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ABSTRACT
Human Herpesvirus 6 (HHV-6) has been involved in the development of several 

central nervous system (CNS) diseases, such as Alzheimer’s disease, multiple sclerosis 
and glioma. In order to identify the pathogenic mechanism of HHV-6A infection, 
we carried out mRNA-seq study of human astrocyte HA1800 cell with HHV-6A GS 
infection. Using mRNA-seq analysis of HA1800-control cells with HA1800-HHV-6A 
GS cells, we identified 249 differentially expressed genes. After investigating these 
candidate genes, we found seven genes associated with two or more CNS diseases: 
CTSS, PTX3, CHI3L1, Mx1, CXCL16, BIRC3, and BST2. This is the first transcriptome 
sequencing study which showed the significant association of these genes between 
HHV-6A infection and neurologic diseases. We believe that our findings can provide 
a new perspective to understand the pathogenic mechanism of HHV-6A infection and 
neurologic diseases.

INTRODUCTION

Human Herpesvirus 6 (HHV-6) exists as two 
related herpes viruses, HHV-6A and HHV-6B, that 
infect almost all human beings, especially the children 
[1, 2]. HHV-6 has a life-long latency and can become 
reactivated infection later [3]. HHV-6 reactivation has 
been linked with many clinical appearances throughout 
the body, including the lungs, kidney, heart, brain, and 
gastrointestinal tract [4, 5]. HHV-6 can infect various 
CNS cells in vitro [6-10]. HHV-6 has been involved in 
the progress of various range of neurologic disorders, 
including encephalitis, seizures, chronic fatigue 
syndrome, mesial temporal lobe epilepsy (MTLE), 
Alzheimer’s disease, and multiple sclerosis [11, 12]. 
The diverse pathology may due to the viral sequence 
variations and differences in antigenic specificity between 
the HHV-6A and HHV-6B [11]. More research is needed 
to understand the important disease associations that have 
been suggested.

Recently, mRNA-seq has been increasingly used 
to explore the genetic and environmental factors of virus 
infection and diseases occurrence. Here, we undertook 
a genome-wide survey to map cellular genes of human 
astrocyte HA1800 that are infected by HHV-6A GS. In 
this study, we report the identification and comparative 
analysis of the differentially expressed genes that occurred 
during the virus infection phenotype conversion process. 
Therefore, this work is the first attempt at evaluating, 
genome-wide, the genotype-to-transcriptome-to-clinical 
phenotype associations in HHV-6A GS infection diseases.

RESULTS

Analysis of differentially expressed genes (DEGs)

The potential DEGs (16430 genes, and 249 genes 
of FDR < 0.1) between different groups are displayed in 
Supplementary Table S1. The potential DEGs with FDR 
< 0.1 (HA1800-control expression > -1 and HA1800-
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HHV6-GS expression > 0) between libraries are presented 
in Figure 1A and Supplementary Table S2. Totals of 66 
significant DEGs (only 8 genes are downregulated) were 
identified during the HHV-6A GS virus infection human 
astrocyte HA1800.

Gene ontology analysis of potential DEGs

In order to obtain further understanding of the 
biological functions of the DEGs, Gene Ontology (GO) 
analyses were performed. We chose significant GO 
categories listed in Supplementary Table S3, S4, and 
S5. The biological processes, cellular component, and 
molecular function are presented in Figure 1B, 1C, and 
1D, respectively. And, potential DEGs were enriched 
for GO categories of defense response (GO:0006952), 
immune response (GO:0006955), innate immune response 

(GO:0045087), immune system process (GO:0002376), 
type I interferon signaling pathway (GO:0060337) in 
biological processes; extracellular space (GO:0005615), 
MHC class I protein complex (GO:0042612), blood 
microparticle (GO:0072562) in cellular component; 
peptide antigen binding (GO:0042605), endopeptidase 
inhibitor activity (GO:0004866) in molecular function.

Signaling pathway analysis of potential DEGs

All signaling pathways of DEGs were showed in 
Figure 2, and the important signaling pathway classes 
were listed in Supplementary Table S5. According to 
the results of the KEGG and GO pathway analysis, we 
focus on the DEGs involved in viral carcinogenesis, 
viral myocarditis, HTLV-1 infection, Epstein-Barr 
virus infection, influenza A, herpes simplex infection, 

Figure 1: Differentially expressed genes (DEGs) enriched and identified by GO analyses. A. The expression of cellular genes 
in two enriched populations of HA1800-control and HA1800-HHV6GS cells for 24 h were assessed using mRNA-seq. The distribution 
of genes with a change in expression of false discovery rate (FDR) < 0.1 is shown in red on the MA plot (log total counts versus log fold-
change). B. The biological processes of the DEGs were identified by GO analyses. C. The cellular components of the DEGs were identified 
by GO analyses. D. The molecular functions of the DEGs were identified by GO analyses.
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TNF signaling pathway, RIG-I-like receptor signaling 
pathway, NF-kappa B signaling pathway, graft-versus-
host disease, complement and coagulation cascades, 
autoimmune thyroid disease, antigen processing and 
presentation, allograft rejection, measles and phagosome 
signaling pathways.

CNS diseases association analysis of potential 
DEGs

All disease classes of DEGs were analyzed by 
functional annotation chart tool (https://david.ncifcrf.
gov/home.jsp) [13, 14] in Figure 3 (and Supplementary 
Figure S1). And the differentially expressed genes 
involved in infection, immune, neurological, and 
cardiovascular disease classes. We then further analyzed 

which of the potential DEGs associated with antivirus, 
Alzheimer’s Disease, glioma, and multiple sclerosis 
following HHV-6A GS virus infection human astrocyte 
HA1800. Of these genes, 12 were associated with 
antivirus function; 7 were associated with Alzheimer’s 
Disease; 11 were associated with glioma; 9 were 
associated with multiple sclerosis (Table 1). And more 
importantly, CTSS, PTX3, CHI3L1, Mx1, CXCL16, 
BIRC3, and BST2 genes exhibited significant correlation 
with more than two CNS diseases. Subsequently, these 
genes were further recognized by real-time PCR assay 
in cells at 24 hours and 72 hours (Supplementary Figure 
S2A and S2B). And the expression of CTSS, Mx1, and 
BIRC3 genes were further validated by western blot 
assay at 72hours (Supplementary Figure S2C). The main 
genes revealing a positive association with viral infection 

Figure 2: Differentially expressed genes associated pathways analysis. Differentially expressed genes associated pathways were 
analyzed by GO and KEGG pathway tools.
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by using the STRING database (i.e., increasing gene 
expression with viral infection) was shown in Figure 4 
(and Supplementary Figure S3). The STRING database 
(http://string-db.org) designs to supply an important tool 
for studying protein–protein interactions, including direct 
and indirect correlations.

DISCUSSION

Genome-wide gene expression profiling is an 
impartial method to ascertain the pathogenic mechanism 
underlying virus infection. Our study shows many 
differentially expressed genes, which related to pathogenic 
mechanism, are upregulated in HA1800 cells with HHV-
6A infection as compared with uninfected controls. The 
mRNA-Seq technology has no hybridization bias and 
almost no batch effects on gene expression [15].

Antiviral genes are activated in HA1800 cells with 
HHV-6A infection. In addition, new effects of anti-viral 
can be disclosed via comparative analysis of genome-
wide transcriptional profiles. OAS3 p100 employs host 
antiviral effect against Chikungunya virus [16], dengue 

virus infection [17], and HCV [18]. Galectin-9 (LGALS9) 
is rapidly released during acute HIV-1 infection [19]. IFN-
inducible protein 35 (IFI35) plays an important role in 
the type I interferon response induced by foot-and-mouth 
disease virus protein 2C [20] and in the maintenance of 
foamy virus latency [21] and vesicular stomatitis virus 
replication [22]. Baculoviral IAP repeat containing 3 
(BIRC3) inhibited hepatitis B virus replication [23]. 
BIRC3 upregulated by E6 oncoprotein confers resistance 
to cisplatin in human papillomavirus 16/18-infected lung 
cancer [24]. Interferon-induced protein 44 (IFI44) inhibits 
HIV-1 LTR promoter activity [25]. IFITM3 restricts 
influenza A virus entry [26] and has susceptibility to 
respiratory viral infection [27]. IFITM3 also restricts 
reovirus cell entry [28] and morbidity and mortality 
associated with influenza [29]. Lysine residues of interferon 
regulatory factor (IRF7) affect the replication of KSHV 
[30]. IFIT1 (ISG56) recognizes 5′-triphosphate RNA [31]. 
Interferon induced transmembrane protein 1 (IFITM1) 
restrict membrane fusion [32]. Interferon, alpha-inducible 
protein 27 (IFI27, ISG12a) is IFN-induced protein that 
impact cellular apoptosis [33]. High basal ISG12a may 

Figure 3: Differentially expressed genes associated CNS diseases analysis. Differentially expressed genes associated CNS 
diseases were analyzed by DAVID functional annotation chart tool.

Table 1: the differentially expressed genes associated with antivirus, alzheimer’s disease, glioma, and multiple sclerosis

CNS diseases Representative DEGs in HA1800-HHV6 GS/control

Antivirus OAS3, LGALS9, IFI35, BIRC3, IFI44, IFITM3, IRF7, IFIT1, IFITM1, IL32, IFI27, 
ISG15

Alzheimer’s disease CTSS, SERPINA1, NPTX1, PTX3, CHI3L1, SERPINA3, Mx1

Glioma CTSS, IRF7, CXCL16, IFITM3, PTX3, CHI3L1, TNFAIP3, BIRC3, BST2, IFIT1, 
IFITM1

Multiple sclerosis CHI3L1, IFIH1, KCNJ10, SERPINA1, CXCL16, IFITM3, PTX3, BST2, Mx1
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inhibit NDV replication and oncolysis [34]. ISG15 inhibits 
the replication of influenza A virus [35] and the Japanese 
encephalitis virus [36] and controls the proinflammatory 
response against viral infection [37]. The consecutive study 
of these genes in astrocytes can provide new clue for the 
elucidating of viral antagonism in HHV-6A infection.

HHV-6 showed 23% positivity in peripheral blood 
leukocytes samples from Alzheimer’s disease (AD) and 
4% from controls. HHV-6 may be environmental risk 
factors for cognitive deterioration and progression to AD 
in elderly persons [38-41]. We identified a number of 
AD related genes in astrocyte HA1800 cells with HHV-
6A GS infection. Cathepsins S (CTSS) was evaluated as 
therapeutic target to develop disease modifying drugs 
to treat AD [42]. Serpin peptidase inhibitor, clade A, 
member 1 (SERPINA1, ATT) associates with AD-related 
phenotypes [43] and is recognized as biomarker [44] 
and potential indicator [45] for AD. Neuronal pentraxin 
1 (NPTX1) is overexpressed in dystrophic neurites in 
AD [46]. Pentraxin-3 (PTX3) is an inflammatory marker 
[47] and its plasma levels are increased in patients with 
Parkinson’s disease [48]. PTX3 is also a putative AD 
biomarker and pharmacological therapeutic target [49]. 
Cerebrospinal fluid level of chitinase 3-like 1 (CHI3L1, 
YKL-40) protein is elevated in AD [50-54] and could 

track the inflammatory processes in AD [55]. YKL-
40 has potential prognostic utility as a biomarker for 
preclinical AD [56]. SERPINA3 (ACT) polymorphism 
may affect age-at-onset and disease duration of AD [57]. 
The appearance of MX dynamin-like GTPase 1 (Mx1, 
MxA) protein in reactive microglia contributes to AD 
pathology [58]. Therefore, it is conceivable that these 
genes, combined with previously known mechanisms, 
may contribute to discovering the correlation between 
HHV-6A infection and the progression of AD.

HHV-6 DNA was detected in 86% of Nodular 
Sclerosis Hodgkin lymphoma (NSHL) cases. It suggests 
that HHV-6 may play an important role in NSHL 
pathogenesis [59] High percentages of HHV-6 DNA 
and protein were found in glioma tissue. Additionally, a 
strain of HHV-6A was isolated from the fluid specimens 
from glioma cysts. Our previous studies strongly show 
that HHV-6 infection is involved in the pathogenesis of 
glioma [60]. Activation of HHV-6 may lead to decrease of 
lymphocytes total count and develop immunosuppression 
in patients with gastrointestinal cancer [61]. Cathepsin 
S (CTSS) expression is linked with tumor progression 
and poor outcome in glioblastomas [62]. Interferon 
regulatory factor 7 (IRF7) can enhance glioma cell 
invasion, chemoresistance, and radioresistance [63]. 

Figure 4: Predicted interaction networks of genes differentially expressed during HHV-6A infection. Differentially expressed 
genes are depicted: links have been predicted using STRING (http://string.embl.de/). Predicted interactions are depicted according to the type 
of available evidence. The interactions (see color labels) include direct (physical) and indirect (functional) associations; they are derived from 
four sources: genomic context, high-throughput experiments, conserved coexpression, and previous knowledge from literature.
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CXCL16 is highly expressed by glial tumor and stroma 
cells in glioma [64]. Interferon induced transmembrane 
protein 3 (IFITM3) plays an important role in glioma 
cell growth and migration [65]. Pentraxin 3 (PTX3) was 
significantly associated with the presence of a high-grade 
glioma tumor [66]. Elevated expression of chitinase 
3-like 1 (CHI3L1, YKL-40) in glioma was correlated with 
decreases in disease survival [67, 68]. YKL-40 serum 
values were markedly higher in glioma patients than in 
healthy subjects [69], and as potential serum biomarker 
for patients with high-grade glioma [70]. TNF alpha 
induced protein 3 (TNFAIP3, A20) is a tumor enhancer 
in glioma [71] and inhibits apoptosis in glioblastoma 
[72]. A20 may serve as a future therapeutic target [73]. 
BIRC3 (c-IAP2) facilitates cancer cell survival [74]. 
Increased c-IAP2 expression was found to enhance IκB-α 
phosphorylation in GBM cells [75, 76]. BST2 expression 
is upregulated in high grade human astrocytoma [77-79]. 
And BST-2 expression was increased once oncogenesis 
is initiated [80]. IFIT1 (ISG56) expression increases 
in U373MG human astrocytoma cells. [81]. IFITM1 
expression significantly inhibited proliferation, migration, 
and invasion of glioma [82-84].

HHV-6 has been suggested in several 
autoimmune diseases, including multiple sclerosis 
(MS). HHV-6 (especially HHV-6A) could participate in 
neuroinflammation in MS via promoting inflammatory 
processes through CD46 binding [85]. Viral load and IgGs 
reacting with HHV-6 U94/REP protein were significantly 
higher in MS patients. [86]. In addition, anti-HHV-6 
IgG was found in CSF of MS patients [87]. HHV-6 may 
have a role in long-term infection with demyelination in 
progressive neurological diseases [88]. Cerebrospinal fluid 
level of chitinase 3-like 1 (CHI3L1, YL-40) is induced in 
astrocytes in a variety of neurological diseases [89]. YKL-
40 has been proposed as a biomarker of multiple sclerosis 
[90]. CSF level of YKL-40 is increased in MS [91] and is 
a prognostic marker in MS [92]. Enhanced skin expression 
of IFIH1 (MDA5) in dermatomyositis and related 
autoimmune diseases [93]. KCNJ10 (KIR4.1) is expressed 
in oligodendrocytes and astrocytes in the adult human brain. 
[94]. Significant expression differences of SERPINA1 
(AAT) were identified as potential disease signatures for 
MS patients [95] and elevates in the cerebrospinal fluid 
of patients with MS [96]. CXCL16 could be a novel 
biomarker and potential predictor of disease activity in MS 
[97]. IFITM3 leads to neuropathological impairments and 
brain dysfunction in astrocytes [98]. Pentraxin 3 (PTX3) 
is a novel biomarker of inflammatory in MS [99]. Bone 
marrow stromal cell antigen 2(BST2) associated statistically 
with the risk of getting MS. [100]. The appearance of MX 
dynamin-like GTPase 1 (Mx1, MxA)mRNA is related to 
clinical exacerbations of MS. [101].

HHV-6 is a global virus in the adult population and 
correlated with several neurologic diseases, including 
Alzheimer’s disease, glioma, and multiple sclerosis in 

the CNS. In conclusion, based upon the results of our 
comprehensive analysis of HHV-6A infected HA1800 
cells, we revealed several genes correlated with neurologic 
disorders, especially CTSS, PTX3, CHI3L1, Mx1, CXCL16, 
BIRC3, and BST2 genes. Our studies highlight the human 
astrocyte HA1800 infected with HHV-6A GS virus and may 
enhance the understanding of the HHV-6A pathogenicity. The 
next challenge is to conduct further studies in revealing the 
role of these genes under HHV-6A infection.

MATERIALS AND METHODS

Cell culture

Cord blood mononuclear cells (CBMCs) were 
purified from the cord blood samples obtained from the 
Affiliated Women and Children Hospital of Nanjing 
Medical University. These studies were approved by the 
local ethics committee and institutional review board. All 
samples were obtained with consent from patients and 
volunteers. HSB-2 cell line (ATCC, USA) was cultured 
in 1640 medium (Gibco, USA) containing 10% fetal calf 
serum (FCS, Gibco, USA). Primary human fetal astrocyte 
HA1800 were purchased from the Sciencell company 
(Carlsbad, CA,USA) and cultured in DEME/F12 medium 
(Gibco, USA) supplemented with 10% FCS.

Infection of astrocyte by the isolated HHV-6A GS

HA1800 (2 × 105/well) were cultured in 6-well 
plates and then infected with the HHV-6A GS at a 
multiplicity of infection of 100. The culture HA1800 cells 
were collected for mRNA-seq at 24 hours after infection. 
The detail experiments were performed as previous 
described [60, 102-106].

RNA sequencing and data analysis

The six samples (three HA1800-CTL and three 
HA1800-HHV6AGS samples) were shipped to the 
GENEWIZ Company (www.genewiz.com) for library 
construction and mRNA-Seq. Sequencing library 
construction included these steps: RNA quality checking 
(Agilent 2100, Agilent Eukaryote Total RNA Nano Kit), 
library construction (Illumina TruSeq RNA Sample 
Pre Kit), library purification (Beckman AMPure XP 
beads), insert fragments test (Agilent 2100,Agilent High 
Sensitivity DNA Kit), quantitative analysis of library 
(ABI 7500 real time PCR instrument; KAPA SYBR green 
fast universal 2×9 qPCR master mix, GRN), and cBOT 
automatic cluster (TruSeq PE Cluster Kit v3-cBotHS). 
High-throughtput sequencing was performed with Illumina 
HiSeq 2000. mRNA-Seq data analysis consisted of the 
following steps: data quality checking using the Fastqc 
software (http://www.bioinformatics.babraham.ac.uk/
projects/fastqc/) and removing excess adaptors to get high-
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quality and clean reads; mapping the high-quality reads 
to the poplar tree reference genome (http://www.ncbi.nlm.
nih.gov/genome/51?genome_assembly_id=273342), using 
the TopHat software (version 2.0.9) (Trapnell et al.2012); 
transcript assembling and expression quantificationusing 
Cufflinks (version 2). Gene expression was expressed as 
fragments per kilo-base transcript per million mapped 
reads (FPKM).

Real-time PCR

RNAs were extracted from cells using TRIzol 
(Invitrogen, California, USA) kit according to the 
manufacturer’s instructions. Subsequently, total RNA 
was reverse transcribed using SuperScript III reverse 
transcriptase (Invitrogen, California, USA). Real-time 
PCRs were then performed in ABI PRISM7500 system 
(Applied Biosystems, California, USA), according to the 
manufacturer’s instructions. The expression level of each 
gene was normalized by GAPDH and reported as relative 
levels. The primers for real-time PCR were shown in 
Supplementary Table S7.

Western blot

Whole cells were washed in PBS and lysed in 
RIPA lysis buffer supplemented with protease inhibitor 
cocktail (Roche, Mannheim, Germany). Total protein was 
quantified using a BCA Protein Assay Kit (Beyotime, 
Jiangsu, China), and equal amounts of whole cell lysates 
were resolved by SDS-polyacrylamide gel electrophoresis 
(PAGE) and transferred to a polyvinylidene difluoride 
(PVDF) membrane (Millipore, Eschborn, Germany). The 
blots were blocked with BSA (5% w/v in PBS) for 1 h 
at room temperature. The following primary antibodies 
were applied according to the manufacturer’s instructions. 
Anti-Cathepsin S (CTSS, ab135651), Anti-MX1 (Mx1, 
ab95926), Anti-cIAP2 antibody (BIRC3, ab32059), Anti-
GAPDH antibody (ab8245) were purchased from Abcam 
(Cambridge, MA, USA). The appropriate secondary 
antibodies were used at 1:2,000-1:5,000 (v/v) dilutions 
in PBS + 0.1% Tween 20 for 1 h at room temperature, 
and the signals were revealed using ECL kit (Thermo 
Scientific Pierce, Rockford, USA).

Pathway and network analyses

The Search Tool for the Retrieval of Interacting 
Genes/Proteins (STRING) (http://string.embl.de/) was 
used to identify known and predicted interactions (derived 
from four sources: genomic context, high-throughput 
experiments, co-expression, and previous knowledge). 
DAVID Bioinformatic resources (http://david.abcc.
ncifcrf.gov/) using the annotation sources GOTERM-
BP (biological process), and GOTERM-MF (molecular 
function) identified functional categories.
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