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ABSTRACT

The consistency of in vitro drug sensitivity data is of key importance for cancer 
pharmacogenomics. Previous attempts to correlate drug sensitivities from the large 
pharmacogenomics databases, such as the Cancer Cell Line Encyclopedia (CCLE) 
and the Genomics of Drug Sensitivity in Cancer (GDSC), have produced discordant 
results. We developed a new drug sensitivity metric, the area under the dose response 
curve adjusted for the range of tested drug concentrations, which allows integration 
of heterogeneous drug sensitivity data from the CCLE, the GDSC, and the Cancer 
Therapeutics Response Portal (CTRP). We show that there is moderate to good 
agreement of drug sensitivity data for many targeted therapies, particularly kinase 
inhibitors. The results of this largest cancer cell line drug sensitivity data analysis 
to date are accessible through the online portal, which serves as a platform for high 
power pharmacogenomics analysis.

INTRODUCTION

Systematic pharmacogenomics studies of large 
panels of cancer cell lines have proven to be a useful pre-
clinical resource in identifying clinically relevant drugs 
and putative predictive biomarkers in cancer research. 
For example, the Cancer Cell Line Encyclopedia (CCLE) 
[1], the Genomics of Drug Sensitivity in Cancer (GDSC) 
[2] and the Cancer Therapeutics Response Portal (CTRP) 
[3] projects have systematically collected drug sensitivity 
profiles and genomic information across hundreds of 
compounds and cancer cell lines. These studies have 
recapitulated known drugs and cancer-dependency 
relationships as well as revealed novel biomarkers 
associated with the drug sensitivity [1–4]. As large-scale 
pharmacogenomics studies are becoming more available, 
integrating these various data sets will provide a rich 
resource for the robust novel hypothesis generation and 
discovery in cancer therapeutics development. However, 
integrating these diverse pharmacogenomics studies poses 
a methodological and analytical challenge due to the 
differences in the types of assays, maximum tested drug 
concentration, the range of tested drug concentrations and 

drug sensitivity metrics employed by different studies. 
These challenges were highlighted, when Haibe-Kains 
et al. found inconsistencies in drug sensitivity data from 
CCLE and GDSC [5]. In response, the authors of CCLE 
and GDSC re-analyzed drug sensitivity data accounting 
for the differences in the analytical approach employed 
by the two studies and reported a significantly better 
agreement [6].

In this study, we developed a new metric, area 
under the dose-response curve adjusted for the range 
of tested concentrations (adjusted AUC), to combine 
heterogeneous drug sensitivity data generated by multiple 
pharmacogenomics studies. To illustrate the utility of this 
new metric, we performed an unbiased comparison of 
the drug screening data from CCLE, GDSC and CTRP, 
resolved analytical challenges of the previous comparative 
analyses, and defined the variables associated with the 
better or worse agreement of the drug sensitivities between 
studies. We also developed a companion online portal, the 
Quantitative Analysis of Pharmacogenomics in Cancer 
(QAPC, http://tanlab.ucdenver.edu/QAPC), to explore 
and download the summarized data for high-power 
pharmacogenomic analysis by the scientific community.
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RESULTS AND DISCUSSION

The CCLE and GDSC projects used half maximal 
inhibitory concentration (IC50), defined as a drug 
concentration producing absolute 50% inhibition of growth 
in the proliferation assay (Figure 1A, blue). By definition, this 
metric relies on the assumption, that at a high concentration 
of the drug, 100% effect is achieved (all cells die in a 
proliferation assay). This is true for potent cytotoxic drugs 
such as doxorubicin and paclitaxel (see examples in the 
QAPC portal, http://tanlab.ucdenver.edu/QAPC). However, 
cancer pharmacogenomics increasingly focuses on the 
targeted therapies, and many of these drugs, such as MEK 
inhibitors, are cytostatic [7]. Dose response curves produced 
for cytostatic drugs, such as MEK inhibitor selumetinib, 
plateau at a percent inhibition (maximal drug effect, Amax) of 
less than 100 % (Figure 1A, red). 4-point logistic regression 
can estimate lower and upper asymptotes of the sigmoid 
dose-response curve that differ from 0 and 100 % of an IC50 
curve and calculate half maximal effective concentration 
(EC50, also called relative IC50), which is defined as a 
concentration of a drug causing an effect equal to the 50% 
of the Amax. More flexible, EC50 curves model experimental 
data better (median residuals standard error is 7.0 and 9.2 
for EC50 and IC50 curve fits, respectively, Mann-Whitney-
Wilcoxon, p< 0.001, n = 478086) and may provide more 
accurate measure of the drug sensitivity for cytostatic drugs. 
However, EC50 is ambiguous for the low amplitude curves 
(Figure 1A, green). Such a curve may represent a true low 
amplitude drug response to a cytostatic drug, a beginning 

part of the high amplitude dose response curve with an EC50 
exceeding maximal tested concentration, or a signal drift due 
to the technical imperfections of the large scale screening.

Incomplete dose response curves (Figure 1A, 
black) present a major challenge in interpreting drug 
sensitivity data. Neither IC50 nor EC50 can be accurately 
estimated from these drug responses. Other proposed 
drug sensitivity metrics, such as Hill slope and Amax [8] 
cannot be used as well. The three pharmacogenomic 
projects handled this problem differently. The CCLE 
assigned an IC50 of 8 µM (maximal tested concentration) 
to incomplete dose response curves. This approach 
provides a finite number for the downstream analysis, 
but capped IC50 values are not always supported by 
the experimental data. The GDSC extrapolated data 
from incomplete curves outside of the range of tested 
concentrations that produced high and inaccurate IC50 
values. The CTRP used AUC as a measure of drug 
sensitivity, but not IC50 or EC50.

Haibe-Kains et al. compared CCLE and GDSC IC50 
data as published without considering the differences 
in methodology [5]. This resulted in the expected poor 
agreement between the two datasets. To account for the 
analytical differences, Stransky et al. capped IC50 at a 
maximal drug concentration tested by the GDSC study 
(Supplementary Table S1) [6]. This produced a large 
number of capped IC50 values, which are not supported 
by the experimental data for the 15 drugs shared by 
the two databases (Supplementary Table S2), and 
overestimated the correlation between IC50 values. For 

Figure 1: The six drug sensitivity metrics and the agreement of pooled pharmacologic data between CCLE, GDSC 
and CTRP databases. A. An IC50 dose-response curve has minimal (Amin) and maximal (Amax) asymptotes set to 0 and 100, respectively 
(blue line, CCLE, paclitaxel, cell line REH); EC50 is estimated from the dose response data with flexible Amin and Amax (red line, CCLE, 
selumetinib, cell line A375), but EC50 is ambiguous for low amplitude curves (green line, CCLE, selumetinib, cell line 639V, see detailed 
explanation in the text). The IC50 or EC50 cannot be estimated from incomplete dose response curve (black line, CCLE, selumetinib, cell 
line EFO27). B. AUCs calculated from the dose response curve (CCLE, crizotinib, cell line KMS26) using the range of drug concentrations 
from CCLE (2.5-8000 nM, blue box) and GDSC (7.8125-2000 nM, green box) differ (0.58 and 0.13, respectively). Adjusted AUC is 
calculated for the range of concentrations shared by the databases (green box). C. Pearson correlation coefficients (r) for the comparison 
of drug sensitivity data in 3 databases using six drug sensitivity metrics. Pearson correlation was calculated for a subset of EC50 and IC50 
with finite values (estimated to be within the range of tested concentrations). Adjusted AUC provides the best consistency among databases. 
Error bars illustrate 95% confidence intervals (random permutations).
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the drugs reported to have the greatest IC50 correlation 
between CCLE and GDSC, such as crtizotinib, lapatinib, 
and nilotinib (Pearson correlation r = 0.74, 0.78, 0.89, 
respectively), up to 98% of IC50 values were capped 
(Supplementary Table S2)). Since the GDSC used 
lower maximal tested concentrations for 14 out of 15 
drugs shared with CCLE (Supplementary Table S1), 
a portion of reliable CCLE IC50 estimates (IC50 values 
within the range of tested drug concentrations) were 
capped, eliminating potentially useful drug sensitivity 
information. For the drugs with the least number of 
capped IC50 values (17-AAG and paclitaxel, 19 % and 
29 % capped IC50 values, respectively), no improvement 
in the correlation was found by Stransky et al. (0.57 
and 0.15 for 17-AAG and paclitaxel, respectively) 
when compared to Haibe-Kains et al. analysis (0.61 
and 0.16 for 17-AAG and paclitaxel, respectively). In 
addition, four drugs analyzed by both studies have more 
than one maximal tested concentration in the GDSC 
dataset, adding ambiguity to this artificial IC50 cap 
(Supplementary Table S1). The above considerations 
suggest that IC50 calculations (and EC50 calculations, 
following the same logic) are not suitable drug sensitivity 
metrics to accurately compare and reconcile drug 
sensitivities from the large pharmacogenomic studies, 
which contain many incomplete dose response curves.

The AUC, on the other hand, (Figure 1B, red area) is 
an attractive drug sensitivity metric, as it can be calculated 
for any dose response curve. AUC is unambiguous, 
combines information about the potency (EC50, IC50) and 
efficacy (Amax) of the drug into a single measure, and has 
been shown to be a robust metric for comparing a single 
drug across cell lines [8], as well as a better measure of 
cell line selectivity, when compared to IC50 [9]. However, 
AUC depends on the range of tested drug concentrations, 
which varies between studies. Figure 1B illustrates that 
AUC calculated from the same dose-response data for the 
range of concentrations used by GDSC (7.8-2000 nM) 
and CCLE (2.5-8000 nM) differs by more than 4-fold 
(0.13 and 0.58 respectively). The influence of the range 
of concentration on AUC estimate is particularly obvious, 
when maximal tested concentration differs significantly 
between databases, such as for crizotinib. For example, 
the median AUC calculated from the IC50 model of 
crizotinib reponses in our analysis were 0.02, 0.14 and 
0.84 for GDSC, CCLE and CTRP, respectively, reflecting 
the marked differences in maximal tested concentrations 
(2, 8 and 66 μM, respectively), and making meaningful 
comparison of these data difficult (the distribution of AUC 
estimates for crtizotinib and other drugs can be visualized 
with the QAPC portal, Summary tab). To solve this 
problem, we applied adjusted AUC, our new metric that 
takes into account the differences in the range of tested 
drug concentrations. The adjusted AUC uses sigmoid 
curve parameters estimated with a standard logistic 
regression (IC50 or EC50 models for adjusted AUCIC50 and 

adjusted AUCEC50, respectively), however, it is calculated 
only for the range of concentrations that is shared by the 
dose-response curves being compared (Figure 1B, green 
box). In contrast to IC50 capping, no data is discarded 
(non-overlapping high drug concentration data points are 
used for the sigmoid curve modeling).

To evaluate the performance of adjusted AUCIC50 
and adjusted AUCEC50, and compare it to the traditional 
drug sensitivity metrics (IC50,  EC50, and unadjusted 
AUCIC50and AUCEC50), we correlated drug sensitivity data 
obtained from CCLE, GDSC and CTRP (Figure 1C). 
There is a significant overlap in the drugs and cell lines 
analyzed by CCLE, GDSC and CTRP (Supplementary 
Figure S1, Supplementary Tables S3 and S4), permitting 
such analysis. Specifically, twelve drugs and 264 cell lines 
are represented in all 3 databases and pairwise intersection 
is even larger (Supplementary Figure S1).

First, we compared combined data for all compounds 
for the purpose of identifying the sensitivity metric that 
provides the best agreement between databases and, 
therefore, is the most reproducible quantitative assessment 
of the drug sensitivity for the pooled pharmacogenomic 
analysis. IC50, EC50 and unadjusted AUC drug sensitivity 
metrics produced mild to moderate agreement between the 
pharmacogenomic databases (Figure 1C, Supplementary 
Table S5, Supplementary Figures S2-S4, QAPC portal). 
When adjusted for the range of drug concentrations tested, 
CCLE drug sensitivity data agreed very well with that 
of CTRP (Pearson correlation, r, for adjusted AUCIC50 
= 0.82), and moderately well with the pharmacologic 
data from GDSC (r for adjusted AUCIC50 = 0.69). An 
improvement in the agreement between drug sensitivities 
measured with adjusted AUC is particularly noticeable 
when CTRP data is included, which is expected, because 
the CTRP tested highest maximal drug concentration 
among 3 studies (Supplementary Table S1) that skews 
the CTRP unadjusted AUC data towards the higher 
values. Both CCLE and CTRP projects were performed 
by the Broad Institute and used the same proliferation 
assay (CellTiterGlo), which likely contributed to the 
good reproducibility between these two studies. The 
correlation between CTRP and GDSC data was moderate 
(r for adjusted AUCIC50 = 0.65). Flexible curve modeling 
(EC50, AUCEC50) did not provide an additional advantage 
(Figure 1C).

The main purpose of pharmacogenomics is to 
associate molecular features with the sensitivity to 
a particular drug, therefore we studied whether the 
correlations hold when data is stratified by an individual 
compound (Figure 2, Supplementary Table S5, QAPC 
Portal). For most drugs the highest correlation was 
achieved with the adjusted AUCIC50 (Supplementary Table 
S5, QAPC Portal), supporting the superiority of our drug 
sensitivity metric. The r value for the adjusted AUCIC50 
was significantly higher than any other unadjusted drug 
sensitivity metric for lapatinib (Supplementary Figure S5) 
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and selumetinib in the CCLE-CTRP comparison, and for 
afatinib, axitinib, gefitinib, and nilotinib in the CTRP-
GDSC comparison (higher r with non-overlapping 95% 
confidence intervals obtained with random permutations, 
Supplementary Table S5). Because adjusted AUCIC50 
outperformed other drug sensitivity metrics, we chose 
it to assess the agreement between the databases and to 
compare our analysis with previously published analyses.

Adjusted AUCIC50 resulted in an improved 
correlation of the drug sensitivity data in CCLE and 
GDSC, when compared to the similar analyses (that used 
unadjusted AUC) performed by Haibe-Kains et al. [5] 
and Stransky et al. [6] (Kruskal-Wallis, p = 0.02; paired 
Mann-Whitney-Wilcoxon (this analysis vs Stransky et 
al. analysis), p = 0.05). The correlation has improved 
by > 0.1 for 6 out of 15 drugs: nilotinib, PD-0325901, 
PLX-4720, nutlin-3, sorafenib, and erlotinib, (Figure 
2A, Supplementary Table S5). As expected, CCLE and 
CTRP drug sensitivities agreed well (Figure 2B), with 12 

out of 17 drugs demonstrating at least a moderate degree 
of correlation (r > 0.5). Sixty one drugs were analyzed 
by both GDSC and CTRP allowing us to subdivide 
compounds based on the primary mechanism of action. 
The drug responses of kinase inhibitors showed the best 
agreement with 12 out 35 (34%) drugs with r > 0.5. Only 
4 out of 17 (24%) other targeted therapies demonstrated 
moderate correlation. Surprisingly, drug sensitivity data 
for cytotoxic drugs showed minimal or poor correlation. 
(r < 0.5).

Close examination of the scatterplots and raw dose 
response curves for the targeted therapies with the help 
of the QAPC portal demonstrated that most drugs with 
very low r show no or low activity in the proliferation 
assay, explaining the lack of correlation. The variability 
of drug responses for inactive compounds is likely due to 
the intrinsic noise of the high-throughput screening and 
has no biologic meaning. This is true for PHA−665752 
(Supplementary Figure S6) and sorafenib (CCLE and 

Figure 2: The correlations of cell line responses to individual drugs from CCLE, GDSC and CTRP. A. CCLE and GDSC 
correlations. Pearson correlation (r) coefficients of adjusted AUCIC50 calculated by this study (blue bars) were matched to the similar 
analyses performed by Haibe-Kains et al. [5] (red bars, unadjusted AUC, Spearman correlation (ρ)), and Stransky et al. [6] (green bars, 
unadjusted AUC, r). B. CCLE and CTRP correlations (r, adjusted AUCIC50). C. CTRP and GDSC correlations (drugs are subdivided into 
kinase inhibitors, other targeted therapies, and cytotoxic chemotherapies; r, adjusted AUCIC50). Horizontal dashed line shows a threshold 
for moderate correlation (> 0.5).
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GDSC comparison), L−685458 and sorafenib (CCLE and 
CTRP comparison), bexarotene, BIRB-796, CHIR−99021, 
erlotinib, KU−55933, olaparib, PAC−1, parthenolide, 
QS−11¸ serdemetan, sorafenib, TGX−221, veliparib, and 
VX−680 (CTRP and GDSC comparison). The scatterplots 
for the individual drugs are not included in this paper 
due to the space limitations but can be examined using 
the QAPC Portal (Correlation Plots tab) or downloaded 
together with the with R bioinformatics pipeline (“fig” 
folder, Supplementary Figures 2-4; http://tanlab.ucdenver.
edu/QAPC/Downloads/Drug_Sensitvity_Metrics.zip).

To improve the accessibility of the drug sensitivity 
data, we re-calculated 6 drug sensitivity metrics for 
all drugs and cell lines in CCLE, GDSC and CTRP 
(including adjusted AUC for the drugs analyzed by more 
than one database) and have made this data available for 
downloading through the QAPC portal. Alternatively, 
AUC can be calculated for the specified range of 
drug concentrations using functions from the recently 
published PharmacoGx package in R [10] (at this time, 
the PharmacoGx analysis is limited to the data from 
CCLE and GDSC databases) or by using the code from 
our downloadable bioinformatics pipeline.

In conclusion, we developed a new drug 
sensitivity metric, AUC adjusted for the range of tested 
concentrations, which allows reconciliation of publicly 
available heterogeneous pharmacologic data enabling 
pooled analysis for drug/gene associations. Using this 
methodology we have achieved the best correlation to 
date between overlapping data in CCLE, GDSC and CTRP 
databases, and we demonstrated that there is a moderate-
to-good agreement between the drug sensitivity data for 
many targeted therapies, particularly for kinase inhibitors 
with activity in an in vitro proliferation assay. We predict 
that the adjusted AUC can be used to match in vitro drug 
responses generated by the high-throughput testing of 
patient-derived primary tumor cells with an existing pool 
of data to rapidly identify outlier drug sensitivities with 
potential therapeutic implications.

While our method accounts for several differences in 
the data analysis and experimental design, we acknowledge, 
that the variability introduced by the intrinsic features 
of each study (proliferation assay, cell line passage, 
growth media, plating density and others) outlined in the 
supplementary data for Haibe-Kains et al. [5] is unlikely to 
be alleviated with bioinformatics analysis alone.

MATERIALS AND METHODS

Data

Raw dose-response data was downloaded from 
CCLE portal (http://www.broadinstitute.org/ccle) [1], 
GDSC website (http://www.cancerrxgene.org/downloads/) 
[2], and The National Cancer Institute’s CTD2 Network 
(CTRP2, https://ctd2.nci.nih.gov/dataPortal/) [3].

Calculations of drug sensitivity metrics

Log-logistic regression was used to model sigmoid 
dose response curve using the following formula:
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where Amin and Amax are lower and upper asymptotes of 
the sigmoid curve (no response and the maximal response 
to the drug, respectively), EC50 is drug concentration 
causing the effect equal to the 50% of the Amax, and Hill 
is a Hill slope of the dose response curve. R package drc 
[11], www.bioassay.dk, was used for modeling. 4-point 
regression analysis was performed first, and minimal and 
maximal asymptotes were allowed within the following 
ranges: Rmin ≤ Amin ≤ 0 and min(0, Rmin) ≤ Amax ≤ max (100, 
Rmax), respectively. Rmin and Rmax are minimal and maximal 
measured drug responses, respectively. The coordinate 
of the upper bend point of the dose response curve was 
calculated using the formula [12]:
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If two or more data points were present with the 
drug concentration x > xbend, the curve was assumed to be 
complete and the upper asymptote estimated accurately 
[13]. Otherwise, regression analysis was repeated with 
the Amax = 100 (for the lack of a better upper asymptote 
estimate for incomplete curves). Amax = 100 was also set 
for very low amplitude curves (Amax - Amin < 30) to avoid 
the noise being misinterpreted as a true drug response. 
To estimate IC50, Amin and Amax were set to 0 and 100, 
respectively (by the definition of IC50). The parameters of 
the sigmoid curve were used for AUC calculations.

AUC was estimated in between minimal (xmin) 
and maximal (xmax) tested concentrations (nM) for the 
curve. For the purpose of comparing two dose response 
curves, an adjusted AUC was calculated for the range of 
concentrations shared by both curves (Figure 2B, green 
box). AUC was calculated using the following formula:
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where f(x) = formula (1)
To perform an unbiased comparison of EC50 and 

IC50, the estimated values that exceed maximal tested 
concentration were set to infinity acknowledging the fact, 
that EC50 and IC50 cannot be accurately estimated from 
incomplete dose response curves.
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Comparisons of drug sensitivity metrics

Pearson and Spearman correlations were used to 
compare drug sensitivity data between studies. Pearson 
correlation for pooled EC50 and IC50 data was calculated 
for a subset of finite values. p-values were computed 
by performing random permutations and bootstrapping 
using published algorithm [6]. P-values and confidence 
intervals calculated using random permutations are cited 
in the text.

Implementation and source code

All data manipulations were performed in R 
(https://www.r-project.org/). To ensure reproducibility, 
all figures and tables of this manuscript were generated 
programmatically from the raw data. R scripts and data 
can be downloaded from: http://tanlab.ucdenver.edu/
QAPC/Downloads/Drug_Sensitvity_Metrics.zip

QAPC portal

All aspects of this analysis can be explored 
interactively using companion portal the Quantitative 
Analysis of Pharmacogenomics in Cancer (QAPC, http://
tanlab.ucdenver.edu/QAPC/).

QAPC features include:
1. Interactive graphic interface to access drug 

sensitivity data for 585 drugs/drug combinations and 1201 
cell lines.

2.  Choice of 6 drug sensitivity metrics:
EC50 – half maximal effective concentration
IC50 – half maximal inhibitory concentration
 AUC EC50 –  area under the dose response curve 

calculated from EC50 model
AUC IC50 –  area under the dose response curve 

calculated from IC50 model
Adjusted AUC EC50 –  area under the dose 

response curve calculated 
from EC50 model adjusted 
for the range of tested 
drug concentrations

Adjusted AUC IC50 –  area under the dose 
response curve calculated 
from IC50 model adjusted 
for the range of tested drug 
concentrations

3. Option to reconcile data from up to three 
databases using adjusted AUC EC50 or adjusted AUC 
IC50. Adjusted AUC for the cell line/drug pairs analyzed 
by more than one study are averaged. Adjusted AUC are 
calculated even for the cell lines analyzed by one database 
only, if the drug is represented in more than one database, 
thus allowing a fair comparison of drug sensitivities across 
studies and enabling high-power pharmacogenomics 
analysis.

4. Functionality to visualize dose-response curves for 
each drug/cell line combination to evaluate the quality of 
the raw data and the accuracy of the dose response model.

5. Graphic representation of the drug sensitivity 
data agreement between CCLE, GDSC and CTRP 
databases with 2D and 3D scatterplots.

6. Functionality to download raw data, EC50 
and IC50 regression model parameters, adjusted AUC 
calculations, and correlation statistics for the drug.

Detailed description of the QAPC controls and 
interface can be accessed through the Help tab of the 
online portal.
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