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AbstrAct
In recent years, recurrent somatic mutations in epigenetic regulators have been 

identified in patients with hematological malignancies. Furthermore, chromosomal 
translocations in which the fusion protein partners are themselves epigenetic 
regulators or where epigenetic regulators are recruited/targeted by oncogenic 
fusion proteins have also been described. Evidence has accumulated showing that 
“epigenetic drugs” are likely to provide clinical benefits in several hematological 
malignancies, granting their approval for the treatment of myelodysplastic syndromes 
and cutaneous T-cell lymphomas. A large number of pre-clinical and clinical trials 
evaluating epigenetic drugs alone or in combination therapies are ongoing. The aim 
of this review is to provide a comprehensive summary of known epigenetic alterations 
and of the current use of epigenetic drugs for the treatment of hematological 
malignancies.

INtrODUctION

One of the main advances in understanding of 
cancer has been the observation that genetic changes 
to genes encoding for the epigenetic machinery are 
common and recurring events in oncogenesis and 
tumor progression. The application of next-generation 
sequencing technologies to tumor samples has allowed 
the identification of novel mutations and structural 
variations in proteins involved in DNA methylation 
and post-translational histone modifications, which are 
dynamically connected each other in the regulation of 
gene expression. Disruption of this complex epigenetic 
control mechanism has been frequently described in 
hematological malignancies, suggesting that alterations in 
epigenetic regulators may impair the expression of genes 
that regulate hematopoietic stem cells (HSC) proliferation, 
survival and stemness [1-4] (Figure 1).

In this review, we mainly focus on epigenetic 
alterations occurring in hematological malignancies and 
discuss the potential utility of epigenetic targeting in the 
treatment of these tumors.

DNA MEtHYLAtION

The best characterized epigenetic modification is 
DNA methylation, which occurs in the context of cytosine 
bases in the cytosine-guanine dinucleotides (CpG) in 
mammalian DNA strands. Cytosine modification is 
catalyzed by DNA methyltransferases (DNMTs), which 
transfer a methyl group from the donor S-adenosyl 
methionine (SAM) to the 5-carbon (C5) position of 
the pyrimidine ring. Transcriptional silencing by DNA 
promoter methylation has an essential regulatory 
function in several cellular processes, and is involved in 
establishing developmental tissue-specific patterns of gene 
expression. DNA methylation also plays a crucial role 
in establishing genomic imprinting and in maintaining 
balanced expression of X-linked genes in female cells 
through X chromosome inactivation. DNA methylation 
also safeguards genomic integrity and stability by 
silencing endogenous retroviral and parasitic repetitive 
sequences [5, 6]. Although five members of the DNMT 
family have been identified, only DNMT1, DNMT3A, and 
DNMT3B are known to be involved in the methylation 
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of CpG sites. DNMT1 is classified as a maintenance 
DNMTs since it preferentially copies DNA methylation 
patterns from a hemi-methylated substrate after DNA 
replication. Conversely, DNMT3A and DNMT3B serve 
as de novo DNMTs that are essential in the generation of 
new methylation patterns during embryogenesis and germ-
cell development. Additionally, there is a class of methyl-
CpG-binding proteins (MBDs) which bind to methyl-CpG 
within gene promoters and prevent the binding of specific 
transcription factors to their recognition sites [7, 8].

Another family of important mediators of DNA 
methylation is the Ten-Eleven-Translocation (TET) 
family, which includes proteins that utilize oxygen and 
α-ketoglutarate (α-KG) to catalyze different reactions, 
including the oxidation of 5-methylcytosine (5-mC) to 
5-hydroxymethylcytosine (5-hmC). The TET family 
of proteins was first identified as a fusion partner of 
mixed-lineage leukemia (MLL) in patients with t(10;11)
(q22;q23) acute myeloid leukemia (AML). Although the 

biological functions of 5-hmC are still largely unknown, 
recent evidence suggests that it may play a functional role 
in stem cell biology [8].

DNA methylation appears to be critically involved 
in hematopoietic cell differentiation and the development 
of hematological malignancies, since several genes that 
regulate the processing of 5-mC are commonly found to 
be mutated in hematopoietic tumors [9].

DNMts

DNMTs are essential for early stage of 
hematopoiesis. The absence of DNMT-1 in HSC 
leads to impaired self-renewal in vitro. Furthermore, 
mouse HSC lacking Dnmt-1 were unable to suppress 
key myeloerythroid regulators and lost their ability to 
differentiate into lymphoid progeny, thus demonstrating 
that DNA methylation is necessary to protect normal HSC 

Figure 1: Representative proteins involved in DNA methylation and histone modifications that were identified to be 
recurrently mutated, translocated or aberrantly recruited in hematological malignancies. The consequences of mutations, 
either gain of function or loss of function are also shown. Gene symbol: CBP, cyclic AMP response element-binding protein; DNMT, DNA 
methyltransferase; DOT1L, disruptor of telomeric silencing 1-like; EZH2, enhancer of zeste 2; H3K4, histone 3 lysine 4; H3K9, histone 
3 lysine 9; H3K27, histone 3 lysine 27; H3K36, histone 3 lysine 36; H3K79, histone 3 lysine 79; H4R3, histone 4 arginine 3; HDAC, 
histone deacetylase; IDH, isocitrate dehydrogenase; MLL, mixed-lineage leukemia; MOZ, monocytic leukemia zinc finger protein; NSD, 
nuclear-receptor-binding SET-domain-containing; PRMT, protein arginine N-methyltransferase; RIZ, retinoblastoma protein-interacting 
zinc finger; TET2, Ten-Eleven-Translocation 2.
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from lineage restriction [10]. More recently, Challen GA 
et al. demonstrated that Dnmt3a loss progressively impairs 
the differentiation capacity of HSC and is accompanied 
by a simultaneous expansion of HSC in the bone marrow. 
Furthermore, Dnmt3a-deficient HSC showed both 
hypermethylation and hypomethylation of promoter 
regions, resulting in an up-regulation of multipotency 
genes and a down-regulation of HSC-specific genes. 
Altogether, these data support the critical involvement 
of DNMT3A in regulating HSC differentiation [11] and 
suggest that the loss of de novo DNMT3A activity might 
impair the differentiation potential of HSC, providing 
a possible explanation for how DNMT3A mutations 
can contribute to AML and myelodysplastic syndrome 
(MDS) pathogenesis. In fact, several studies using large-
scale array-based genomic resequencing and whole-
genome sequencing of human leukemia have revealed 
recurrent DNMT3A mutations at multiple sites in AML 
patients. Greater than 50% of DNMT3A mutations occur 
at a single amino acid position, R882, located within the 
catalytic domain; this leads to reduced enzymatic activity 
in vitro [12]. Consistently, the presence of DNMT3A 
gene mutations was detected in approximately 20% of 
patients with AML, a genetic change associated with 
a shorter overall survival [13]. However, DNMT3A 
mutations did not correlate with any variations in 5-mC 
content in AML genomes and were not associated with a 
specific methylation or gene expression signature in AML 
patients, so further evaluation is needed to better define 
the potential pathogenic role of these mutations [13, 14].

DNA hypermethylation

Several lines of evidence point to a role for DNA 
hypermethylation in the molecular pathogenesis of 
hematological malignancies (for review see [15]). In fact, 
the gene encoding the cell cycle regulator p15/INK4b 
is frequently inactivated by promoter hypermethylation 
in a large proportion of leukemia patients. Aberrant 
DNA hypermethylation impairs p15 growth-suppressive 
properties, allowing leukemic cells to escape inhibitory 
signals in the bone marrow. Hypermethylation of p15 
promoter occurs in approximately 50% of patients with 
chronic myeloid leukemia (CML), AML, and acute 
lymphoblastic leukemia (ALL) and represents a key 
feature of the malignant progression of MDS [16]. In 
fact, increased CpG methylation at the INK4b locus 
was associated with the progression of MDS to AML, 
thus suggesting that aberrant p15 gene hypermethylation 
may be considered an early event in myeloid cell 
transformation [17]. A strict association between aberrant 
promoter methylation and DNMT expression has been 
found in MDS, a hematological malignancy in which the 
list of genes inactivated by hypermethylation has grown 
considerably (for review see [18]). Recently, using an 
in vitro MDS model, DNA hypermethylation of several 

genes involved in normal hematopoiesis was identified 
and associated with elevated DNMT isoform expression, 
supporting the notion that this disease is characterized by 
widespread epigenetic deregulation [19].

DNA hypomethylation

Loss of methylation has been reported in several 
hematological malignancies. Genome-wide DNA 
methylation takes place predominantly at repetitive 
sequences, including short and long interspersed nuclear 
elements and LTR elements, segmental duplications and 
centromeric and subtelomeric regions [20, 21]. The Long 
Interspersed Nucleotide Element-1 (LINE-1) repetitive 
elements are the most well-documented interspersed 
repetitive elements displaying hypomethylation in 
various cancers, including ALL. Hypomethylation in the 
promoter region of LINE-1 can lead to the reactivation 
of transposable LINE-1 elements that may cause 
chromosomal instability, as observed in CML [22].

tEt enzymes and DNA hydroxymethylation

Mutations in TET2 have been found in a range 
of hematological malignancies, including AML, MDS, 
myeloproliferative neoplasms (MPN), and chronic 
myelomonocytic leukemia (CMML) with frequencies of 
24%, 19%, 12% and 22%, respectively [23]. In a study 
involving patients with MDS and CMML, a TET2 loss-
of-function mutation was detected in CD34+ cells, 
suggesting the early occurrence of this genetic change 
along the natural history of these malignancies [24]. It has 
been also reported that loss of Tet2 expression in Tet2-
deficient mouse embryonic stem cells led to impaired 
hematopoietic differentiation, with expansion of HSC and 
multipotent progenitor cells. Particularly, Tet2-deficient 
mice developed hematopoietic malignancies resembling 
human CMML [25]. Altogether, these data might support 
the critical role for Tet2 in regulating 5-hmC levels 
within genes involved in the self-renewal, proliferation, 
and differentiation of HSC. As described above, TET2 
function requires α-KG, a substrate produced from 
isocitrate by isocitrate dehydrogenase (IDH). Mutations 
affecting IDH1/2 were detected in up to 20 % of AML 
and consist of single amino acid substitutions occurring 
within the active site of the enzyme at one of three highly 
conserved arginine residues. All reported IDH1 and 
IDH2 mutations promote a new enzyme activity, with 
the acquisition of the ability to convert α-KG to produce 
2-hydroxyglutarate (2-HG), which is similar in structure to 
α-KG, outcompetes α-KG for binding and inhibiting TET2 
enzymes, thus altering gene expression and impairing 
lineage specific differentiation. Mutations of IDH1/2 were 
found to be mutually exclusive with TET2 mutations in a 
large cohort of AML patients. Consistent with a common 
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role in AML pathogenesis, AML samples with mutations 
in either IDH1/2 or TET2 displayed overlapping DNA 
methylation signatures, characterized by global promoter 
hypermethylation [26].

HIstONE MODIFIcAtION IN 
HEMAtOLOGIcAL MALIGNANcIEs

Histones are abundant nuclear proteins involved 
in the formation of nucleosomes, structures upon which 
eukaryotic DNA is wrapped. Histones H2A, H2B, H3 and 
H4 can undergo several post-translational modifications 
mainly in their N-terminal tails, with methylation and 
acetylation being the most studied. These modifications, in 
turn, alter the electrostatic charge of histones and modify 
their binding to DNA, thus playing an essential role in 
determining the transcriptional status of chromatin, either 
inducing an open chromatin structure that is permissive for 
transcription or a more condensed chromatin state, which 
leads to transcriptional gene silencing. Modifications 
to histone tails can also create binding surfaces for 
protein recognition modules, such as bromodomains 
and chromodomains, which recruit specific functional 
complexes. So far, a wide range of possible combinations 
of histone modifications has been identified. Each histone 
tail can be either unmodified or modified, with lysine 
residues that can either be mono-, di-, or tri-methylated 
or acetylated. Based on this intricate pattern of histone 
modifications, Struhl and Allis proposed a “histone code” 
hypothesis, suggesting that non-histone proteins would be 
able to “write”, “read” and “erase” histone modifications 
and/or their combinations in order to regulate specific 
chromatin functions and, therefore, to determine the 
transcriptional status of the target gene (reviewed in [27]). 
In all higher eukaryotes, canonical histones are encoded 
by multiple gene copies, giving rise to several variants 
with different sequences [28]. The “canonical” histones 
are expressed at high levels during the S-phase of the cell 
cycle, allowing for their rapid deposition behind the DNA 
replication fork. By contrast, replication-independent 
histone “variants” are expressed and incorporated into 
chromatin throughout the cell cycle (for reviews see [29]). 
Canonical histone genes are located within multigene 
clusters, and their expression is largely regulated by a 
unique 3’ end mRNA which is not polyadenylated, but 
instead contains a 26 bp sequence that forms a stem-loop 
structure. On the contrary, genes for histone variants 
are typically found in a single or low copy number, 
and are regulated similarly to normal genes [30]. The 
incorporation of histone variant into nucleosomes may 
be influenced by DNA methylation. A handful of studies 
in both plants and mammals report that the H2A variant 
H2A.Z is excluded from methylated DNA at promoters 
and within gene bodies, suggesting that epigenetic factors 
also contribute to histone localization [31, 32].

Mutations affecting genes encoding for canonical 

histones and their variants have an important role in 
altering chromatin architecture, leading to aberrant 
gene expression. Mutations in H3F3A, which encodes 
the histone H3 variant H3.3, have been recognized as 
being especially important in promoting aberrant global 
histone modification changes in pediatric glioblastoma. 
However, H3F3A mutations represent a very rare event 
in hematopoietic tumors, since they occur only in a ALL 
with a very low incidence [33]. In addition to H3F3A, the 
H2AFX gene also seems to be involved in both cancer 
initiation and progression. Deletion of band 11q23, where 
H2AFX maps, has been detected in several human cancers, 
including T cell prolymphocytic leukemia and B-CLL 
[34]. Furthermore, a G/A single nucleotide polymorphisms 
upstream of the start codon of H2AFX has been associated 
with non-Hodgkin lymphoma (NHL) susceptibility 
and development [35]. Histone gene mutations are not 
restricted to histone H2 and H3, since mutations affecting 
H1 family members have also been observed in follicular 
lymphoma [36]. H1 gene mutations are located within 
the H1 globular domain and result in reduced capacity to 
associate with chromatin [37] and binding to DNMT3B 
[38]. However, it is not yet clear if histone H1 mutations 
lead to defective chromatin compaction or result in 
chromosomal instability.

Histone methylation

Histone methylation involves the addition of 
methyl groups to the side chain nitrogen atoms of 
arginine, lysine and histidines residues, with the most 
commonly histone methylation sites including histone 
H3 lysine 4 (H3K4), H3K9, H3K27, H3K36, H3K79 
and H4K20. Depending on which residue is modified, 
histone methylation is associated with both transcriptional 
gene activation and repression. The pattern of histone 
methylation is read by histone methyltransferases (HMTs) 
that catalyze the addition of methyl groups donated from 
S-adenosylmethionine to histones. So far, three families of 
HMTs have been identified: the SET-domain-containing 
proteins and disruptor of telomeric silencing 1-like 
(DOT1L) proteins, which methylate lysines, and members 
of the protein arginine N-methyltransferase (PRMT) 
family, which methylate arginines (reviewed in [39]).

The EZ homolog 2 (EZH2) protein contains a 
SET domain that is responsible for the trimethylation 
of H3K27, a histone modification associated with 
transcriptional silencing [40].The EZH2 gene is highly 
expressed in germinal center B (GCB) cells, indicating it 
has a role in normal GCB cellular physiology [41]. As B 
cells exit the GCB, EZH2 expression usually decreases, 
allowing the expression of genes that are involved in 
terminal differentiation [42]. A recurrent mutation of 
tyrosine 641 (Y641) within the EZH2 SET domain has 
been detected in approximately 22% of diffuse large B-cell 
lymphoma (DLBCL) and 7% of follicular lymphomas 



Oncotarget57331www.impactjournals.com/oncotarget

(FL) [43]. This mutation was the first of chromatin-
modifying gene alteration to be described in DLBCL and 
FL. Surprisingly, lymphoma cell lines carrying the Y641 
mutation showed increased H3K27 trimethylation. In light 
of these observations, in vitro experiments demonstrated 
that the mutated EZH2 form was defective in catalyzing 
H3K27 monomethylation, but acquired enhanced catalytic 
efficiency for the H3K27 trimethylation [44, 45]. A 
global increase in H3K27 trimethylation, due to EZH2 
Y641 mutation, represses genes involved in proliferation 
checkpoints and associated with B-cell differentiation, 
thus providing a possible explanation for the oncogenic 
role of mutant EZH2 in DLBCL [41, 46]. A series of 
loss-of-function EZH2 mutations have been identified 
in patients with myeloid malignancies, such as MDS, 
CMML, and primary myelofibrosis [47-49]. Although 
these studies demonstrated that EZH2 loss resulted in a 
global decrease in H3K27 trimethylation, the molecular 
mechanism by which the inactivation of EZH2 contributes 
to hematopoietic transformation is yet to be determined.

The nuclear-receptor-binding SET-domain-
containing (NSD) family consists of three members, 
NSD1, NSD2, and NSD3, which preferentially target 
H3K36 methylation. Although NSD proteins are 
frequently found to be translocated in leukemia, little is 
known about their role in transcriptional regulation. In 
childhood AML, the NSD1 gene is disrupted by the t(5,11)
(q35;p15.5) chromosomal translocation, which produces 
the fusion protein NUP98–NSD1 [50]. In vitro studies 
have indicated that the chimeric protein NUP98-NSD1 
promotes the transcription of the Homeodomain (HOX) 
genes [51], which are normally involved in proliferation 
and differentiation of HSC. This epigenetic deregulation 
of HOX genes sustains the self-renewal of myeloid stem 
cells that is essential for the development of AML. A 
second gene of the family, NSD2, may fuse with the IgH 
locus via t(4;14) translocation, which affects 15-20% of 
patients with multiple myeloma (MM) [52]. Chromosomal 
fusion leads to overexpression of the NSD2 protein, which 
may promote the proliferation of MM cells presumably 
by reprogramming global histone methylation and gene 
expression [53].

MLL is a SET domain family protein that plays 
a role in H3K4 methylation. The first gene of this 
family, MLL, was shown to target SET domain HMT 
activity to positively regulate HOX genes transcription 
in hematopoiesis through di- and tri-methylation of 
H3K4 at HOX promoter and enhancer sequences [54]. 
Rearrangements affecting the MLL gene are normally 
found in approximately 10% of AMLs in adults and in 
more than 70% of infant leukemia [46]. Chromosomal 
rearrangements involving MLL can occur in several forms 
such as balanced translocations, inversions, and partial 
tandem duplications of 11q23. Balanced translocations 
are the most common rearrangement disrupting MLL 
and more than 50 different partner genes are known to 

date [55-57]. Although some of these translocations 
delete the C-terminal containing the SET domain, and 
therefore HMT activity [58], the resultant MLL fusion 
proteins seem to act as dominant positive transcriptional 
regulators capable of transforming both HSC and early 
myeloid progenitors. Recent evidence indicates that 
MLL fusion proteins may be involved in the regulation 
of gene expression by directing histone modification. 
The most common MLL fusion proteins, including 
MLL-AF4, MLL-AF9, and MLL-ENL, belong to a set 
of multiprotein complexes involved in transcriptional 
activation/elongation. These complexes can recruit 
DOT1L, an HMT that lacks the canonical SET domain and 
is responsible for catalyzing the methylation of H3K79. 
Studies on different human MLL-rearranged leukemia 
cells have demonstrated high levels of H3K79 methylation 
at HOX genes and other MLL targets, thus suggesting that 
aberrant H3K79 methylation may represent a mechanism 
of oncogenic transcriptional activation in MLL leukemia 
[46, 59]. MLL fusion proteins can also transform primary 
myeloid progenitors by directing the histone arginine 
methyltransferase PRMT1 to the promoter regions of 
HOX genes, which become aberrantly methylated at H4 
arginine 3 and actively transcribed [60]. Translocations 
involving MLL has been widely described in the last years, 
but loss of function mutation affecting MLL2 have also 
been found in a significant percentage of malignancies, 
including NHL. In particular, in 89% of FL and 32% of 
DLBCL, MLL2 mutations resulted in small deletions 
creating frameshifts or point mutations that introduced 
premature stop codons in the catalytically active SET 
domain [43, 61, 62]. However, the effect of MLL2 
mutations on H3K4 methylation and the mechanism by 
which MLL2 loss contributes to lymphomagenesis are still 
unclear. Another member of this family, MLL3, has been 
found mutated in FL and DLBCL [63, 64], suggesting a 
functional redundancy in oncogenic transformation.

The retinoblastoma protein-interacting zinc finger 
(RIZ) is a HMT involved in H3K9 methylation [65], 
which is associated with transcriptional silencing. RIZ 
proteins contain a domain, called the PR domain, showing 
similarity with the SET domain. The RIZ gene produces 
two related proteins, RIZ1 and RIZ2, which differ at the 
N-terminal domain by the presence or absence of the 
PR domain, respectively. The RIZ1 product commonly 
undergoes deletions in several types of human cancers. 
Consistently, mice lacking RIZ1, but not RIZ2, were 
found to develop unusual tumors, such as diffuse large 
B-cell lymphoma, suggesting that the PR domain is 
likely responsible for the tumor suppressing activity of 
RIZ1 [66]. Another member of the of the RIZ family is 
the MDS1-EVI1 gene, which maps to the 3q26 locus and 
encodes two products with different lengths: MSD1-EVI1, 
containing the PR domain with HMT activity, and EVI1, 
lacking the PR domain [67]. The PR domain-containing 
product is known to possess tumor suppressor functions, 
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while EVI1 has a positive role in oncogenesis. MSD1-
EVI1 and EVI1 are expressed in hematopoietic cells and 
their inappropriate expression has been implicated in 
the development of myeloid disorders. Rearrangements 
such as translocations or inversions involving the 3q26 
band usually cause disruption of the MDS1-EVI1 protein 
and overexpression of EVI1, as observed in AML and 
MDS [68, 69]. However, the mechanism by which EVI1 
overexpression contributes to oncogenic transformation 
remains unclear.

Histone acetylation

Acetylation of the ε-amino group of lysine residues 
is an important post-translational modification that occurs 
not only in histone tails, but also in chromatin proteins 
and non-histone proteins regulating important pathways. 
Acetylation of lysine residues neutralizes the charge 
on histones, leading to an open chromatin structure 
that is more permissive for gene transcription, whereas 
deacetylation of lysines promotes chromatin condensation 
and transcriptional gene silencing. The dynamic 
equilibrium of lysine acetylation in vivo depends on the 
balance of the activities of histone acetyl transferases 
(HATs) and HDACs [70].
HAts

According to their homology, known HATs can 
be grouped into different families, including the MYST 
superfamily, the GCN5 N-acetyltransferase (GNAT) 
family, and the cyclic AMP response element-binding 
protein (CBP)/p300 superfamily [70].

MOZ, a member of the MYST family, has been 
found to acetylate both itself and lysine (K) residues on 
H2B, H3 and H4 in vitro and H3K9 in vivo. Besides its 
intrinsic HAT activity, MOZ functions as co-activator 
of several transcription factors that are involved in the 
proliferation and differentiation of HSC [71]. Recurrent 
reciprocal translocations fuse the MOZ gene to genes 
encoding CBP and p300 or the protein transcription 
intermediary factor 2 (TIF2). Fusion proteins resulting 
from MOZ chromosomal translocation can transform 
hematopoietic progenitors in vitro and induce 
myeloproliferative disease in vivo [72]. The chimeric 
protein MOZ-TIF2, which derives from the inversion 
inv8(p11q13), retains the conserved HAT domain of MOZ 
and the CBP-interaction domain of TIF2. In one of the 
earliest studies, Deguchi et al. reported that the expression 
of MOZ-TIF2 immortalized myeloid progenitors in vitro 
and induced AML in mice [73]. Further studies in AML 
demonstrated that MOZ-TIF2 reduced CBP activity 
in vivo, resulting in aberrant acetylation patterns that 
inhibited transcriptional activities of critical cell cycle 
regulators, such as p53 [74].

Similarly to MOZ, CBP is also involved in HSC 
self-renewal by regulating the activity of transcriptional 

complexes. Heterozygous loss of CBP impairs HSC self-
renewal and predisposes to hematologic malignancies 
in humans and in mouse models [75]. Consistently, 
it has been shown that CBP plays an important role 
in tumorigenesis through its ability to modulate the 
transcriptional activity of several transcription factors, 
such as NF-κB and p53 [76]. The CBP gene is located on 
chromosome 16p13, which is target of translocations in 
AML and MDS, including MOZ-CBP [t(8;16)(p11;p13)]. 
This fusion gene encodes for a protein that retains most 
of the interaction domains of both parental proteins as 
well as the HAT domain of MOZ. The resulting MOZ-
CBP fusion protein has been found to interact with the p65 
subunit of NF-κB and to increase the expression of NF-κB 
target promoters in HSC from individuals with AML [77]. 
Besides the translocations mentioned above, inactivating 
mutations and deletions in the HAT coding domain of CBP 
and its paralog p300 have been detected in approximately 
41% of FL and 39% of DLBCL. The majority of these 
mutations affected only one allele, suggesting that reduced 
HAT activity may have a critical role in lymphomagenesis. 
In fact, CBP/p300 genetic lesions impair their ability to 
acetylate known substrates such as BCL6 and p53, that are 
themselves targeted by somatic mutation in DLBCL [62]. 
Reduced p53 tumor suppressor function and constitutive 
activation of BCL6 oncoprotein may represent alternative 
oncogenic mechanisms by which CBP/p300 mutations 
contribute to DLBCL transformation.
HDAcs

So far, mammalian HDACs have been divided into 
four major classes, based on their sequence similarities 
to yeast HDACs, subunit localizations, and enzymatic 
activities: class I (HDAC 1, 2, 3, and 8), class II (HDAC 
4, 5, 6, 7, 9, and 10), class III or sirtuins (SIRT 1-7) and 
class IV which consists of HDAC 11 [78]. Class I HDACs, 
which share homology with the RPD3 yeast protein, are 
primarily localized in the nucleus, and are ubiquitously 
expressed in several human cell lines and tissues. Class 
II HDACs are homologues to the Hda1 yeast protein and 
are expressed in a limited number of cell types. They 
are mainly cytoplasmic, but also shuttle between the 
nucleus and cytoplasm [79]. Sirtuin members, which are 
homologues to the Sir2 yeast protein, have been found 
in a wide variety of subcellular locations [80]. Class 
IV HDACs share sequence similarity with the catalytic 
core of both Class I and II enzymes and are found 
predominantly in the cytoplasm where they preferentially 
deacetylate non-histone proteins [81].

The first evidence of the involvment of HDACs 
in oncogenesis was derived from hematological 
malignancies, where fusion proteins resulting from 
chromosomal translocations were shown to aberrantly 
recruit HDACs to specific gene promoters, thereby 
impairing the differentiation and proliferation of myeloid 
cells [82]. In this respect, acute promyelocytic leukemia 



Oncotarget57333www.impactjournals.com/oncotarget

Table 1: Summary of clinical trials examining DNA hypomethylating agents (DHA) alone or in combination with 
Histone Deacetylase inhibitors in hematological malignancies

DHA Phase Combination Hematological disease Identifier state

Azacitidine

I

Entinostat AML a, CMML, MDS, NCT00101179b Ongoing

MDS,AML,CMML NCT00528983 Ongoing
VPA, ATRA AML,MDS NCT01575691 Completed

AML, MDS NCT00350818 Completed

Belinostat AHM NCT00351975 Completed
MDS NCT01152346 Completed
AML, CMML, MDS NCT01519011 Completed

Pracinostat AHM, MDS NCT00741234 Completed
MDS NCT01571648 Completed

Panobinostat AML, MDS, CMML NCT01613976 Completed 

Sodium phenylbutyrate AML, MDS NCT00004871 Completed
AML, MDS, CMML, HL, 
MM, NHL NCT01908387

Terminated

I/II

Mocetinostat MDS NCT02018926 Recruiting
Romidepsin HL, NHL NCT01998035 Recruiting
Vorinostat AML,DMS NCT00392353 Ongoing

MDS NCT01305460 Ongoing
AML, MDS NCT01835587 Ongoing

Vorinostat, Gemtuzumab 
ogamicin AML NCT00895934

Completed

Mocetinostat AML, MDS NCT00324220 Completed

II

MDS, JMML NCT02447666 Recruiting
MDS NCT01652781 Recruiting
AML,MDS NCT02204020 Recruiting
CMML, MDS NCT01404741 Recruiting
AML NCT02450877 Recruiting

Vorinostat AML, MDS NCT01617226 Recruiting
Panobinostat AML, CMML, MDS NCT00946647 Recruiting
VPA, Lenalidomide MDS NCT01342692 Recruiting
VPA AML, MDS NCT02124174 Recruiting

AML, MDS NCT01995578 Recruiting
AML, MDS NCT01462578 Recruiting
MDS NCT02281084 Recruiting

Vorinostat AML,MDS NCT00948064 Ongoing
Entinostat AML, CMML, MDS, NCT00313586 Ongoing

MDS NCT01599325 Ongoing
Pracinostat MDS NCT01873703 Ongoing

MDS NCT00721214 Ongoing
VPA, ATRA AML,MDS NCT00326170 Completed
VPA, Cytarabine AML,DMS NCT00382590 Completed

MDS NCT00897130 Completed
AML NCT00739388 Completed
AML NCT00387647 Completed
MDS NCT00384956 Completed

VPA, ATRA MDS, AML NCT00339196 Completed
Sodium phenylbutyrate AML, MDS, MM, NHL NCT00006019 Completed
VPA, ATRA MDS NCT00439673 Completed

MDS NCT00102687 Completed
AML, MDS NCT00915785 Completed
CMML NCT01235117 Completed
MDS NCT00446303 Terminated
CLL NCT00413478 Terminated

Mocetinostat AML,MDS NCT00666497 Terminated
Mocetinostat HL, NHL NCT00543582 Terminated

II/III Lenalidomide, Vorinostat CMML, MDS NCT01522976 Ongoing

III
AML,MDS NCT00887068 Recruiting

CCR AML NCT01074047 Ongoing
MDS NCT01186939 Completed
MDS NCT00071799 Completed
AML, MDS NCT00422890 Completed

IV MDS NCT01201811 Completed
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(APL) represents a well described model, in which the 
retinoic acid (RA) pathway is disrupted and the myeloid 
differentiation is arrested at the promyelocytic stage 
[83]. RA receptor (RAR)-α is important for myeloid 
differentiation and acts as a transcriptional regulator 
by binding its partner RXR. The heterodimerization 
process enhances RAR-α binding affinity to RA response 
elements (RAREs) within the promoters of target 
genes, thus increasing its transcriptional efficiency [81]. 
In the absence of RA, the RAR-α-RXR heterodimer 
recruits HDAC-containing repression complexes 

that lead to chromatin condensation and transcription 
repression. Physiological concentrations of RA induce 
a conformational change in the RAR-α-RXR complex, 
resulting in the dissociation of repression complexes and 
the subsequent recruitment of transcription factors [84, 
85]. In 100% of APL cases, the RAR-α gene is involved 
in reciprocal chromosomal translocations and, in >90% 
of these cases, the translocation partner is promyelocytic 
leukemia protein (PML), resulting in the formation 
of the PML-RAR-α chimeric protein, which acts as a 
transcriptional repressor. The PML-RAR-α fusion protein 

Decitabine

I

OSU-HDAC42 AML NCT01798901 Ongoing

Vorinostat AML, CMML, MDS NCT00357708
Completed

Vorinostat AML, ALL,CLL, NHL NCT00275080 Completed

VPA NHL NCT00109824 Completed
VPA AML, CLL, SLL NCT00079378 Completed

AML, ALL NCT00042796 Terminated
Romidepsin MDS NCT00114257 Completed
Cytarabine, Vorinostat AML NCT01130506 Completed

MDS NCT00941109 Completed
MDS NCT00796003 Completed
ALL NCT00349596 Completed
AML, MDS NCT00049582 Terminated

I/II
Panobinostat AML, MDS NCT00691938 Ongoing

MDS NCT01165996 Completed
MDS, NCT00075010 Completed

II

AML, MDS NCT01687400 Recruiting
VPA, ATRA AML NCT00867672 Recruiting

VPA AML, MDS NCT00414310 Completed

CMML, MDS NCT00067808 Completed

MDS NCT00003361 Completed
AML NCT00866073 Completed
MDS NCT00619099 Completed

CML NCT00042003
Completed

CML NCT00042016 Completed
CML NCT00041990 Completed

MDS NCT00744757
Completed

CMML, MDS NCT00113321 Terminated

MDS NCT01333449 Terminated

III MDS NCT01751867 Completed

MDS NCT00043381 Completed

Azacitidine versus 
Decitabine

II MDS NCT02269280 Recruiting
II MDS NCT01720225 Recruiting
III MDS NCT01409070 Completed
IV MDS NCT01011283 Terminated

SGI-110

I AML NCT02293993 Recruiting
I/II AML, CMML, MDS NCT01261312 Ongoing

II
Idarubicin, Cladribine AML NCT02096055 Recruiting

MDS NCT02131597 Recruiting

MDS NCT02197676 Recruiting

III AML NCT02348489 Recruiting
a AHM, advanced hematologic cancers; AML, acute myeloid leukemia; ATRA, all-trans retinoic acid; CCR, Conventional 
Care Regimen; CLL, chronic lymphocytic leukemia; CML, chronic myeloid leukemia; CMML, chronic myelomonocytic 
leukemia; HL, Hodgkin's lymphoma; JMML, juvenile myelomonocytic leukemia; MDS, myelodysplastic sindrome; MM, 
multiple myeloma; NHL, non-Hodgkin lymphoma; SLL, small lymphocytic lymphoma; VA, valproic acid.
b Identifier of the trial as retrieved April, 2016, from: http://clinicaltrials.gov.
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shows an increased ability to bind to DNA at RAREs 
and to associate with corepressor complexes containing 
HDACs and chromatin-modifying factors, such as HMTs 
and DNMTs that mediate the establishment of a repressive 
chromatin structure at RARα target promoters [86, 87]. 
PML-RAR-α fusion proteins do not dissociate from 
corepressor complexes at physiological concentrations of 
RA, resulting in the transcriptional silencing of RAR-α 
target genes which normally play an important role in the 
control of myeloid cell differentiation. Furthermore, PML-
RAR-α fusion proteins have been shown to bind to non-
canonical RAREs, resulting in widespread transcriptional 
deregulation that strongly interferes with gene expression 
programs involved in myeloid proliferation and 
hematopoietic progenitor self-renewal [88, 89].

Similar mechanisms of transcriptional disruption 
via histone deacetylation have been described in AML, 
where the chimeric AML1/ETO gene is produced by 
the fusion of the AML1 gene on chromosome 21 to the 
Eight-Twenty One (ETO) oncogene on chromosome 8. 
The t(8;21) was the first translocation to be discovered 
and represents one of the most frequent chromosomal 
abnormalities in AML [90]. Although AML1 functions 
as a transcriptional activator through the interaction 
with a complex containing p300, in the AML1-ETO 
fusion protein the HAT-interacting region of AML1 is 
replaced by the coding sequence of ETO. The resulting 
aberrant fusion protein has multiple effects on the 
regulation of proliferation, differentiation, and viability 
of leukemic cells by recruiting enzymes involved in 
epigenetic regulation. In fact, the ETO transcription factor 
interacts with repressor complex containing HDAC, but 
also associates with DNMT1, thus imposing aberrant 
transcriptional repression through intensive histone 
deacetylation and DNA hypermethylation at AML1 target 
hematopoietic promoters [88].

bromodomain proteins

Bromodomains (BRDs) represent highly 
evolutionarily conserved protein-interaction modules 
that recognize acetylated lysine residues in histones 
and other non-histone proteins. To date, over 40 nuclear 
or cytoplasmic BDRs have been identified, with each 
protein containing as many as six bromodomains. Human 
BRDs belong to eight distinct families and include 
chromatin-modifying enzymes, chromatin remodellers, 
transcriptional co-activators and mediators, and the large 
group of bromodomain and extra-terminal motif (BET) 
proteins. BET proteins utilize dual, tandem N-terminal 
BRD modules (BD1 and BD2) able to bind to acetylated 
lysine residues preferentially on H3 and H4 histone tails 
and on non-histone targets such as the NF-κB subunit RelA 
and GATA1 [91, 92]. The BET family consists of four 
members that regulate transcription by RNA polymerase 
II (Pol II): BRD2, BRD3, BRD4, which are ubiquitously 

expressed, and BRDT, the expression of which is restricted 
to germ cells. BET proteins do not possess enzymatic 
activity at chromatin, but function as scaffolds for a 
number of transcription factors or chromatin-modifying 
enzymes (for reviews see [93, 94]). Novel global 
discovery proteomics have recently identified BET protein 
as obligate components of core transcriptional regulatory 
machineries, including the polymerase-associated factor 
complex (PAFc) and the super elongation complex (SEC), 
which are critical regulator of MLL translocated leukemias 
[95]. Furthermore, BET proteins have been found to 
associate with a great number of active promoters and to 
converge upon a significant fraction of active enhancers 
of key genes, including critical oncogenic targets such as 
c-MYC [96-98]. This suggests a role for BET proteins as 
epigenetic readers and modifiers in leukemias and other 
hematologic malignancies.

EPIGENEtIc tHErAPIEs IN 
HEMAtOLOGIcAL MALIGNANcIEs

As described above, enzymes that maintain 
and modify the epigenome play a crucial role in the 
regulation of normal hematopoiesis and, as such, they 
are often targeted by somatic alterations in hematological 
malignancies. In this context, epigenetic drugs are 
considered as an important therapeutic modality for the 
clinical management of hematological malignancies. 
Epigenetic drugs can be used alone or in combination 
therapies with currently available cancer chemotherapies.

DNMT inhibitors

So far, the most widely studied DNMT inhibitors 
(DNMTi) 5-azacytidine (azacitidine, Vidaza) and 5-aza-
2’-deoxycytidine (5-AZA-CdR, Decitabine, Dacogen) 
have undergone intensive clinical development that led 
to their Food and Drug Administration (FDA) approval 
for patients affected by MDS [99]. Once taken up by the 
cell, the nucleoside analogs azacitidine and 5-AZA-CdR 
undergo a series of metabolic modifications prior to being 
incorporated into genomic DNA during the S phase of 
the cell cycle. After incorporation, they behave as suicide 
substrates for the DNMTs that, in the attempt to methylate 
them, became irreversibly inactivated through the 
formation of a stable covalent bond between the enzyme 
and the modified pyrimidine ring. This binding leads 
to depletion of DNMT1 and passive hypomethylation 
of the genome following DNA replication. Azacitidine 
incorporates into both RNA and DNA, thus inhibiting 
protein synthesis, while 5-AZA-CdR is incorporated 
only into DNA [100]. Azacitidine and 5-AZA-CdR have 
been employed to treat hematological malignancies for a 
long time using different doses and schedules, alone or 
in combination with inhibitors of HDAC (for reviews see 
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Table 2: Summary of clinical trials examining Histone Deacetylase, Histone Methyltransferase, and Bromodomain 
inhibitors in hematological malignancies
HDAC inhibitor Phase Combination Hematological disease Identifier state
4SC-202 I AHM NCT01344707 Completed

Abexinostat
I HL, NHL, MM NCT01149668 Completed
I/II HL, FL, MCL NCT00724984 Completed

Belinostat

I CHOP PTCL NCT01839097 Ongoing
I HL, B-cell, T-cell or NK-NHL NCT00413075 Completed
II PTCL NCT00865969 Completed
II MDS NCT00357162 Completed
II MM NCT00131261 Completed
II AML NCT00357032 Completed
II B-cell-NHL NCT00303953 Completed
II CTCL, NHL, PTCL NCT00274651 Terminated

CI-994 II MM NCT00005624 Completed
CUDC-907 I HL, MM, NHL NCT01742988 Recruiting

Entinostat
I HL, NHL NCT00020579 Completed
I ALL, AML, CML, MDS, MM NCT00015925 Completed
II HL NCT00866333 Ongoing

Givinostat
I/II HL NCT00496431 Terminated
II CLL NCT00792831 Terminated

ITF2357 II MM NCT00792506 Terminated

Mocetinostat
I/II DLBCL, FL NCT02282358 Recruiting
II HL NCT00358982 Terminated

Panobinostat

I Everolimus HL, MM, NHL NCT00962507 Completed
I CTCL NCT00412997 Completed
I HL, NHL NCT01032148 Recruiting
I AML NCT01242774 Completed
I HL NCT00742027 Completed
I MM NCT00532389 Completed
I/II Everolimus HL, MM, NHL NCT00918333 Ongoing
I/II AHM NCT00621244 Completed
I/II AML, MDS NCT01451268 Recruiting
II Rituximab DLBCL NCT01282476 Ongoing
II Rituximab DLBCL NCT01238692 Ongoing
II NHL NCT01261247 Ongoing
II NHL NCT01090973 Terminated
II AML NCT00880269 Completed
II NHL NCT01090973 Terminated

II CTCL, Adult T-cell Leukemia/
Lymphoma NCT00699296 Terminated

II ALL, AML NCT00723203 Terminated
II MDS NCT00939159 Terminated
II MDS NCT00594230 Terminated
II MM NCT00445068 Terminated
II/III CTCL NCT00490776 Completed
II/III CML NCT00451035 Completed
II/III CML NCT00449761 Completed
II/III CTCL NCT00425555 Completed

Pivanex II CLL NCT00083473 Terminated

Quisinostat
I MDS NCT00676728 Terminated
II CTCL NCT01486277 Ongoing

Resminostat II HL NCT01037478 Completed

Rocilinostat
I/II HL, NL NCT02091063 Recruiting
I/II MM NCT01323751 Ongoing
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Romidepsin

I/II Azacitidine HL, NHL NCT01998035 Recruiting
II CTCL, PTCL NCT00007345 Ongoing
II NHL NCT00077194 Completed
II NHL NCT00383565 Terminated

SHAPE II CTCL NCT02213861 Recruiting
SHP-141 I CTCL NCT01433731 Completed

Tefinostat I AML, CLL, CML CMML, HL, 
MDS, MM, NHL NCT00820508 Completed

VPA II CLL NCT00524667 Terminated
Valproate I/II Rituximab, CHOP DLBCL NCT01622439 Recruiting

I/II MDS NCT00776503 Completed

Vorinostat

I B-cell lymphomas excluding CLL NCT01276717 Completed
I CTCL NCT00771472 Completed
I HL, NHL NCT00127140 Completed

I AML, CLL, CML CMML, HL, 
MDS, MM, NHL NCT00005634 Completed

I Lenalidomide HL, NHL NCT01116154 Terminated
I/II Rituximab, CHOP DLBCL NCT00972478 Ongoing

I/II
Cyclophosphamide, 
Etoposide, Prednisone, 
Rituximab

DLBCL NCT00667615 Ongoing

I/II Rituximab, Ifosfamide, 
Carboplatin, Etoposide MCL, NHL NCT00601718 Completed

I/II CHOP NHL NCT00787527 Completed
I/II MM NCT00857324 Terminated
II Bortezomib DLBCL, MCL NCT00703664 Ongoing
II B-NHL, FL, MCL NCT00875056 Ongoing
II NHL NCT00253630 Ongoing
II NHL NCT00077194 Completed
II AML NCT00305773 Completed
II HL NCT00132028 Completed
II CTCL NCT00958074 Terminated
II MDS NCT00486720 Terminated

HMT inhibitor Phase Hematological disease Identifier state
EPZ-5676 I ALL, AML NCT02141828 Ongoing

I ALL, AML, MDS NCT01684150 Ongoing
EPZ-6438 I/II B-cell lymphomas, DLBCL, FL NCT01897571
BET inhibitor Phase Hematological disease Identifier state
FT-1101 I AML, MDS NCT02543879 Recruiting

CPI-0610
I HL, NHL NCT01949883 Recruiting
I MM NCT02157636 Recruiting
I ALL, AML, CML, MDS NCT02158858 Recruiting

GSK525762 I/II AML, NHL, MM NCT01943851 Recruiting
OTX015 I AML, ALL,  DLBCL, MM NCT01713582 Ongoing

a AHM, advanced hematologic malignancies; AML, acute myeloid leukemia; BET, bromodomain and extra-terminal motif; 
CHOP, Cyclophosphamide/Vincristine/Doxorubicin/Prednisone; CLL, chronic lymphocytic leukemia; CML, chronic myeloid 
leukemia; CMML, chronic myelomonocytic leukemia; CTCL, cutaneous T-cell lymphoma; DLBCL, diffuse large B-cell 
lymphoma; FL, follicular lymphoma; HDAC, histone deacetylase; HL, Hodgkin's lymphoma; HMT, histone methyltransferase; 
MCL, mantle cell lymphoma; MDS, myelodysplastic syndrome; MM, multiple myeloma; NHL, non-Hodgkin lymphoma; 
PTCL, Peripheral T-Cell Lymphoma; VA, valproic acid.
b Identifier of the trial as retrieved April, 2016, from http://clinicaltrials.gov.
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[101, 102]) (Table 1). 
Initially, these drugs were used at relatively high 

doses, which however turned out to be toxic and did not 
show a satisfactory antitumor activity. By contrast, lower 
doses of azacitidine and 5-AZA-CdR resulted in a stronger 
DNA hypomethylating activity and a better antineoplastic 
effect [103].

The initial trials that demonstrated the efficacy of 
azacitidine started in 1984 and were carried out by the 
Cancer and Leukemia Group B (CALGB). In the first 
phase II study, named CALGB 8421, 48 patients with 
MDS were enrolled and treated with monthly azacitidine, 
75 mg/m2/day continuous infusion for 7 days. Complete 
response (CR) was seen in 15% of azacitidine -treated 
patients, partial remission (PR) was rare, and 21% of 
patients showed hematological improvement (HI) [104]. 
Similar response rates were observed in the subsequent 
CALGB 8921 trial that included 70 patients with MDS, 
treated with either intravenous or subcutaneous azacitidine 
(75 mg/m2/d for 7 days every 28 days) [104]. In the last 
phase III randomized clinical trial CALGB 9221, a total 
of 191 patients with MDS were randomized to receive 
azacitidine 75 mg/m2/day subcutaneously for 7 days every 
28 days, or supportive care. The results demonstrated a 
60% overall response for MDS patients in the azacitidine 
arm compared to those treated with supportive care only. 
In particular, in MDS patients treated with low-dose 
azacitidine, CR, PR and HI were documented in 7%, 16% 
and 37% of cases, respectively. Furthermore, the median 
time-to-progression to AML or death was 13 months for 
patients in the supportive care arm compared with 21 
months for patients randomly assigned to azacitidine, 
with significantly improved quality of life [104]. These 
results led to azacitidine approval by the FDA for the 
treatment of MDS. These three CALGB trials included 
a large number of patients with refractory anemia 
with excess blasts in transformation that, according 
to World Health Organization (WHO) criteria, was 
reclassified as AML with multilineage dysplasia, and 
with blasts between 20% and 30% [104]. The impact of 
azacitidine on the survival of MDS patients was further 
investigated in the international phase III AZA-001 trial. 
A total of 358 patients with intermediate-2 or high-risk 
MDS according to the International Prognostic Scoring 
System (IPSS) were randomized to receive either 
azacitidine or a conventional care regimen (CCR) that 
included either low-dose cytarabine, conventional AML 
induction chemotherapy or supportive care. The results 
obtained from the phase III randomized AZA-001 trial 
demonstrated that azacitidine significantly prolonged 
overall survival (OS) in higher-risk MDS compared with 
CCR. In fact, patients treated with azacitidine achieved 
a CR or PR of 29% versus 12%, a two-year OS of 51% 
versus 26% and a median time to AML transformation or 
death of 13 months versus 7.6 months when compared 
with the CCR group. Furthermore, CR was not necessary 

to prolong OS, since patients with HI had similar two-
year survival rates [105]. In March 2009, azacitidine was 
also approved by the European Medicines Agency for 
patients who are not eligible for allogeneic hematopoietic 
stem cell transplantation with the following diagnoses: 
intermediate- or high-risk MDS according to IPSS, or 
chronic myelomonocytic leukemia with 10%-29% blasts 
without myeloproliferative disorder, or patients with 
AML with 20%- 30% blasts and multilineage dysplasia 
according to the WHO classification [106]. In a recent 
large phase III multicenter randomized trial, the AZA-
AML-001 study, 488 AML patients aged 65 years or older, 
with newly-diagnosed or secondary AML with >30% bone 
marrow blasts and white blood cell counts ≤15 × 109/L 
were randomized to receive either azacitidine (75 mg/
m2/day for seven days subcutaneously of each 28-day 
cycle) or CCR. Interestingly, in the larger group of older 
AML patients with >30% bone marrow blasts (n = 480), 
azacitidine prolonged median OS compared with CCR by 
3.8 months (10.4 versus 6.5 months) [107].

5-AZA-CdR has been first explored in several 
phase I/II studies, which showed safety and efficacy 
and reported encouraging results in AML and MDS 
patients. These initial data, together with the reported 
activity of low concentrations of 5-AZA-CdR to induce 
cellular differentiation in vitro, provided the rationale 
to investigate the activity and toxicity of lower doses of 
5-AZA-CdR in further studies (for review see [108, 109, 
110). These results led to the first phase III randomized 
trial of 5-AZA-CdR compared with supportive care in 
170 MDS patients, which formed the basis for the FDA 
approval of decitabine. Patients were randomly assigned 
to receive either supportive care or decitabine at a dose 
of 15 mg/m2 as a 3-hour infusion every 8 hours for 
3 days, repeated every 6 weeks, plus supportive care. 
5-AZA-CdR was clinically effective in the treatment 
of patients with MDS, providing durable responses and 
improving time to AML transformation or to death, with 
an observed response rate of 17% {Kantarjian, 2006 
#1191]. In a subsequent study, 22 MDS patients who had 
previously responded to low-dose 5-AZA-CdR were re-
treated at the time of disease relapse at a median of 11 
months after the last course of initial treatment [111]. 
Results showed that 45% patients were still responsive, 
indicating persistent sensitivity to the drug. However, 
the duration of the second response was inferior to that 
of the first remission and upfront resistance to the second 
treatment was also noted, suggesting that a longer period 
of initial treatment might result in an increased clinical 
benefit [111]. To address this issue, other 5-AZA-CdR 
schedules have been evaluated and further improvement 
was observed with continued treatment. Kantarjian et 
al. carried out a randomized phase III study, including a 
5-day schedule at 20 mg/m2 intravenously (IV), a 5-day 
schedule at 20mg/m2 subcutaneously, and a 10-day 
schedule at 10 mg/m2 IV, in 95 patients with MDS and 
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CMML. Each course of decitabine was delivered every 4 
weeks and response or failure of therapy were evaluated 
after at least three courses. The 5-day IV schedule was 
considered the optimal schedule, since it gave the highest 
CR rate [112]. Similar results were observed in a phase 
II study in patients with AML treated with decitabine 
20 mg/m2 IV for 5 consecutive days of a 4-week cycle 
[113]. Despite the success of azacitidine and 5-AZA-CdR 
in the treatment of hematologic malignancies, the in vivo 
mechanisms of these DNMTi still need to be elucidated to 
guide further trials. The metabolic instability of azacitidine 
and 5-AZA-CdR has prompted the development of 
modified analogs, including SGI-110, a dinucleotide that 
includes a deoxyguanosine and is largely resistant to 
cytidine deaminase activity [114]. SGI-110 has shown a 
good tolerability in vivo [115] and antitumor activities in 
xenograft models and in primates [114, 116, 117]. SGI-
110 is currently being studied in a randomized phase I-II-
III clinical trials focused on treatment of patients with 
AML and MDS with promising results [118] (Table 1). 
Several phase I studies with 5-AZA-CdR have also been 
conducted in NHL patients, but the response to therapy 
was moderate [119-121]. Other clinical trials are currently 
testing the ability of DHA to potentiate the activity of 
conventional chemotherapeutic agents in hematological 
malignancies.

IDH inhibitors

Early clinical data obtained with IDH inhibitors 
suggested their activity in patients with advanced 
hematologic malignancies, including relapsed/refractory 
AML and MDS. AG-6780 is a small molecular inhibitor 
of mutant IDH2 Treatment with AGI-6780 was able 
to stimulate the expression of maturation markers in 
leukemic cells in vitro, indicating the induction of 
differentiation [122]. AG-221, another inhibitor of 
mutant IDH2, has demonstrated selective and sensitive 
effects on AML cells harboring IDH2 mutations both in 
vitro and in vivo. AG-221 has been recently introduced 
into phase I/II clinical trials for patients with AML and 
angioimmunoblastic T-cell lymphoma with encouraging 
preliminary results [123].

HDAC inhibitors

Given that increased HDAC expression and activity 
are found is many hematological malignancies, HDAC 
inhibitors (HDACi) have been extensively used for the 
treatment of B- and T-cell malignancies (Table 2). Based 
on their chemical structures, HDACi have been divided 
into several classes: short-chain fatty acids, hydroxamic 
acids and hydroxamic acid-based hybrid polar compounds, 
cyclic tetrapeptides, benzamides and miscellaneous 
compounds. The antineoplastic activity of these drugs 

is related to altered gene expression and to changes in 
non-histone proteins in virtually all most cancer-related 
pathways. Evidence accumulated so far indicates that the 
therapeutic potential of HDACi probably stems from their 
ability to induce selective cell cycle arrest, differentiation 
and/or apoptosis in different cell types by modulating the 
expression of target genes [79]. To date, several HDACi 
have been approved for cancer therapy by the FDA.
Short-chain fatty acids

These compounds represent a class of HDACi with 
simple structures that have shown clinical potential in 
various studies. Valproic acid (VPA) and phenylbutyrate 
are two well characterized compounds that belong to this 
class of compounds. VPA has been increasingly studied 
in clinical trials as a single agent or in combination 
therapies. VPA exerts a wide range of effects on AML and 
results from previous studies have clearly demonstrated 
that VPA has antiproliferative and pro-apoptotic effects 
on AML cells [124]. In a phase II study of AML and 
MDS, 66 patients were initially treated with VPA alone 
with the later addition of all-trans-retinoic acid (ATRA) 
in non-responsive or relapsed patients. HI was observed 
in 24% of patients, with a median response duration of 
4 months [125]. In a phase I/II study, 44 AML and MDS 
patients were treated with escalating doses of VPA and 
concomitantly with a fixed dose of 5-AZA-CdR. Global 
DNA hypomethylation and histone H3 and H4 acetylation 
were associated with p15 reactivation in PBMC from 
patients. However, no correlation was found between 
these epigenetic modifications and the clinical response. 
Furthermore, the observed response rate (22%) was much 
lower than that observed in trials in which 5-AZA-CdR 
was used alone, thus suggesting that VPA did not offer 
a significant improvement to the response [126]. VPA 
has been used in clinical trials for AML and MDS, also 
in combination with ATRA and azacitidine. In a trial 
conducted by Soriano et al., 49 AML and 5 MDS patients 
were treated with a high-dose intermittent schedule of 
VPA (50 mg/kg for 7 days) combined with the approved 
azacitidine dosage and ATRA given at 45 mg/m2 for 5 
days. The combination was safe and clinically active, 
with an overall response rate of 42%, and 12 (22%) CR. 
Furthermore, global DNA hypomethylation and histone 
acetylation were observed but they did not correlate with 
the clinical response, thus suggesting that responses to 
HDACi are likely related to non-histone acetylation or 
to other mechanisms [127]. A further study combining 
azacitidine (75 mg/m2) and VPA (35-50 mg/kg) for 7 
days followed by ATRA (45 mg/m2) for 21 days was 
conducted in patients with high-risk AML or MDS. 
Among the 65 patients enrolled in this study, 14 showed 
a PR and 3 a CR. Interestingly, promoter demethylation 
of four genes (FZD9, ALOX12, HPN, and CALCA) was 
associated with the clinical response [128]. A shortened 
azacitidine schedule (75 mg/m2 for 5 days) plus VPA, 
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ATRA, and theophylline was evaluated in patients with 
AML or MDS. In 15 out of 79 patients achieving CR, 
leukemic stem cells were substantially reduced, but never 
eradicated, since expansion of this population took place 
before morphological relapse [129], thus suggesting that 
treatment interruption might be associated with rapid 
relapse.
Hydroxamic acids

Hydroxamic acids include the majority of HDACi 
currently employed in clinical trials for the treatment of 
hematological diseases. Among the hydroxamic acids, 
vorinostat (SAHA, Zolina) was approved by the FDA in 
2006 for the treatment of patients with cutaneous T-cell 
lymphoma (CTCL), a rare type of NHL of the skin. In 
pivotal phase II clinical trial, the daily treatment of 
refractory CTCL patients with 400 mg of vorinostat 
showed a median duration of response of approximately 
185 days with a good tolerability and safety profile 
[130]. Vorinostat treatment was also safe and effective 
in another phase II clinical trial that involved patients 
with relapsed/refractory NHL and mantle cell lymphoma 
[131]. At the molecular level, the antiproliferative effect 
of vorinostat leads to accumulation of acetylated histones, 
p21, BAX, STAT6, and caspases, resulting in cell cycle 
arrest, growth inhibition, apoptosis, and differentiation 
of cells from AML, MDS, and CTCL patients [132, 133]. 
Preclinical studies combining rituximab and vorinostat 
reported increased rituximab activity in B-cell NHL by 
preventing NF-kB nuclear translocation and promoting its 
degradation [134]. This combination was further evaluated 
in a phase II clinical trial in 28 patients with indolent 
B-cell NHL. The regimen was well-tolerated and appeared 
promising, with a median progression-free survival (PFS) 
of 29.2 months for all patients, 18.8 months for relapsed/
refractory patients; PFS was not reached in untreated 
patients [135]. Vorinostat is currently being investigated 
alone or in combination therapies in several clinical trials 
for different hematological malignancies (for review, see 
[136]).

Besides vorinostat, panobinostat (LBH589), 
belinostat (PDX-101, and pracinostat (SB939), represent 
a second generation of hydroxamate-based compounds. 
Panobinostat was recently approved by the FDA for use 
in combination with bortezomib and dexamethasone in 
patients with MM. The approval was based on findings in 
patients with relapsed or relapsed and refractory MM who 
participated in a clinical trial called PANORAMA1 [137] 
Panobinostat potently induced cell cycle arrest, apoptosis, 
and H3K9 and H4K8 hyperacetylation in ALL [138]. 
Panobinostat was shown to improve the antileukemic 
effect of fludarabine through a predominantly apoptotic 
mechanism. The synergism is striking in vitro in cell 
lines, in patient cells, but also in an in vivo xenograft 
model of AML [139]. Furthermore, panobinostat 
sensitizes leukemic blasts to treatment with cytarabine and 

daunorubicin by suppressing the expression of BRCA1, 
CHK1, and RAD51 through transcriptional mechanisms 
[140]. A phase I/II study combining panobinostat plus 
decitabine in ederly patients with high risk MDS or 
AML is currently evaluating the efficacy and safety of 
this combination [118, 141]. Panobinostat is also under 
investigation in a phase I/II study in combination with 
azacitidine in adult patients with MDS, CMML, or AML 
[118]. Belinostat was approved on 2014 for the treatment 
of patients with relapsed or refractory peripheral T-cell 
lymphoma (PTCL) upon results from the phase II BELIEF 
study [142]. The anticancer effect of belinostat is mediated 
through the acetylation of H3 and H4, which was seen 
both in vivo and in vitro after belinostat exposure. Cancer 
cell growth inhibition and apoptosis were associated with 
these increased levels of acetylation [143]. Belinostat 
is currently being evaluated in phase I/II trials in CTCL 
and PTCL (for review see [144]), whereas it has shown 
only minimal activity in AML [145] and no effect in 
MDS [146]. In DLBCL and PTCL models, belinostat has 
also been investigated in combination with DNMTi, and 
synergistic action was observed [147].

Pracinostat gained Orphan Drug status by the FDA 
in 2014 for future development in AML. In a phase I study 
of older AML patients, pracinostat induced prolonged 
CRR of 14% lasting for 206 and 362 days. A phase II trial 
of pracinostat in combination with azacitidine in patients 
with high-risk MDS yielded an 89% objective response 
rate, including 78% CR or CR with insufficient blood 
count recovery and 56% complete cytogenetic responses. 
Based on these encouraging results, several studies are 
currently recruiting patients with MDS or AML [118, 148].
benzamides

Benzamides are synthetic compounds with 
efficient HDAC inhibitory activity that is mediated by 
the targeting of the Zn2+ ion in the catalytic pocket of the 
enzyme. [149]. Entinostat (MS-275) and mocetinostat 
(MGCD0103) are under clinical evaluation as single 
agents and in combination with other drugs. Entinostat 
has been also combined with azacitidine in patients with 
AML and MDS, but the overlapping schedule of this 
combination was not superior to azacitidine monotherapy 
and was associated with pharmacodynamic antagonism 
[150]. In preclinical studies in HL, entinostat increased H3 
acetylation, up-regulated p21 expression, and promoted 
the intrinsic apoptosis pathway by downregulating Bcl-
2 and Bcl-xL proteins [151]. In in vivo experiments, 
entinostat was also found to enhance the antitumor activity 
of rituximab-sensitive and -resistant B-cell lymphoma cell 
lines [152]. 
Cyclic peptides

Several cyclic peptides isolated from 
microorganisms have been described to possess HDAC 
inhibitory activity. Romidepsin (Istodax, FK228, 
FR901228, depsipeptide), a natural product obtained from 
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the bacterium Chromobacterium violaceum, was approved 
by the FDA in 2009 for the treatment of the refractory 
form of CTCL. The FDA approval of romidepsin for the 
treatment of CTCL was based on two large phase II studies: 
a multi-institutional study and an international study 
including 71 and 96 patients, respectively. The treatment 
schedule was identical and produced overall response 
rates of 34-35%, with a CR in about 6% of patients in 
both studies. The median duration of response was 13.7 
months [153]. In 2011, romidepsin was also approved 
for PTCL in patients who had received at least one prior 
therapy. In the pivotal study, including 130 patients with 
relapsed or refractory PTCL, objective responses were 
seen in 25% and CR in 15% [154]. The median duration 
of response was 28 months with a median follow-up of 
22.3 months [155]. In patients with CLL, AML and MDS, 
romidepsin did not show significant clinical efficacy, 
but exhibited some biological activity as indicated by 
an increase in p21 protein expression concurrent with 
H4 acetylation of the p21 promoter gene [156, 157]. 
Recently, it has been demonstrated that romidepsin also 
has DNA hypomethylating activity, which might inhibit 
the Wnt/β-catenin pathway in T-lymphoblastic cells [158]. 
Romidepsin is currently being evaluated in several studies, 
either as a single agent or in combination with other drugs 
for treating mainly T-cell lymphoma.

HAT inhibitors

Unlike HDACs, little is known about inhibitors 
of HATs (HATi) in B- or T-cell cancers, and no HATi 
are currently approved by the FDA. HATi may have 
therapeutic potential and several natural HATi are under 
evaluation for their anti-cancer properties. Among these 
natural compounds, curcumin has gained increased 
attention as a potential anti-cancer drug and has being 
investigated in a variety of tumors, including MM [159]. 
Curcumin has been shown to possesses intrinsic HATi 
activity specific for p300/CBP both in vitro and in vivo 
and induce cell proliferation arrest and apoptosis [160]. 
However, curcumin has many protein targets, and thus 
it is not clear as to whether its effects are only due to 
its anti-HAT activity [161]. Anacardic acid, a chemical 
compounds found in the shell of the cashew nut, is a 
potent inhibitor of several HAT, including p300, PCAF, 
and TIP60. Anacardic acid was demonstrated to inhibit 
the growth of Jurkat T-cell leukemia cells [162], which 
express two TIP60 variants, including one with a deleted 
HAT domain [163].

HMT inhibitors

So far, only a few HMT inhibitors (HMTi) are 
known, and most of them were discovered through 
random screening approaches. Deazaneplanocin A 

(DZNep) is an HMTi that has a wide range of anticancer 
effects in several human cancers. In particular, DZNep 
has been found to deplete EZH2 levels and to inhibit 
H3K27 trimethylation in AML cell lines in a dose-
dependent manner. DZNep treatment increases both 
mRNA and protein levels of p16, p21, and p27 in AML 
cells, causing cell cycle arrest and apoptosis. Co-treatment 
with panobinostat enhances the antileukemic effects of 
DZNep and was found to synergistically improve the 
survival of mice implanted with AML cells [164]. Two 
other EZH2 inhibitors, GSK126 and EPZ005687, have 
shown preferential effectiveness in suppressing the growth 
of lymphoma-associated mutants of EZH2 in comparison 
to those with wild-type EZH2 [165, 166]. In a study by 
McCabe et al, GSK126 inhibited the proliferation of 
Y641 EZH2 DLBCL cell lines and induced a 50% loss 
of H3K27 trimethylation. Besides cell-based studies, 
treatment of xenografted DLBCL models resulted in 
either tumor regression or tumor inhibition, depending 
on the dosing regimen, and GSK126 was well tolerated 
[165]. Similarly, EPZ0056687 has been shown to induce 
apoptotic cell killing in heterozygous mutant EZH2 Y641 
or alanine 677 lymphoma cells, with minimal effects on 
wild-type cell proliferation [166]. EPZ004777 was the 
first specific DOT1L small molecular inhibitor to be been 
extensively characterized. Daigle et al. reported decreased 
H3K79 methylation levels and selective inhibition of 
leukemogenic genes expression in MLL cells exposed to 
EPZ004777. Furthermore, administration of EPZ004777 
resulted in selective apoptosis of cell lines harboring MLL 
gene translocation, with minimum effect on non-MLL-
rearranged cells. Finally, in vivo EPZ004777 treatment 
increased overall survival in an MLL xenograft model 
[167]. EPZ-5676 is another potent and selective DOT1L 
inhibitor which selectively kills cells containing the MLL 
chromosomal translocation, whereas it shows little effect 
on leukemia cells that lack this translocation. In a rat 
xenograft model of MLL-rearranged leukemia, EPZ- 5676 
was able to induce significant cancer growth inhibition. 
Furthermore, complete regression was achieved following 
21 days of continuous intravenous administration of EPZ-
5676 and tumor regrowth was not observed until the end 
of the experiment [168]. EPZ-5676 has now advanced 
to phase I clinical trials in patients with advanced 
hematological malignancies, including AML with MLL 
fusions (Table 2).

BET inhibitors

In 2010, two independent research groups 
demonstrated the excellent activity of two BET proteins 
small-molecule inhibitors, known as I-BET762 (GSK 
525762A) and JQ1 [169, 170]. During a screening that 
evaluated the ability of synthetic compounds to bind 
selectively to individual proteins in cell lysates, I-BET762 
showed the highest affinity interaction with the acetyl-
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lysine binding site of BRD4-BD1. In this study, I-BET762 
significantly improved the survival of C57BL/6 mice 
with severe sepsis by disrupting chromatin complexes 
responsible for the expression of crucial inflammatory 
genes [169]. The inhibitor JQ1 was initially shown to 
have efficacy in the context of nuclear protein in testis 
(NUT) midline carcinoma (NMC). In the majority of 
NMC the two N-terminal BET bromodomains of BRD4 
are fused with NUT via the t(15;19) translocation to 
create an oncogenic fusion gene whose product is driven 
by the BRD4 promoter. Treatment of NMC cell lines and 
xenograft models with JQ1 displaced the BRD4 fusion 
protein from nuclear chromatin and induced squamous 
differentiation, thus exhibiting specific anti-proliferative 
effects [170]. The results of I-BET762 and JQ1 treatments 
have encouraged the development of other BET inhibitors 
with clear antiproliferative and pro-apoptotic effects in 
several hematological malignancies, including MM [171], 
NHL [172], AML [95, 173] and ALL [174]. Based on the 
observed down-regulation of a common transcriptional 
program that includes critical oncogenic targets such as 
BCL2 and c-MYC, several phase I clinical trials have 
been initiated to explore the efficacy of BET inhibitors 
in AML and other hematological malignancies (Table 2). 
The first published evidence of the clinical activity of BET 
inhibitors refers to a phase I clinical trial with OTX015, in 
which promising antitumor activity was seen in both acute 
leukemia and other hematological malignancies (Patrice 
Herait, AACR Annual Meeting, San Diego, LA, USA; 
Oral communication, April, 2014).

cONcLUsIONs

Somatic alterations in genes involved in DNA 
methylation and histone modifications have emerged 
central events in the development and progression of 
hematological malignancies. Loss or gain of function 
mutations affecting catalytic domains deregulate the 
activity of epigenetic enzymes and may promote 
leukemogenesis by altering the normal self-renewal and 
differentiation of HSC. Furthermore, fusion proteins 
generated by translocation often mediate their oncogenic 
potential by directly or indirectly interfering with 
epigenetic modifying activities. However, the epigenetic 
mechanisms exploited by leukemic fusion proteins to 
drive the induction and maintenance of the leukemic 
state are still far from being elucidated. So far, DHA and 
HDACi have been widely used to evaluate the potential 
of epigenetic modulation to benefit patient outcome. 
Nevertheless, the currently available epigenetic drugs are 
non-specific, so new therapeutic molecules with well-
defined targeting of the epigenetic machinery should be 
developed. Rational combination of available epigenetic 
drugs with targeted therapies also warrants investigation 
in the clinical setting. Further characterization of the 
genetics of hematological malignancies, together with a 

better understanding of the role of epigenetic alterations in 
leukemic transformation will probably provide amenable 
targets for next-generation epigenetic drugs.
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