Oncotarget

Research Papers:

Whole-exome sequencing identified a homozygous BRDT mutation in a patient with acephalic spermatozoa

Lin Li, Yanwei Sha, Xi Wang, Ping Li, Jing Wang, Kehkooi Kee and Binbin Wang _

PDF  |  HTML  |  Supplementary Files  |  How to cite

Oncotarget. 2017; 8:19914-19922. https://doi.org/10.18632/oncotarget.15251

Metrics: PDF 1492 views  |   HTML 3589 views  |   ?  


Abstract

Lin Li1,*, Yanwei Sha2,*, Xi Wang3, Ping Li2, Jing Wang4, Kehkooi Kee1, Binbin Wang3

1Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China

2Reproductive Medicine Center, Xiamen Maternal and Child Health Care Hospital, Xiamen, 361005, Fujian Province, China

3Center for Genetics, National Research Institute for Family Planning, Haidian, Beijing, 100081, China

4Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China

*These authors have contributed equally to this work

Correspondence to:

Binbin Wang, email: [email protected]

Kehkooi Kee, email: [email protected]

Keywords: acephalic spermatozoa, whole-exome sequencing, BRDT, mutation, RNA-sequencing

Received: July 22, 2016     Accepted: October 19, 2016     Published: February 10, 2017

ABSTRACT

Acephalic spermatozoa is a very rare disorder of male infertility. Here, in a patient from from a consanguineous family, we have identified, by whole-exome sequencing, a homozygous mutation (c.G2783A, p.G928D) in the BRDT gene. The gene product, BRDT, is a testis-specific protein that is considered an important drug target for male contraception. The G928D mutation is in the P-TEFb binding domain, which mediates the interaction with transcription elongation factor and might affect the transcriptional activities of downstream genes. By RNA-sequencing analysis of cells expressing the BRDT mutation, we found the p.G928D mutation protein causes mis-regulation of 899 genes compared with BRDT wild-type cells. Furthermore, by Gene Ontology analysis, the upregulated genes in p.G928D cells were enriched in the processes of intracellular transport, RNA splicing, cell cycle and DNA metabolic process, revealing the underlying mechanism of the pathology that leads to acephalic spermatozoa.


Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 15251