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AbstrAct
Although much progress has been made in understanding cancer cellular 

metabolism adaptation, the co-regulations between genes of metabolism and cancer 
pathways and their interactions remain poorly characterized. Here, we applied gene 
co-expression network analysis to 1509 metabolic gene expression data generated 
from 120 HCC and 180 non-tumor human liver tissues by microarray. Our analyses 
reveal that metabolism genes can be classified into different co-expression modules 
based on their associations with HCC related traits. The co-regulation mechanism 
of the carbon metabolism genes in normal liver tissues was interrupted during the 
processes of carcinogenesis. In parallel, we performed RNAseq analysis of HCC and 
non-tumor human liver tissues, and identified a unique 22-carbon-metabolism-gene-
signature of increased expression. This gene signature was further verified in multiple 
microarray data sets, and its prognostic value was also proven by HCC patients’ 
survival data from TCGA. Additionally, the tumorigenic function of two representative 
genes, CS and ACSS1, were validated experimentally by cell growth and spheroid 
formation assays. The current study provides evidence for the reprogramming of the 
co-regulation network between carbon metabolism and cancer pathway genes in HCC. 
In addition, this study also reveals a unique 22-carbon-metabolism-gene-expression-
signature in HCC. Strategies targeting these genes may represent new therapeutic 
approaches for HCC treatment.

IntroductIon

An unique characteristic of cancer is altered 
energy metabolism, a result of cancer cell genetic 
instability and/or effects of the tumor microenvironment 
[1]. Studies of past decades have revealed complicated 
and fine-tuned metabolic switch in cancer cells. Thus, 
metabolic reprogramming is considered as an emerging 
hallmark of cancer [2]. Aerobic glycolysis, also known 
as Warburg effect, is one of the predominant phenomena 
observed in malignant, rapidly growing tumor cells, 
which is characterized by a much higher glycolytic 
rate compared to their normal tissues of origin even if 
oxygen is abundant [3]. Like glycolysis, mitochondrial 

respiration is also required for tumor progression [4]. 
These carbon metabolic alterations can provide cancer 
cells not only energy but also substances used for 
synthesis of macromolecules, which are essential for cell 
proliferation and replication. Furthermore, the metabolic 
switch may confer a selective growth advantage that 
drives tumorigenesis. All of these aspects underscore 
the importance of metabolic reprogramming, a common 
phenomenon observed across multiple types of cancers 
including hepatocellular carcinoma (HCC) [2, 5]. 

In addition to metabolic switch in liver cancer, the 
liver itself is a hub of metabolism of human. Recently, 
considerable research efforts have been made to identify 
metabolic markers for the diagnosis and prognosis of 

               Research Paper



Oncotarget49233www.impactjournals.com/oncotarget

HCC by using the strategy of high-throughput methods 
such as microarray, transcriptomics, and metabolomics 
[5]. Studies have been carried out to compare certain 
metabolites or gene expression levels between tissues 
or biofluids from patients with HCC or nonmalignant 
controls [5, 6]. Whereas high-throughput analyses have 
contributed to a better understanding of global regulatory 
sceneries in cancer cells, these methods also incurred 
additional complexity to results interpretation. Thus, it was 
not uncommon to see indecipherable, controversial and 
even conflicting results across these studies [6]. To better 
understand the regulatory network of metabolism in HCC, 
more systematic methods beyond simply comparing the 
levels of genes or the concentrations of molecules between 
malignant and non-malignant biomaterials are required.

Gene correlation network analysis, also known as 
gene coexpression network analysis, is a group of methods 
to systematically analyze large, high-dimensional gene 
expression data sets. Correlation networks are constructed 
on the basis of correlations between quantitative 
measurements of certain characteristics of elements 
included in a specific state [7]. Gene correlation network 
analysis is being increasingly utilized in bioinformatics 
applications, and several elegant studies have demonstrated 
its power in analyzing networks based on gene expression 
profiles in diverse areas including macrophage activation 
[8], key regulator identification in glioblastoma [9], and 
genetic programming of embryos [10].

In the current study, we constructed correlation 
networks of basic metabolism related genes using gene 
expression data from publicly accessible resources and 
defined gene clusters that have a close association with 
HCC. In parallel, we performed RNAseq analysis in 
human HCC and non-tumor liver tissues which revealed 
the spectrum of carbon metabolism pathway genes that are 
differently expressed between HCC and non-tumor liver 
tissues. The transcriptomics analysis enabled us to identify 
a unique 22-gene signature of carbon metabolism, whose 
expression levels are elevated in HCC tissues. Increased 
expression of these 22 genes in HCC was further verified 
in multiple microarray data sets. Analysis of The Cancer 
Genome Atlas (TCGA) database showed that the expression 
status of these 22 carbon metabolism genes is closely 
associated with the overall survival of HCC patients. 

results

network analysis indicates basic metabolic 
alteration in Hcc tissues.

To investigate metabolic gene sets that are 
associated with the HCC status and their clinical traits, we 
applied WGCNA, which defines transcriptional modules 
based on Pearson correlation and determines relationship 
between these modules and different clinical traits [7]. The 
microarray data Set-1 was used for this analysis. First, 

expression information of 1509 genes (represented by 
2804 probes in Affymetrix U133Plus2.0 array, as shown 
in Supplementary Table S1) involved in primary and 
secondary metabolic process (Supplementary Table S2) 
were selected and used as the input data for WGCNA. We 
identified 8 distinct coexpression modules containing 87 to 
495 genes per module (Figure 1A and Supplementary 
Table S3). The expression data from different genes 
within each calculated module were used to determine the 
module eigengenes (i.e. the first principle component of 
the respective module), and the expression of eigengenes 
of each module was visualized, as shown in Figure 1B and 
Supplementary Figure S1A. 

In order to identify modules that are significantly 
associated with the clinical traits, we correlated eigengenes 
with external traits and searched for the most significant 
associations. The resulting module-trait correlation was 
then visualized as a heatmap (Figure 1C). We observed 
that the disease state (HCC versus non-tumor) showed 
the most significant correlation with several modules. 
Based on the correlation coefficients, genes clustered in 
brown, blue, green, black and red modules are highly 
expressed in HCC tissues, while genes in yellow and grey 
modules are decreased in HCC tissues. Genes clustered 
in brown modules have the strongest positive correlation 
with patients’ disease state, while genes in yellow module 
have negative correlation with the disease status. The 
gene significance vs. module membership plot of genes in 
brown module are shown in Supplementary Figure S1B; 
the data indicate that the genes highly significantly 
associated with the patients’ disease state (HCC) are also 
the most important (central) elements of this module. 

Next, we used the eigengenes as representative 
profiles to quantify module similarity and to determine 
their correlation with the disease status (HCC or non-
tumor) by way of eigengene correlation. The dendrogram 
(Figure 1D) indicates that brown, blue, green and black 
modules are highly related with each other and also have 
strong correlations with disease state. Detailed eigengene 
adjacency of all modules and disease state are shown as 
a heatmap in Figure 1E. Taken together, this network 
analysis indicates that the expression levels and regulation 
of metabolism-related genes are altered in HCC compared 
to the non-tumor liver tissues. 

rnAseq based pathway mapping reveals a  
22 carbon metabolism gene pattern in Hcc

To identify altered metabolic pathways in HCC, we 
performed next generation sequencing analysis by Illumina 
HiSeq2000 using human hepatocellular carcinoma and 
matched non-tumor liver tissues. This approach allowed 
us to obtain transcriptome data from three paired HCC 
and non-tumor liver tissues. The transcriptome data were 
assembled by Cufflinks and then analyzed by additional 
programs. Specifically, the output from cufflinks were 
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Figure 1: Weighted Correlation Network Analysis of metabolism related gene expression profiles of HCC and non-
tumor tissues. A total of 1509 genes (represented by 2804 probes in Affymetrix U133Plus2.0 array) were analysed by WGCNA. 
(A) Hierarchical clustering of metabolism related genes based on gene co-expression pattern across all samples in microarray data Set-1. 
Identified co-expression modules were represented by color classifiers (grey color is assigned to genes that are not part of any module). 
The y-axis height reflects the closeness of individual genes, which were represented by colored bars along x-axis. (b) Module eigengene 
patterns of genes grouped in brown and yellow cluster. The brown module has a strong positive correlation with HCC since its eigengene 
levels are consistently high across all HCC samples; while the eigengene levels of yellow module are low in majority of HCC samples, it 
has a moderate negative correlation with HCC. See also Figures S1A. (c) Module-trait associations. Each row corresponds to a module 
eigengene (ME), and each column to a trait. Each cell contains the corresponding correlation and p-value. The table is color-coded by 
correlation according to the color legend. The Alpha-fetoprotein (AFP) data shown here were the logarithmic transformations of the original 
values. (d, e) Visualization of the eigengene network representing the relationships among the modules and the clinical trait Disease State 
(HCC or non-tumor). Panel D shows a hierarchical clustering dendrogram of the eigengenes in which the dissimilarity of eigengenes EI, EJ  
is given by 1 – cor(EI, EJ). Panel E shows the heatmap of the eigengene adjacency AIJ, which defined AIJ = [1 + cor(EI, EJ)]/2 (7). The color 
bars on left and below indicate the module of each row or column.
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used as input files for GSEA analysis. The GSEA results 
show that many normal functional genes set in the liver 
(including liver specific genes, cytochrome-P450 related 
genes, and fatty acid metabolism genes) are down-
regulated in HCC tissues, whereas genes associated with 
malignancy potential of hepatocellular cancers are up-
regulated (Figure 2A and Supplementary Figure S2A); 
these data reflect the adequacy of the sequencing data and 
analysis. We separated genes belong to specific KEGG 
metabolism pathways, including carbohydrate, lipid and 

amino acid metabolism; the expression levels of genes 
in different pathways were analyzed and visualized as a 
heat map generated using the R cummeRbund package. 
We observed that the carbon metabolism (KEGG map 
number hsa01200) genes exhibit opposite expression 
patterns in HCC and non-tumor liver tissues. As shown 
in Figure 2B, the carbon metabolism genes can be 
roughly classed into two groups: Group 1 - lower level 
of expression in HCC (compared to non-tumor liver 
tissue); and Group 2 - higher level of expression in HCC 

Figure 2: transcriptome analysis shows carbon metabolism genes spectrum in Hcc. After mapping genes in different 
metabolism pathways to RNA sequencing data, carbon metabolism genes were found to have distinct expression pattern in HCC compared 
to non-tumor tissues. (A) GSEA results show that the levels of liver specific genes are decreased, while liver cancer related genes are 
increased in HCC tissues. (b) Heatmap shows the expression of carbon metabolism genes in 3 pairs of HCC and adjacent liver tissues. 
Tumor-3 pair has the most distinctive expression pattern of carbon metabolism genes. (c) Pathway map (adapted from KEGG) shows that 
most of the 22 up-regulated carbon metabolism genes catalyze reactions in glycolysis, with a small numbers of genes implicated in TCA 
cycle, acetyl-CoA synthesis and other reactions. 
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(compared to non-tumor liver tissues). This phenomenon 
is more clearly depicted in Tumor-3 and non-Tumor-3 
paired samples. It’s worth mentioning that the Tumor-3 
and non-Tumor 3 paired samples have the most dissimilar 
expression pattern of cancer related, key cellular signaling 
pathway genes (indicated as Pathways in Cancer by 
KEGG map hsa05200) among all the three sample pairs 
(Supplementary Figure S2B). 

The carbon metabolism pathway includes 106 genes 
as per KEGG pathway hsa01200. Our results show that 
22 out of the 106 genes were overexpressed (belonging to 
group2) in HCC compared to the non-tumor liver tissues 
(Supplementary Table S4) (the expression levels of these 
genes were also verified in the microarray datasets, as 
will be described in the following section). Furthermore, 
we found that 71% (27/38) of probes representing the 
22 up-regulated genes were grouped in clusters with 
positive correlation with HCC (brown, blue, black and 
green modules in Figure 1C), while only 37% (60/162) of 
probes representing down-regulated or unchanged genes 
were grouped in the clusters with positive correlation 
with HCC. When mapping these 22 genes in carbon 
metabolism pathway, most of the genes are involved 
in glycolysis regulation, while others are related to 
tricarboxylic acid (TCA) cycle and acetyl-CoA production 
(Figure 2C).

In addition to the carbon metabolism pathway, 
expression of fatty acid degradation pathway (KEGG 
map hsa00071) genes were found to be down regulated 
unanimously in HCC; however, this pattern was not 

observed for genes of the fatty acid biosynthesis 
and elongation pathway (KEGG map hsa00061 and 
hsa00062, as shown in Supplementary Figure S2C and 
Supplementary S2D). These findings are consistent with 
the effect of hepatitis C virus on fatty acid metabolism 
in the liver, given that all of the three paired samples 
utilized for the RNAseq analysis were from patients with 
Hepatitis C virus (HCV) infection and that HCV is known 
to induce hepatic steatosis through inhibition of fatty acid 
degradation rather than fatty acid biosynthesis [11].

Verification of the identified 22 carbon 
metabolism gene signature in microarray data

We further analyzed the expression levels of 
the above-identified 22 carbon metabolism genes in 
microarray Set-1 and -2 (detected by 52 probes in 
Affymetrix U133Plus2.0 array). In Set-1, 37% (19/52) of 
probes were found to have a more than 1.2 fold increase 
in signal densities in HCC (compared to non-tumor liver 
tissues); 52% (27/52) of probes were found to have almost 
the same level as in non-tumor liver tissues (HCC:non-
tumor ratio 0.83~1.2); only 11% (6/52) of probes have 
a decreased level (HCC:non-tumor ratio < 0.83). In 
Set-2, the percentages of probes with signal densities 
increased, no change, or decreased are 56% (29/52), 38% 
(20/52), and 6% (3/52), respectively. Ten consistently up-
regulated genes across different data sets were shown as 
representatives in Figure 3 (Set-1 data) and Supplementary 
Figure S3 (Set-2 Data). 

Figure 3: Up-regulated carbon metabolism genes verified in microarray data. The expression levels of ten consistently  
up-regulated carbon metabolism genes in microarray data Set-1. The inserted numbers are the P values of student’s t-test of expression 
levels for indicated genes.



Oncotarget49237www.impactjournals.com/oncotarget

network analysis to determine gene associations 
by biolayout express3d

As described above, our RNA sequencing analysis 
revealed a distinctive gene expression pattern of both the 
Carbon Metabolism Pathway (Figure 2B) and the Pathway 
in Cancer (Supplementary Figure S2B) (especially in 
Tumor-3 and non-tumor 3 pair). These observations 
suggest the possible existence of a co-regulation network 
between these two pathway genes. This possibility was 
further evaluated by using BioLayout Express3D with 
microarray Set-1 as input data. Results of the BioLayout 
Express3D analysis show that, in non-tumor liver tissues, 
the majority of genes in these two pathways are well co-
regulated and there exists an intertwined edges network 
(Figure 4A), suggesting a complex association among 
genes of these two pathways. However, in HCC tissues, 
the gene association networks among genes of these 
two pathways were reprogrammed (Figure 4B). These 
observations suggest that the co-regulation mechanism 
in normal liver tissues may be interrupted during the 
processes of carcinogenesis (via deregulation of whole 
genome expression or genome instability). In general, the 
associations between Carbon Metabolism and Pathway 
in Cancer genes become weaken in HCC, whereas the 
associations between a number of genes are enhanced, 
especially those in the 22 up-regulated carbon metabolism 
genes group (such as HK1, PGK1, ENO1, PGLS, RPE) 
(Figure 4C). Notably, RPE (ribulose-5-phosphate-3-
epimerase) is one of the Carbon Metabolism genes that 
show enhanced association with the Pathway in Cancer 
genes. RPE catalyzes the interconversion between 
D-xylulose 5-phosphate and D-ribulose 5-phosphate; the 
later can be further converted to ribose 5-phosphate, a 
substrate and important determinant of the rate of de novo 
purine synthesis [12, 13]. Our data showed that RPE’s co-
regulation relationships with cancer pathway genes were 
shifted from moderate in non-tumor tissue (Figure 4D) to 
an enhanced situation in HCC (Figure 4E); it is conceivable 
that such an alteration may lead to more production of 
ribose 5-phosphate substrate for cancer cell proliferation.

CS and/or ACSS1 genes knocked-down decrease 
Hcc cells malignancy

To verify the results of the above-described in silico 
analyses, we selected representative genes from the 22-
gene panel to determine their functional impact in HCC 
cells. Citrate synthase (CS) and Acetyl-CoA synthetases 
short-chain family member 1 (ACSS1) were selected, 
as these two enzymes have fundamental functions in 
alternative acetyl-CoA conversion and/or TCA cycles 
[14–17]. Importantly, the enzyme activity of both CS and 
ACSS1 have been reported to be increased in HCC and 
these two enzymes catalyze the reactions that provide 
alternative sources of energy and substrates for multiple 
rapid proliferating cancer cells including HCC cells  

[18–20]. We utilized siRNA to knock down CS and 
ACSS1 in HCC cell lines including Hep3B, PLC/PRF/5, 
and Huh7. As shown in Figure 5A and 5B, the mRNA 
and protein levels of CS and ACSS1 were significantly 
decreased in cells transfected with the specific siRNAs. 
The cells with CS or ACSS1 depletion were then analyzed 
for their proliferation and spheroid formation capacity. We 
observed that knockdown of CS or ACSS1 significantly 
decreased the proliferation and hepatospheroid formation 
efficiency of all three HCC cell lines when compared to 
their respective controls (Figure 5C and 5D). These data 
indicate that inhibitions of CS or ACSS1 gene expression 
are able to partially reduce the malignant characteristics 
of HCC cells.

carbon metabolism gene expression pattern 
influences HCC patient survival

We next used publicly available data and tools from 
TCGA database to analyze whether the expression levels 
of the twenty-two carbon metabolism genes may influence 
HCC patients survival [21, 22]. Specifically, the 22 genes 
were used to query against the Liver Hepatocellular 
Carcinoma (TCGA, Provisional) data set, which includes 
both mRNA expression and survival information of 
373 HCC patients as of the Eighteenth day of February 
2016. Results of the analysis show that 47.2% (176/373) 
of HCC patients have gene expression altered in at least 
one of those 22 genes compared to the non-tumor liver 
tissues; 97.7% (375/384) of those alterations are up-
regulated expression (Supplementary Figure S4). Of all 
the 176 patients in the TCGA provisional data set with 
altered expression of signature genes, the percentages of 
patients that have more than 2, 4, or 6 signature genes 
level increased are 47%, 20%, and 7.3% respectively. As 
combinations of increased genes vary among different 
patients, it is worth mentioning that the above-indicated 
systematic analysis between tumor and non-tumor tissues 
confers advantage over the traditional comparison of 
specific gene(s). Our analyses show that patients with one 
or more alterations of the 22 genes in their tumor tissues 
show shorter overall survival periods compared to patients 
without up-regulation of these genes (Figure 6A and 
Supplementary Table S5; median survival months: 30.58 
vs. 80.68; Log-Rank Test P = 2.71 × 10−4). This trend is 
also observed in patients’ disease free survival prognosis 
(Figure 6B and Supplementary Table S6; median disease 
free months: 14.22 vs. 29.96; Log-Rank Test P = 0.00375). 

dIscussIon

Cells have a highly integrated network of 
mechanisms to coordinate metabolism with cellular 
functions; therefore, the metabolic state is constantly 
adjusted in response to extracellular signals or nutrient 
availability to meet the cellular activities [23]. In 
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malignant cells, the co-regulation balance between 
metabolism and cell signaling is disturbed and rebalanced 
in the neoplastic environment. The regulation of the new 
equilibrium is complex in cancer cells, as many cancer-
causing genetic alterations also regulate metabolism 
related genes [24]. In this study, we identified a group 
of 22 genes in the carbon metabolism pathway that are 
up regulated in HCC compared to the non-tumor liver 
tissues. Notably, 16 of 22 genes belong to key enzymes in 
the glycolytic pathway. Our findings are in support of the 

documented robust increase of glycolysis in hepatocellular 
carcinomas [25, 26]. Such a metabolic shift to glycolysis 
provides a selective growth advantage and also allows 
cancer cells to maintain mitochondrial bioenergetics and 
integrity during cell growth and proliferation [27]. Since 
mitochondrial is an essential source for both energy and 
biosynthetic substances [38], studies have documented the 
involvement of mitochondrial respiration-related genes 
in hepatocarcinogenesis [6, 29]. Here, we observed that 
HCC show increased expression of several genes who’s 

Figure 4: biolayout express3d analysis of genes involved in carbon metabolism and cancer cellular pathways. Gene 
co-regulation analyses demonstrate that the co-regulation networks between the Carbon Metabolism and the Cancer Cellular Pathway 
genes are greatly altered in HCC. (A, b) whole co-regulation views of network show the interaction of genes of the carbon metabolism 
(green nodes) and the cancer cellular pathway (red nodes) in non-tumor (A) and HCC tissues (B). (c) detailed mapping shows the carbon 
metabolism genes with enhanced co-regulation of the cancer cellular pathway genes. (d, e) indicate gene RPE (green node) co-regulation 
network with cancer cellular pathway genes (red nodes) in non-tumor tissue (D) and HCC (E). 
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Figure 5: Knock-down of CS or ACSS1 is able to decrease the malignant characteristics of HCC cells. HCC cell lines 
Hep3B, PLC/PRF/5, and Huh7 were transfected with CS- or ACSS1-specific siRNA; 24 hours after transfection, the cells were assessed for 
knockdown efficacies. (A, b) knockdown efficacies as determined by quantitative RT-PCR (A) and Western blot (B). (c) Cell proliferation 
was measured at 24, 48, and 72 hours in indicated cells after plating 5 × 104 cells per well in 6-well plates. Knockdown of CS or ACSS1 
significantly decreased cell proliferation. (d) cell spheroid formation assays were performed in CS or ACSS1 knockdown and control HCC 
cells. Single-cell suspensions were plated at a density of 5 × 103 cells per well in 24-well Ultra-Low Attachment Plates. The cells with CS or 
ACSS1 knockdown showed more than 50% reduction in the number of hepatospheroid compared with individual control cells after 7 day-
culture in serum-free medium. The data are expressed as means ± SD. *P < 0.05, **P < 0.01 vs. corresponding control cells.
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products catalyze linkage reactions between glycolysis 
and tricarboxylic acid cycle, such as NADP+-dependent 
malic enzyme (ME), ACSS1, and CS.

Although originated from organ with sophisticated 
blood vascular network, studies have demonstrated that the 
arterial blood supply in HCC significantly decreases as the 
stage and histologic grade progress [30]. Thus, HCC cells 

might undergo metabolic stress in hypoxia and nutrient-
poor conditions. Therefore, alterative carbon and energy 
resources are vital for cancer cells to survive and grow. 
Acetate, a 2-carbon fatty acid, is an alternative metabolic 
substrate and is readily converted to acetyl-CoA in multiple 
types of cancers including HCC [17, 18]. This conversion 
is catalyzed by acetyl-CoA synthetases short-chain  

Figure 6: Carbon metabolism genes expression pattern influences HCC patient survival and prognosis. The 22 up-
regulated carbon metabolism genes were used as query genes for the online cBioPortal for Cancer Genomics tool of TCGA (http://www.
cbioportal.org). There are totally 373 patients’ clinical data as of 1st December 2015. Panel (A) shows the Kaplan-Meier overall survival 
curve of HCC patients with or without alterations (up-regulated expression) in query genes. Panel (b) shows the Kaplan-Meier disease free 
survival curve of HCC patients with or without alterations (up-regulated expression) in query genes. P values on plots were derived from 
Log-Rank Test.
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family (ACSS) proteins. Studies have shown that ACSS 
activity contributes to acetate uptake regulation and 
cancer cell growth under low-oxygen condition. Indeed, 
the therapeutic feasibility of pharmacologically targeting 
ACSS is currently being explored [14]. In addition to 
ACSS, citrate synthase (CS), the first TCA cycle enzyme, 
is another potential target for cancer therapy [15, 16]. 
It is likely that enhanced CS activity contributes to the 
conversion of glucose to lipids in cancer by providing 
substrate for membrane lipid synthesis [15]. In our 
study, Both CS and ACSS1 gene expression were found 
increased in HCC tumor tissues. When ACSS1 or CS was 
knocked down by siRNA, HCC cells growth and spheroid 
formation were significantly reduced in low glucose 
circumstance. These results suggest that ACSS1 and 
CS may play an essential role in HCC, especially under 
relatively low blood supply condition in advanced disease 
(with hypoxia and low glucose).

Energy metabolism reprogramming is implicated 
in several key aspects of cancer cell biology, including 
cell survival/death, differentiation/proliferation and 
DNA repair [2]. A large numbers of studies have been 
carried out to evaluate the feasibilities of metabolite 
or metabolism related genes as potential diagnostic 
biomarkers or therapeutic targets of diverse types 
of cancers [5, 6, 31, 32]. Due to its long duration of 
carcinogenic process and progressive genomic instability, 
HCC shows great heterogeneity of genomic alterations 
which may contribute to the complexity of metabolic 
phenotypes [33]. Our current study provides global 
evidence for diverse metabolic alterations in HCC. From 
our RNAseq data, we observed that Tumor-3 has the most 
distinctive metabolic gene expression pattern among all 
sample. We reason that one possible explanation for the 
diverse metabolic profiles may relate to the differential 
expression of Hypoxia Induced Factor-1a (HIF1α) in 
the tumor tissues. We observed that HIF1α mRNA in 
Tumor-3 tissue was 6.7 times higher than its paired 
non-tumor liver tissues; in contrast, HIF1α mRNA only 
increased by ~1.5 folds in the tumor tissues of other 
two sample pairs. As HIF1α is one of the key molecules 
that regulate glycolysis and mitochondrial oxidative 
phosphorylation [34], it is possible that differential 
expression of HIF1α may contribute to the diversity of 
glucose metabolism in HCC.

Recent studies have reported alterations of 
metabolite or metabolism related genes in HCC 
[5, 6, 31, 32]. However, global alterations of metabolic 
gene networks have not been rigorously documented. 
To date, the majorities of published studies have only 
analyzed alterations of limited number of genes, and thus 
have not demonstrated the potential molecular diversity of 
metabolism alterations in HCC. Additionally, many studies 
did not show the ability to reproduce primary results 
consistently in diverse populations due to the heterogeneity 

of cancer metabolism [5]. Hence, the metabolic 
phenotype heterogeneity of HCC necessitates the use of 
systematic methods to provide a “macro perspective”. 
Such approaches are expected to systematically analyze 
metabolic gene expression profile and co-regulation 
network alterations and to facilitate the identification of 
metabolic signatures for clinical use [33]. In this context, 
the 22-carbon-metabolism-gene signature identified 
in our study may serve as a useful attempt to simplify 
the intricate and changeable metabolic dissimilarities 
between cancer and non-cancer cells. Therefore, the novel 
22-carbon-metabolism-gene signature identified in our 
study may help further understand metabolic alterations 
in HCC and develop concepts regarding future prognostic 
and therapeutic approaches.

MAterIAls And MetHods

Microarray datasets

Two microarray datasets for HCC and non-tumor 
liver samples gene expression generated by Affymetrix 
U133Plus2.0 array platform were identified and 
downloaded from public microarray data repositories 
ArrayExpress (European Bioinformatics Institute) 
and Gene Expression Omnibus (National Center for 
Biotechnology Information). Set-1, from ArrayExpress 
with accession E-MTAB-950 (https://www.ebi.ac.uk/
arrayexpress/experim-ents/E-MTAB-950), includes 
120 HCC and 160 non-tumor liver samples [35]; Set-2, 
combined GSE41804 [36], GSE17548 [37], GSE29721 
[38], GSE33006 [39], GSE40873 [40], and GSE6222 
[41] sets from GEO includes 60 HCC and 104 non-tumor 
liver samples. Most of the HCC patients in these two 
sets have the underlying etiology of Hepatitis C virus 
(HCV). All of the raw data were processed using affy 
and related R packages with Robust Multi-array Average 
approach for background normalization as per the 
package instruction.

rnA isolation and sequencing

HCC and adjacent non-tumor tissue pairs were 
from three male patients with history of HCV infection, 
suffering from stage I or II hepatocellular carcinoma. Total 
RNAs were isolated from these frozen tissues with Qiagen 
RNeasy Mini kit. The quality of the isolated RNAs was 
monitored by Agilent Bioanalyzer. The RNA samples 
were polyA selected and processed to prepare sequencing 
libraries. The RNA-seq libraries were sequenced on 
Illumina HiSeq2000 instruments which generate an 
average of 50 million paired 75 bp reads per sample. The 
raw and analyzed RNA-seq data have been deposited in 
the Gene Expression Omnibus (GEO) database under 
accession number GSE81550.
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rnAseq data processing

Tophat-Cufflinks pipeline was used to map the 
qualified reads of each sample to human reference genome 
release GRCh37; the expression levels of each gene in 
HCC and non-tumor tissues groups were identified. All of 
the genes included in metabolic pathways were selected 
as per pathway gene lists from KEGG database (www.
genome.jp/kegg/), mapped to differential expression 
results generated from Cuffdiff, and visualized as 
heatmaps by cummeRbund R packages. 

Gene set enrichment Analysis (GseA)

Gene Set Enrichment Analysis was applied to the 
cufflinks results to determine gene expression pattern 
differences between HCC and non-tumor tissues. GSEA 
v2.1 software from Broad Institute was used for this 
purpose [42]; a ratio-of-classes metric for gene ranking 
and 1000 permutations of gene sets were used to study 
established collections of gene sets provided by the 
Molecular Signatures Database v5.0 (MSigDB, http://
broad.mit.edu/gsea/msigdb). Gene sets with FDR < 0.25 
were considered significant.

Weighted Gene coexpression network Analysis 
(WGcnA)

Co-expression analysis was conducted using 
the freely accessible R package WGCNA (v 1.42) [7]. 
Instead of creating multiple networks and comparing 
their modules using all of the genes from microarray data 
sets, we used 1509 metabolic related genes (represented 
by 2804 probes in Affymetrix U133 Plus2.0 array) to 
construct the network. The module eigengene expression, 
adjacency matrix heatmap, Module-Trait relationships, 
and other related parameters/results were calculated and 
visualized as per the software instruction. 

Co-regulation analysis by BioLayout express3D

BioLayout Express3D (BioLayout) is a 
powerful tool for the visualization and analysis of 
network graphs [43]. We applied BioLayout to distinguish 
the different co-regulation status of genes involved in 
carbon metabolic and cancer pathway between HCC 
and non-tumor liver tissues. Correlation between all 
transcriptable genes was computed with a Pearson 
correlation cutoff of 0.85 for both HCC and non-tumor 
tissues. After constructing the networks of all probes 
on Affymetrix U133Plus2.0 array, only probes related 
to genes that belong to Pathway in Cancer (KEGG 
hsa05200) and Carbon Metabolism Pathway (KEGG 
hsa01200) are shown (to demonstrate the correlations and 
interactions of those two pathways in HCC and non-tumor 
tissues). 

cell culture and sirnA transfection

Human HCC cell lines (Hep3B, Huh7, and PLC/
PRF/5 cells) were obtained from ATCC (Manassas, VA) 
and cultured in Dulbecco’s modified Eagle’s medium 
(Invitrogen, Carlsbad, CA) with 10% fetal bovine 
serum (Sigma-Aldrich, St. Louis, MO) in a humidified 
atmosphere of 5% CO2. Specific siRNAs targeting citrate 
synthase (CS) or acetyl-CoA synthetases short-chain 
family member 1 (ACSS1) were purchased from Santa 
Cruz Biotechnology (Santa Cruz, CA), and transfected 
into cells with Lipofectamine® 2000 (Invitrogen, Carlsbad, 
CA) according to the manufacturer’s protocol. 

Quantitative Real-time Polymerase Chain 
Reaction (qRT-PCR)

Total RNAs were isolated from cells and reverse-
transcribed. Quantitative PCR was performed by SYBR 
Green method. The primers used were: CS-forward, 
5ʹ-TGGCTAACACAGCTGCAGAA-3ʹ; CS-reverse, 
5ʹ-CATAGCCTGGAACAACCCGT-3ʹ; ACSS1-forward, 
5ʹ-GTGG GAGAGCCCATCAACTG-3ʹ; ACSS1-reverse, 
5ʹ-AGATGCCACCTGTCTGCCAC-3ʹ. β-ACTIN-
forward, 5ʹ-GTCGTCGACACGGCTCC-3ʹ and β-ACTIN-
reverse, 5ʹ-TCGTCG CCCACATAGGAATC-3ʹ were used 
as internal control.

Western blotting

Logarithmically growing cells were lysed in RIPA 
buffer with protease inhibitors. After running SDS-PAGE 
gel, the proteins were transferred onto nitrocellulose 
membranes; the membranes were blocked and incubated 
with primary antibodies at 4°C overnight. Primary antibodies 
for CS or ACSS1 were purchased from Santa Cruz 
Biotechnology. IRDye 800CW or 680 LT labeled antibody 
were used as secondary antibodies. The membranes were 
scanned and quantified with the Odyssey® Infrared Imaging 
System (LI-COR Biosciences, Lincoln, NE).

cell proliferation

Twenty-four hours after siRNA transfection, cells 
were plated in 6-well plates in triplicate with serum-
free DMEM growth medium supplemented with 2 mM 
L-glutamine and 0.5 g/L glucose. Twenty-four, 48, or  
72- hour after plating, cells were counted. 

Hepatic spheroid Formation Assay

Single-cell suspensions were plated at a density of 
5 × 103 cells per well in 24-well Ultra-Low Attachment 
Plates (Corning, Tewksbury MA) and maintained 
in serum-free DMEM medium supplied with 2 mM 
L-glutamine and 1 g/L glucose at 37°C in a 5% CO2 
humidified incubator for 7 days. 
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statistical analysis

Difference between groups was evaluated by 
SPSS 19.0 statistical software with one-way analysis of 
variance or student’s t-test. Overall survival and disease-
free survival were estimated and plotted using the Kaplan-
Meier method; differences between groups were assessed 
by Log-Rank test. Other bioinformatics analyses including 
GSEA, WGCNA, and Co-regulation Analysis, were 
performed using software with default test statistics and 
cutoff values as specified in individual method sections. 
P value < 0.05 was considered as statistically significant.

Abbreviations

ACSS1  Acetyl-CoA synthetases short-chain 
family member 1 

CS Citrate synthesis 
ENO1 Enolase 1
GSEA Gene Set Enrichment Analysis
HCC Hepatocellular Carcinoma
HCV Hepatitis C virus 
HIF1α Hypoxia Induced Factor-1a
HK1 Hexokinase 1
KEGG  Kyoto Encyclopedia of Genes and 

Genomes
PGK1 Phosphoglycerate Kinase 1 
PGLS 6-Phosphogluconolactonase
qRT-PCR Quantitative RT-PCR 
RNAseq RNA sequencing
RPE  Ribulose-5-phosphate-3-epimerase
SDS-PAGE  Sodium dodecyl sulfate polyacrylamide 

gel electrophoresis 
siRNA Small interfering RNA
TGCA The Cancer Genome Atlas
WGCNA  Weighted Gene Coexpression Network 

Analysis.
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