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Cancer subtypes classification using long non-coding RNA
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AbstrAct
Inter-tumor heterogeneity might explain divergent clinical evolution of cancers 

bearing similar pathological features. In the last decade, genomic has highly improved 
tumor subtypes classification through the identification of oncogenic or tumor 
suppressor drivers. In addition, epigenetics and long non-coding RNAs (lncRNAs) 
are emerging as new fields for investigation, which might also account for tumor 
heterogeneity. There is growing evidence that modifications of lncRNA expression 
profiles are involved in cancer progression through epigenetic regulation, activation of 
pro-oncogenic pathways and crosstalks with other RNA subtypes. Consequently, the 
study of lncRNA expression profile will be a key factor in the future for charting cancer 
subtype classifications as well as defining prognostic and progression biomarkers. 
Herein we discuss the interest of lncRNA as potent prognostic and predictive 
biomarkers, and provide a glimpse on the impact of emerging cancer subtypes 
classification based on lncRNAs.

IntroductIon

The attempts to classify cancer subtypes answer 
the need for better patients’ management. Indeed, the 
identification of different prognostic groups, predictive 
factors of response to therapy, or specific oncogenic 
mechanisms help the clinician to better monitor patients, 
to personalize treatments at an individual scale, and 
to avoid the harm caused by a useless regimen. These 
classifications were historically based on clinical, 
pathological, and laboratory markers. Among them, the 
IMDC (international metastatic renal cell carcinoma 
database) prognostic classification for renal cell 
carcinoma, based on clinical and laboratory markers, 
defines the prognosis and therapeutic options for patients 
in the first-line setting [1]; the pathological subtyping 
of breast cancer identifies the patients that will mostly 
benefit from endocrine or anti-HER2 therapy [2]; the 
identification of deficient mismatch repair in colon cancer 
categorizes a subset of patients that will less likely benefit 
from adjuvant chemotherapy [3].

In the last decade, predictive markers of tumor 
recurrence have benefited from the increasing accessibility 
of molecular biology and the arrival of next-generation 
sequencing technologies, that allow for more accurate 
depiction of genomic and epigenetic alterations in cancer. 
In breast cancer, the transcriptomic profiling of 50 genes 
has identified four distinct subtypes of breast cancer with 
specific ontogeny [4], and a recurrence score based on the 
expression of 21 genes has been validated to determine 
the patients who will benefit from adjuvant treatment [5]. 
Another example is the CpG island methylator phenotype 
(CIMP), initially discovered in colon cancer that has 
since been reported to be associated with IDH1 and 
IDH2 mutations in glioblastoma [6] and associated with 
improved prognosis. The latter association is explained by 
epigenetic reprogramming mediated by IDH1 and IDH2 
alterations [7] which are putative targets of experimental 
treatments [8]. Thus, it is impressive to see that molecular 
medicine has entered clinical practice and led to a better 
tumor subtype characterization, with new emphasis on the 
interplay between genetic and epigenetic aberrations in 

                                                         Review



Oncotarget54083www.impactjournals.com/oncotarget

solid tumors, and new developments in targeted therapies. 
However, despite these advances, many questions 

remain unsolved. Indeed, primary resistance to targeted 
therapies might occur despite of the presence of a 
targetable alteration: response rates reach a ceiling at 65% 
in BRAF-mutated melanoma treated by BRAF inhibitors 
[9], and 71% in EGFR-mutated lung cancer [10]. In 
addition, similar genetic alterations in different cancers 
are not always associated with identical outcomes [11]. 
These differences indicate that other mechanisms account 
for tumor progression and resistance to treatments, among 
which non-coding genome might be strongly involved. 

Functional non-coding genome encompass DNA 
sequences that do not lead to protein coding products, 
which include ribosomal RNAs, transfer RNAs, micro 
RNAs, piwi-interacting RNAs and long non-coding RNAs 
[12]. Among them, long non-coding RNAs (lncRNAs) 
are key regulators of cellular processes, and are currently 
emerging as drivers for tumor aggressiveness and 
patients’ outcome [13]. Herein we will provide insights 
of their oncogenic properties, discuss the interest of new 
classifications involving lncRNAs expression in clinical 
practice and introduce their contribution for optimal 
patient management.

overvIew of long non-codIng 
rnA lAndscApe

LncRNAs are eukaryotic RNAs > 200 nucleotides 
that do not have protein-coding capacity. Their expression 
is distinct from protein-coding genes and depends on 
the tissue and cellular context [14]. Most lncRNAs are 
intergenic or antisense transcripts that share transcription 
similarities with messenger RNAs. For instance, they lack 
an extended open reading frame and their transcription is 
dependent on the RNA polymerase II and are under the 
control of the transcriptional activators of the SWI/SNF 
complex. Finally, most of of the transcripts are capped 
and polyadenylated [15]. LncRNAs can be present in 
each cell compartment, where they interact with proteins 
and chromatin thanks to secondary structures such as stem 

loops and hairpins, acquired through post-transcriptional 
modifications. These secondary structures allow them to 
perform various functions. LncRNAs can act as scaffolds 
to bring protein complexes together, can guide proteins 
such as transcription factors to their DNA targets, bend 
chromatin to act as transcriptional enhancers, or act as 
decoys to wash out proteins from chromatin (Figure 1) 
[16]. These functions allow lncRNAs to have a crucial role 
on various cellular processes [17].

LncRNA comprehension has been greatly enhanced 
by whole human genome analyses that provided a 
comprehensive dataset of human lncRNAs, detailing 
their expression, function, and distribution in the human 
genome (Figure 2) [18]. Still, the classification of lncRNAs 
remains to be unified, as they can be sorted according 
to various features: their structure, their sequence, their 
function, their metabolism, and their interaction with 
protein-coding genes or other known DNA elements [19]. 

Recent studies have highlighted the implication 
of lncRNAs in cancer progression, mainly through 
epigenetic regulation, activation of oncogenic pathways 
and crosstalks with other RNA subtypes [20,19]. 
Consequently, lncRNAs seem to be natural candidates as 
novel cancer biomarkers. 

oncogenIc processes AssocIAted 
wIth lncrnA AlterAtIons

Epigenetic modifications

LncRNAs are able to interact with chromatin 
remodeling complexes, leading to modifications in 
the expression of target genes in cis, on the vicinity of 
the lncRNA sequence, or in trans, at independent loci 
throughout the genome [21]. HOTAIR was one of the 
first oncogenic lncRNA reported to be involved in 
cancer progression through genome-wide epigenetic 
reprogramming [22, 23, 24], through the interaction 
with polycomb repressive complex 2 (PRC2) subunits, 
a key chromatin remodeling complex involved in gene 

Figure 1: Main mechanisms of action of lncRNAs. Adapted from Rinn et al. [16]. A. LncRNAs can guide proteins to DNA 
sequences, such as chromatin remodeling proteins. B. LncRNAs can act as scaffolds to induce the formation of functional protein complexes. 
C. LncRNAs can mimic DNA structures and act as decoys for proteins with DNA binding activity.
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silencing [25]. In a cancer setting, HOTAIR recruits PRC2 
subunits in promoter regions of tumor suppressor genes, 
which leads to their transcriptional repression and favours 
tumor progression. Accordingly, numerous lncRNAs are 
involved in regional or genome wide chromatin state 
regulation, such as MALAT-1 or ANRIL, among the most 
frequently expressed lncRNA in tumors [26, 27].

Oncogenic signaling pathways

LncRNAs have a crucial role in the activation 
of oncogenic signaling pathways that drive the cancer 
phenotype [28]. The oncoproteins MYC and p53, 
frequently deregulated in cancers, are under the influence 
of lncRNA regulations. MYC gene alterations consist 
mostly in amplifications, as a result of copy gains of 
8p24. It has been reported by Tseng et al [29] that lncRNA 
PVT1 is needed for MYC dependent oncogenesis. PVT1 
is indeed localized in the same locus, and coamplified with 
MYC in 98% of MYC amplified tumors. Other lncRNAs 
are involved in the regulation of MYC expression, such as 
lncRNA XLOC_010588, downregulated in bladder cancer 
[30]. Conversely, transcriptional activation of oncogenic 
lncRNAs are directly mediated by MYC, such as CCAT-
1 in colon cancer [31] and H19 in gastric cancer [32]. 
Regarding p53, it has been reported to be regulated by 
numerous non-coding RNAs [33]. Notably, lincRNA-p21, 
a downstream target of p53, links to ribonucleoprotein 
hnRNP-k to induce global p53 target gene repression 
and inhibition of apoptosis in lung cancer models [34]. 
MALAT-1 is also reported to inhibit p53 gene expression 
and its target genes in various tumors [33]. In contrast, 
other lncRNAs increase apoptosis and are thus thought to 
be tumor suppressors, notably GAS5 in prostate cancer 
[35] and breast cancer cell-lines [36].

Among key oncogenic drivers, PI3K/MTOR/AKT 
and MAP kinases pathways are frequently promoted by 

lncRNAs alterations. ANRIL in gastric cancer represses 
miRNAs directed against mTOR [37]. LncRNA RMEL3 
in necessary for the activation of BRAF and AKT in 
melanoma cell lines [38]. LncRNA PTENpg1 represses 
PTEN expression by recruiting DNMT3A and EZH2 to 
PTEN promoter region [39]. In contrast, PTENP1 acts 
as a decoy for regulators miRNAs that leads to increased 
PTEN function [40]. Similarly, KRAS1P also acts as a 
decoy for negative regulators of KRAS, thus enhancing 
KRAS function [40]. Other deregulations in proliferation 
pathways include the NFKB pathway, activated by 
BANCR in gastric cancer [41], and the lipid signaling 
molecules sphingosine kinases, activated by HULC in 
hepatocellular carcinoma [42].

Some lncRNAs are strongly associated with 
epithelial-mesenchymal transition (EMT) and cell 
migration. LncRNA-ATB in hepatocellular carcinoma 
[43] and MALAT-1 in bladder cancer [44] are positive 
regulators of TGF-β signaling, a key pathway for of 
EMT. Oncogenic lncRNAs GAPLINC in gastric cancer 
[45] and MVIH in non small cell lung cancer [46] 
upregulate CD44 and MMP2/9, proteins involved in cell 
migration. HOTAIR up-regulation is also associated with 
EMT, inducing downregulation of E-cadherin and high 
expression of Vimentin and Metalloproteinase 9 (MMP9) 
in colon cancer [47]. Conversely, BANCR acts as an anti-
oncogene in non small cell lung cancer [48], as it impairs 
cell invasion through upregulation of E-cadherin, and 
downregulation of Vimentin and N-cadherin. 

Other pathways notably regulated by lncRNAs 
include hormone signaling, cell cycle progression, or 
reactivation of development genes. In prostate cancer, 
NEAT1 [49] and PRNCR1 [50] are key elements of 
estrogen and androgen signaling, respectively. LncRNAs 
MIR31HG [51] and ANRIL are associated with cell cycle 
progression through the regulation of cyclin-dependent 
kinases inhibitors [52]. LncRNAs such as HOTTIP in 

Figure 2: Major advances for lncRNA studies over time.
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hepatocellular carcinoma and TUG1 in lung cancer 
interact with HOX development genes, namely HOXA13 
and HOXB7 [53, 54], involved in numerous oncogenic 
processes, such as proliferation, motility and angiogenesis. 

The importance of lncRNAs in oncogenic 
mechanisms is such that various new implications will 
undoubtedly be unveiled in the years to come. The 
association of driver oncogenic alterations with lncRNA 
deregulations opens the way to integrative classifications 
using coding and non-coding genome. 

LncRNA and anticancer treatments

The importance of lncRNAs in the management of 
anticancer treatment is supported by their participation in 
drug resistance in cancer. In prostate cancer, numerous 
lncRNAs are associated with resistance to hormonal 
therapy: the oncogenic lncRNA NEAT1 is a transcriptional 
activator downtream of estrogen receptor α (ERα) and 
thus independent from androgen signaling [49], while 
lncRNAs PRNCR1 and PCGEM1 interact with and 
activate truncated androgen receptors, leading to androgen 
independent activation of androgen receptors [50]. In 
bladder cancer, the lncRNA UCA-1 induce resistance to 
cisplatin-based chemotherapy by upregulating the Wnt/β-
catenin pathway [55]. In ovarian cancer, expression of 
HOTAIR, evaluated in 309 patients, is reported to be 
associated with resistance to carboplatin-based regimens, 
of unknown mechanism [56]. 

Conversely, expression of some lncRNAs might 

be predictors of response to anticancer treatments. This 
is the case with CCAT-1, a superenhancer of MYC in 
colon cancer, which transcription is highly sensitive to 
bromodomain inhibitors in vitro [57].Thus, it becomes 
clear that future biomarker studies will have to focus on 
lncRNAs to tailor individual treatments and to identify and 
overcome therapeutic resistance.

Crosstalks with the RNA machinery

LncRNAs interactions include crosstalks with other 
RNA subtypes, such as messenger and micro-RNAs, 
creating a network of interactions that can be involved 
in cancer mechanisms. Notably, lncRNAs are involved 
in miRNA regulation: the lncRNA ANRIL interacts 
negatively with the micro-RNAs miR99A and miR449A 
to promote mTOR and E2F1 expression [37]. Conversely, 
miRNAs can regulate lncRNAs activity, such as 
miRNA141, which suppresses HOTAIR expression [58]. 
Interactions between RNA subtypes have been notably 
explored in esophageal squamous cell carcinomas, where 
it has been reported that defined sets of lncRNAs, miRNAs 
and mRNAs encompass similar oncogenic features, such 
as apoptosis inhibition, cell cycle activation, proliferation, 
invasion and metastasis [59]. This suggests that diverse 
RNA subtypes work in cooperation for the acquisition 
of cancer properties. As lncRNAs encompass 25% of 
total RNAs in the human cell (Figure 3), their interaction 
network must be further studied to better grasp the full 
role of RNA crosstalks in pathology [60].

Figure 3: Distribution of RNA subtypes in human genome. Adapted from Atianand et al. [60]. lncRNAs: long non-coding RNAs, 
miRNAs: micro RNAs, short ncRNAs: short non-coding RNAs, snRNAs: small nuclear RNAs, snoRNAs: small nucleolar RNAs.
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These data underscore the dramatic importance of 
lncRNAs in cancer. Interactions between lncRNAs and 
major oncogenic pathways support the role of lncRNAs 
in early steps of cancer development and their interest 
for more accurate cancer classifications. In addition, the 
unveiling of novel crosstalks between lncRNA and micro-
RNAs raises the importance of epigenetic regulations in 
cancer, an expanding field of study.

lncrnAs profIlIng IntegrAtIon 
In cAncer clAssIfIcAtIons

LncRNAs as prognostic biomarkers

As a result of the activation of oncogenic processes, 
lncRNA deregulations are associated with a more 
aggressive phenotype and drug resistance in cancer [13]. 
One of the first evidence of lncRNA involvement in cancer 
progression has been reported in breast cancer, where 
HOTAIR expression was being systematically increased 
compared to normal tissue. High expression of HOTAIR 
was associated with increased vascular invasion, advanced 
tumor stage, metastasis and poor prognosis [22]. In 

addition to breast cancer, overexpression of HOTAIR has 
been reported to be a marker for poor prognosis in various 
cancer types [61], including gastro-intestinal cancers [62, 
63, 64, 65], urologic cancers [66, 67], gynecologic cancers 
[68, 69, 70], lung cancers [71, 72] and undifferentiated 
carcinoma of nasopharyngeal type [73]. So far, numerous 
lncRNA have been associated with poor prognosis in 
subsets of tumors, such as SCHLAP1 in prostate cancer 
[74], HOTTIP in hepatocellular carcinoma [53], gastric 
cancer [75] and colon cancer [76], or FAL1 in ovarian 
cancer [77]. Other are associated with good prognosis, 
such as NBAT-1 in neuroblastoma [78] or NKILA in 
breast cancer [79]. The most striking evidence of their 
prognostic impact come from a large-scale pan-cancer 
analysis conducted on 15 cancer types, which reported 
that 32 to 310 lncRNAs in each tumor had prognostic 
relevance [80]. 

Thus, lncRNAs might be considered as putative 
relevant prognostic markers for the clinic. As such, 
high expression of the lncRNA ENSG00000261582 
is an independent marker of poor overall survival in 
lung and ovarian cancer in multivariate analysis [81]. 
Other robust studies indicate that high expression of 
HOTAIR in estrogen receptor negative breast cancer 
independently associated with lower overall survival in 

Table 1: Cancer subtype classifications based on lncRNA expression profiles.

GEO: Gene Expression Omnibus. DFS: disease free survival. EMT: epithelial mesenchymal trnasition. MSI: microsatellite 
instability, POLE: polymerase epsilon, N/A: not available
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multivariate analysis [22, 82]. These observations provide 
the proof of concept that lncRNAs might be potent and 
discriminative prognostic markers, which can bring 
independent information from genomic, proteomic or 
clinicopathological features.

Thus, it seems crucial to take into account lncRNAs 
profiling to improve current cancer classifications, 
and conduct integrative analyses with known clinical, 
pathological and molecular features of cancers [83, 84].

Integrative classifications

Du et al. report the first study assessing the role of 
lncRNAs in subtype classifications of 1,300 tissue samples 
among 4 different subtypes of cancer: ovarian, prostatic, 
lung SCC and glioma [81]. In this study, microarrays 
analyses have been performed to determine the lncRNAs 
expression profiles, with probes covering more than 
10,000 lncRNAs identified through Ensembl and RefSeq 
sequence databases spanning the entire genome. LncRNAs 
were shown to display a specific expression pattern 
that correlated with established genomic classification 
in ovarian cancer, glioma, and lung squamous cell 
carcinoma. In ovarian cancer, unsupervised lncRNAs 
clustering identifed four groups of tumors matching 
with immunoreactive, mesenchymal, proliferative, and 
differentiated genomic profiles. In glioma, four groups 
were correlated with the classical, neural, proneural and 
mesenchymal profiles. In lung squamous cell carcinoma, 
lncRNA expression matched with basal, primitive, 
classical, and secretory-type gene expression profiling. 
The association between coding genome and lncRNAs 
points the relevance of lncRNA profiling to establish 
cancer subtypes classification. As lncRNA profiles can be 
established using RNAseq data that tend to be increasingly 
accessible, we believe that lncRNA profiling will be of 
great importance in the coming future. 

Already, several reports explored the impact of 
lncRNA in cancer subtype classifications in different 
localizations including glioma, colon, breast, renal 
and endometrial cancers (Table 1). In glioma, the most 
frequent subtype of primitive brain tumors, consensus 
clustering of lncRNAs using 425 cases revealed three 
molecular subtypes: lncR1, lncR2 and lncR3 [85]. 
LncR1 subtype was associated with astroglial gene 
signature, epidermal growth factor (EGFR) amplification 
and patients displayed poor overall survival. On the 
contrary, lncR3 subtype correlated with oligodendritic 
gene signature, IDH1 mutation, 1p/19q chromosomal 
deletions and patients had good prognosis. Finally, lncR2 
represented an intermediary subtype regarding prognostic, 
with neuronal gene signature. Interestingly, this lncRNA 
classification correlates with various molecular prognostic 
factors, but it is still unknown whether lncRNA alterations 
are bound to specific genetic mutations such as IDH1, or 
chromatin remodeling genes alterations.

In colon cancer, a prognostic signature for disease-
free survival has been established from six lncRNA which 
expression was strongly correlated with prognosis. This 
signature has been validated in 459 patients using the 
Gene Expression Omnibus (GEO) database [86]. This 
signature divides the population into two subgroups: high- 
and low-risk, according to lncRNA expression. However, 
stratification using the combination of both clinical staging 
(stages I/II v stages III/IV) and lncRNA signature (high-
risk v low-risk) was capable to subdivide the patients 
into 4 groups with significantly distinct disease-free 
survival. This indicates that patients’ stratification might 
be improved using integrative analysis of lncRNAs and 
clinical data. This study does not specify the presence of 
associated alterations, such as a deficient mismatch repair 
(dMMR) or a methylator phenotype (CIMP). Considering 
that lncRNAs act as broad epigenetic regulators, 
exploration of interactions between CIMP and lncRNA 
should be of great interest for the next future of colon 
cancer management.

In invasive breast cancer, we recently reported the 
lncRNAs portrait of 658 tumors and compared the data 
with the genomic PAM50 classification [87]. PAM50 is a 
molecular classification that identified four breast cancer 
subgroups, based on transcription profiling: basal-like, 
HER-2 enriched, luminal A, and luminal B. As PAM50 
classification, we identified four clusters of lncRNAs 
clusters of lncRNAs have been identified. Those clusters 
correlated with PAM50 classification. Of note, while the 
three lncRNA clusters C1, C2 and C3 associated with 
basal-like, HER-2 enriched and luminal A groups and 
were highly correlated with their relative PAM50 mRNA 
classification, cluster C4 was not. Indeed, although C4 
lncRNA cluster was associated with luminal signature 
and estrogen receptor (ER) expression, C4 cluster was not 
clearly capable of differentiating luminal A and luminal 
B subgroups. Thus, future studies are needed to explore 
the links between lncRNAs and estrogen receptors in 
breast cancers, as it is the case for H19 and HOTAIR [88, 
89]. In addition, the relevance of lncRNA for prognostic 
classifications in breast cancer must be confronted to 
validated genomic classifications for the prediction of 
recurrence and prognosis in use in clinical routine [90].

Another cancer where lncRNA is important in 
defining tissue-specificity is clear-cell renal cell carcinoma 
(ccRCC). In 2010, ccRCCs have been classified in two 
molecular subgroups, type A and B, with distinct disease-
free survival [91]. Effort form the TCGA working group 
helped identify four distinct subgroups with different 
outcomes, based on mRNA and miRNA expression [92]. 
More recently, using unsupervised lncRNA clustering of 
475 primary tumor samples from the Cancer Genome 
Atlas, we reported four distinct lncRNA subgroups of 
ccRCCs associated with distinct prognosis, pathological 
features and molecular alterations, including specific 
alterations of chromatin-remodeling genes [93]. The 
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prognostic value of lncRNA profiling was found to be 
independent from pathological grade and TNM stage. 
Cluster 2 was enriched for tumors harboring mutations 
in the chromatin-remodeling gene BAP1, and was 
strongly associated with high tumor grade and poor 
prognosis. In contrast, two clusters with better prognosis 
displayed PBRM1 mutations, a component of SWI/SNF 
transcriptional activator. This suggests that ccRCCs 
subtypes have different epigenetic landscape alterations, 
which are closely linked with their lncRNA expression 
profile. However, how those lncRNAs are interacting 
with PBRM1 and BAP1 remains to be explored. Of note, 
one subgroup was composed of misclassified tumours 
(chromophobe RCC and translocation RCC), suggesting 
the importance of lncRNAs in defining cell ontogeny. 

Recent work focused on endometrioid endometrial 
carcinoma, the most frequent subtype of endometrial 
adenocarcinoma and usually associated with good 
prognosis. Unsupervised clustering of 1,931 lncRNAs 
significantly expressed in endometrioid endometrial 
carcinoma identified 3 subgroups: basal-like, luminal-like 
and CTNNB1-enriched [94]. Basal-like and luminal-like 
subgroups shared similarities for lncRNAs expression 
compared to their equivalent breast cancer subtype. 
The luminal subgroup was associated with expression 
of progesterone (PGR) and estrogen receptor (ESR1) 
genes, while the CTNNB1 subgroup involved mutations 
in the β-catenin gene and PTEN loss. There was a trend 
towards poorer survival in the basal-like subgroup, which 
included more aggressive tumors that were enriched for 
p53 mutations and mutations of the MLL genes family. 
The interplay between lncRNA subtyping and alterations 
of chromatin remodeling genes might be an interesting 
area for the development of innovative therapies in this 
indication.

These studies suggest that lncRNA expression 
profile is correlated with genomic, genetic, pathological 
and clinical features of diverse neoplasms, but also brings 
independent prognostic value in various subsets of tumors. 
As such, lncRNAs are likely to be integrated in cancer 
classifications during the next decades.

perspectIves

LncRNAs represent a new class of cancer cell 
regulators involved in diverse mechanism of oncogenesis, 
with new implications unveiled continuously. In the largest 
study to date, transcriptomic analysis of 91,013 expressed 
human genes in more than 7,256 tissue samples have 
shown that lncRNA may represent nearly 70% of human 
transcripts [95]. This number is considerably higher 
than expected, as lncRNA represented only 25% of the 
transcriptome in other series. This indicates that lncRNAs 
might outnumber coding RNAs by a large margin, 
which suggests that their importance in human biology 
is underestimated. In addition, precise understanding of 

the mechanisms involved in genome-wide epigenetic 
regulation is not fully fleshed out. Common patterns might 
be responsible for epigenetic regulation associated with 
different RNA systems [96]. To better understand these 
associations, integrative analysis of non-coding RNAs 
localizations and chromatin-RNA interactions across the 
tumor genome are needed. Further investigations are also 
underway to better understand the networks involving 
both coding and non-coding RNA machinery, regulating 
cellular processes [97]. International efforts are being 
made with the creation of participative RNA databases and 
computer-based simulations for molecular interactions, 
such as RNAbase [98], lncRNATor [99], and Cupid [100] 
projects, that will help further encompass the complexity 
and the promising potential of lncRNAs. 

LncRNAs are relevant and potent biomarkers for 
cancer subtype analyses and prognostic stratifications 
with tissue-specific expression. Their implementation in 
clinical practice is around the corner, pending validation 
studies to assess the reproducibility of those classifications 
and the input of their integration in patient’s management. 
Development of therapies targeting lncRNAs will be a 
major challenge. Previous attempts at RNA targeting 
faced difficulties for treatment distribution in the tumor 
site, which remain to be resolved [101]. The concurrent 
development of biomarkers will be of great interest 
in the fields of diagnosis, prognosis assessment, and 
prediction to identify the population eligible to future 
treatments targeting lncRNAs. New insights might be 
provided through the emergence of liquid biopsies. 
Indeed, HOTAIR, HULC and H19 expression levels 
in plasma have been demonstrated to correlate with 
outcome in series of patients with metastatic colon cancer 
[102], hepatocellular carcinoma [103] and gastric cancer 
[104], respectively. This is of high interest considering 
the possibilities of using lncRNAs as potent circulating 
biomarkers.

As lncRNA profiling represents an exciting tool 
in cancer management, its implementation will be a 
key player in the integration of molecular medicine into 
clinical practice and personalized care.
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