in 96-wells plates at a 
density of 10000 cells and then treated with a concentration 
range of cetuximab from 0.5 nM to 0.5 µM. Cells have been 
fixed with 1.1% glutaraldehyde and stained with a “crystal 
violet-in HEPES 20 mM” solution. Cells were lysed with 
10% acid acetic and the absorbance has been measured at 
550 nm. The assay was conducted in triplicate. Cetuximab 
(C-225) 5 nM was added to the culture medium 1 h before 
the irradiation.

Clonogenic survival assay

Following irradiation, cell survival was carried out 
using a colony-forming assay as previously described 
[45, 60]. Briefly, cells were seeded in 25 cm² flasks at 
different densities 16 h before irradiation, depending on the 
radiation dose. Then cells were irradiated, and after six cell 
divisions, colonies were fixed with ethanol 96% and stained 
with Giemsa 1/20. The number of colonies containing at 
least more than 64 cells was counted using a Coltcount 
(Optronix, United Kingdom). The surviving fraction after 
each treatment was normalized to the surviving fraction 
for the corresponding control (plating efficiency) and 
survival curves were fitted using the linear quadratic model 
following photon radiation or a linear model after carbon 
ion radiation [61]. The survival fraction at 2 Gy, named SF2, 
was measured without and with cetuximab for SQ20B and 
SQ20B/CSCs cells. All experiments have been done at least 
in triplicate.

Cell viability and proliferation

Method 1: Cell viability was assessed by Cell 
Counting Kit-8 (CCK-8 – Sigma-Aldrich, St Louis, 
USA). Cells were seeded at 10000 cells per well, 3 wells 
per condition, in 96- well plates and further incubated for 
8 h. Then, media were washed and replaced with medium 
containing or not, cetuximab 5 nM. One hour later, plates 
were irradiated at 2 Gy. CCK8 reagent was added to 
each well at 1h before the endpoint of incubation and 
optical densities (OD) measured at 450 nm and 650 nm. 
Experiments have been repeated two times, in triplicate. 

Method 2: The xCELLigence RTCA DP system 
(Ozyme, St Quentin-en-Yvelines, France) was used to 
monitor cell index. Cells were seeded in 25 cm2 flasks for 
about 16 h. Media was removed and medium containing 
cetuximab 5 nM was added 1 h before radiation at 2 Gy. 
Then, cells were harvested and transferred to E-plates at a 
density of 5000 cells per well, in medium with or without 
cetuximab 5 nM. The cell index was recorded during 4 days 
in order to measure doubling time. 

Migration and invasion assays

Migration was performed with a 24-well Transwell 
chamber with a pore size of 8 µm (Becton Dickinson®, 
Becton Dickinson and Company (BD) New Jersey, 
USA). Corning® BioCoat™ Growth Factor Reduced 
BD Matrigel was used according to the manufacturer’s 
instructions to analyze cell invasion. Cells were cultured 
in 25 cm2 flasks for 24 h at a density of 6 × 105 cells 
per flask. Cells were starved for 24 h with a medium 
containing 0,1 % Bovine Serum Albumine (BSA) 
instead of FBS, with or without cetuximab 5 nM. After 
the 2 Gy irradiation, cells were immediately trypsinized 
and transferred to the upper chamber at a density of  
3 × 104 cells. The lower chamber was filled with medium 
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containing 10% FBS as chemoattractant with or without 
cetuximab 5 nM. After a 24 h incubation (37°C), inserts 
were fixed and stained with the RAL 555 kit (VWR, 
Fontenay-sous-Bois, France) and the number of migrating 
cells was counted. Each assay was performed in triplicate 
and repeated two times. 

Protein analysis

Cell pellets were lysed in 50 mM Tris buffer 
(pH 8.0), 150 mM NaCl, 1% Triton X-100, protease 
inhibitors (Complete Mini, Roche) and anti-phosphatases 
(PhosSTOP, Roche), for 1 h at 4°C. Lysates were 
centrifuged for 20 min at 15000 g at 4°C. Protein 
expression studies were performed by WES, an automated 
capillary-based size sorting system (ProteinSimple, San 
Jose CA, USA) [62]. Diluted protein lysate was inserted in 
plate at a concentration of 0.2 mg/mL. Data was analyzed 
using Compass software (ProteinSimple, San Jose CA, 
USA). Primary antibodies used were EGFR (Dilution 1/50) 
(sc-03; Santa Cruz Biotechnology, Santa Cruz, CA, USA), 
Phospho-EGFR (Dilution 1/50) (Tyr1068 ; Cell Signaling 
Technology, Danvers, MA, USA) E Cadherin (Dilution 
1/200) (Becton Dickinson Company BD Biosciences, 
Franklin Lakes, NJ, USA), N Cadherin (Dilution 1/50) (BD 
Biosciences), Phospho-AKT (Dilution 1/50) (Ser473, Cell 
Signaling Technology), Phospho-MEK1/2 (Dilution 1/50)  
(Ser217/221, Cell Signaling Technology)  and secondary 
antibodies were Alpha-Tubulin (Dilution 1/200) 
and GAPDH (Dilution 1/1000) (Both Santa Cruz 
Biotechnology). Every protein analysis was performed in 
triplicate.

Statistical analysis

Results are expressed as the mean ± Standard 
Deviation (SD). The differences in means of groups were 
determined by the Wilcoxon’s test, while differences in 
survival fraction of irradiated cells were analyzed by the 
Fisher’s exact test. The minimum level of significance set 
at p < 0.05. 
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