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ABSTRACT:
Putative cancer stem cells are a subpopulation of cancer cells that give rise to 

chemotherapy resistance and are therefore of prognostic and therapeutic interest, 
though their identification remains elusive in colon cancer due to lack of reliable 
and accurate markers. We previously identified a p53-dependent putative cancer 
stem cell population, the calcein low population (CloP), based on their exclusive 
efflux of the fluorescent dye Calcein. This functional identification method enables 
comparative live cell studies of subpopulations without differential toxicity that occurs 
with traditional Hoechst methods, which has confounded conclusions and limited the 
utility of this cancer stem cell marker. In this study, we examined the cancer stem 
cell-like properties of the CloP population in vivo in comparison with the parental 
and calcein-high population (ChiP) in human colon cancer xenografts. Serial dilution 
xenograft experiments in NOD/SCID mice revealed that the CloP is only marginally 
more tumorigenic compared to the ChiP or parental cells. However, serial passage of 
these tumors revealed that the CloP is uniquely enriched for self-renewal capacity 
in vivo compared to the other populations. Immunohistochemical analysis of these 
tumors revealed that the CloP possesses increased levels of nuclear β-catenin and 
furthermore, siRNA-mediated knockdown of β-catenin significantly reduced the 
CloP population. These findings highlight the CloP as an important subpopulation of 
tumor cells that are exclusively endowed with the ability to self-renew and propagate 
tumors. The dependency of the CloP on β-catenin provides a molecular explanation 
for this ability and suggests that this population can and should be therapeutically 
targeted by inhibition of Wnt signaling.  

INTRODUCTION

The heterogeneity of tumors has become 
increasingly apparent along with the emerging importance 
of the tumor microenvironment. Among the various 
subpopulations of cells that comprise the tumor, cancer 
stem cells (CSCs) are a unique subset of tumors cells 
that are exclusively responsible for potentiating and 
propagating tumors. However, the CSC literature in 
some disease settings such as colon cancer is shrouded 
in controversies regarding how to best define or identify 
CSCs and even the veracity of their existence altogether. 

CD133+ as a colon cancer CSC marker has 

been debated, as some reports have shown equivalent 
tumorigenic potential between CD133+ and CD133- 
subpopulations [1]. Other approaches have focused on 
functional assays for CSC identification. In colon cancer, 
such methods include enhanced activity of the enzyme 
aldehyde dehydrogenase 1 (ALDH1) amongst CSCs [2, 
3] or the increased efflux of small molecules by ABC 
transporters [4]. The latter property is often identified by 
efflux of the DNA-binding dye Hoechst 33342 using flow 
cytometry analysis to identify the side population (SP) that 
does not retain this fluorescent molecule [5, 6]. The SP 
has been identified in numerous tumor types and directly 
linked to therapy resistance due to its efflux of several 
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chemotherapies. 
While the SP clearly confers multidrug-resistance, 

its exclusive tumorigenic potential is less clear [7, 8]. 
The validity of studies comparing the tumorigenicity of 
the SP and non-SP has been questioned as the dye used 
in these identification assays for SP is Hoechst 33342, 
which is a DNA-intercalating molecule that we and 
others have reported to induce p53 and cause cell death 
[9-12]. This has important implications for comparative 
studies as cells that do not retain the dye, i.e. the non-
SP, will be more affected by the cytotoxic properties of 
the dye due to relatively increased retention of Hoechst 
and this may explain why these cells are less tumorigenic 
than the SP. This led us to develop a nontoxic alternative 
CSC identification method that revealed the calcein-
low population (CloP) [9]. The CloP is evident in several 
human cancer cell lines, is p53-dependent, is inhibited by 
the ABC-transporter inhibitor verapamil, and possesses 
significant overlap with the SP population as expected 
[9]. To further evaluate CSC-like properties, we now 
evaluate the ability of the CloP to initiate and propagate 
human colon cancer tumors in vivo to definitively gauge 
the significance of this unique population of tumor cells. 

RESULTS

The CloP are enriched for CD133 expression in 
some colon cancer cells

We previously demonstrated that the CloP overlaps 
with the SP [9] but its overlap with other functional or 
surface markers was not explored. We therefore examined 
the overlap of the CloP with CD133 and CD26 surface 
expression in human colon cancer cell lines (Table 1; 
Figure S1). Profiling these markers in a panel of human 
colon cancer cell lines revealed heterogeneous expression 
of CD133 and CD26, though the CloP was consistently in 
the range of ~1-2% of the total population and. CD133 
was highly expressed in RKO and SW620 cells at >60% 
of the total population. The CD26+ population was rare 
in most tested cell lines with the exception of SW620 
(Figure S1). Comparing the overlap of the CloP with these 
canonical markers did not reveal any striking enrichment 
for CD133 or CD26 within the CloP except for HT-29 cells, 
which were highly enriched for CD133+ cells. 

Table 1: The CloP is enriched for CD133 expression in HT-29 but not other 
colon cancer cell lines. 

Cell Line

RKO HT29 HCT116 p53-/- SW620

CloP 5.4% 4.0% 4.6% 3.8% 

CloP (Verap.) 3.0% 3.2% 2.3% 1.7% 

Whole Population

CD133+ 88.1% 9.4% 61.2% 12.3%

CD26+ 2.2% 1.1% 1.2% 26.7%

CD133+CD26+ 2.2% 1.1% 1.2% 8.6%

CloP

CD133+ 85.8% 41.4% 68.3% 3.2%

CD26+ 11.1% 1.3% 3.9% 9.8%

CD133+CD26+ 11.1% 1.3% 3.9% 1.0%

ChiP

CD133+ enrichment 
ratio (CloP/Whole) 0.97 4.4 1.12 0.26

CD133+ 88.4% 7.1% 63.1% 6.0%

CD26+ 2.4% 0.7% 0.7% 20.3%

CD133+CD26+ 2.4% 0.7% 0.7% 2.1%
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The CloP is similarly tumorigenic to other 
populations but is enriched in self-renewal 
capacity 

We performed serial dilution xenotransplantation of 
the total population, CloP, and ChiP into NOD/SCID mice to 
determine and compare their tumorigenic potential. In the 
evaluated cancer cell lines, the CloP possessed a marginally 
increased number of tumors resulting from injections of 
<1 000 cells in the majority of xenografts (Figure 1). 
Extrapolating the stem cell frequency of these different 
populations for each cell line revealed that the CloP 
possesses a modestly higher estimated stem cell frequency 
compared to the ChiP or total population, although the 
differences did not reach statistical significance (Figure 
1d). While the CloP appears slightly more tumorigenic 
in these experiments, these results were not striking and 
prompted us to further examine differences in CSC-like 
properties amongst these populations. 

We next evaluated the ability of the total, CloP, 

and ChiP population to self-renew using serial passage 
transplantation of tumors utilizing the same NOD/SCID 
model as the serial dilution experiments. As in the serial 
dilution experiments, all populations were capable of 
initiating tumors with similar kinetics of tumor incidence 
(Figure 2). However, serial passage of tumors at 12 
weeks post-implantation revealed a striking difference in 
tumorigenic potential amongst the different population in 
all cell lines. In both the SW480 and SW620 cell lines, 
exclusively the CloP and not the ChiP or total population 
were capable of reinitiating the tumor at second passage. 
All populations in the RKO xenografts reinitiated tumors 
at similar kinetics again upon the second passage. 
However, only the CloP was capable of tumor formation 
following the third passage. These results indicate that the 
total population, CloP, and ChiP of human cancer cell lines 
are capable of initiating tumors but that the CloP possesses 
the exclusive CSC-like ability to self-renew. 

Figure 1: The CloP is similarly tumorigenic to other ChiP and parental populations in colon cancer xenografts. Sorted 
CloP, ChiP, and parental populations from culture of (a) SW480, (b) SW620, and (c) RKO cancer cell lines injected into the rear flanks of 
NOD/SCID mice (n=5). Exemplary post-sort purity given in Figure S2. (d) Stem cell frequencies were extrapolated from data in (a-c). Dots 
represent the estimated stem cell frequency and errors bar represent the upper and lower estimates from the analysis.
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The CloP is β-catenin-dependent 

The unique self-renewal capability of the CloP 
warranted further investigation to provide a molecular 
explanation for this exclusive property. We investigated 
CloP- and ChiP-initiated tumor xenografts for expression 
levels and localization of pAkt, Gli-1, and β-catenin as 
markers of signaling pathways that are directly involved 

in self-renewal. We found that tumors generated by both 
populations had largely necrotic central regions, which are 
observed in human tumors, surrounded by regions with 
higher tumor cell density (Figure 3a-c, data not shown). 
Out of the tested self-renewal signaling pathway markers, 
we found that β-catenin expression levels and nuclear 
localization was apparently elevated in CloP-initiated 
tumors whereas ChiP-initiated tumors generally contained 

Figure 2: The CloP is exclusively enriched in self-renewal capacity in colon cancer xenografts. (a) Tumor incidence with 
serial passage of SW620 tumor xenografts. (b) Exemplary depilated mouse at 6-weeks following the second passage. Red arrow indicates 
sight of tumor incidence. (c) SW480 and (d) RKO serial passage experiments as described for SW620 in (a). 



Oncotarget 2013; 4: 184-191188www.impactjournals.com/oncotarget

Figure 3: The CloP is β-catenin-dependent. Histological and immunohistological analysis of CloP- and ChiP-initiated (a) SW620, (b) 
SW480, and (c) RKO tumor xenografts harvested 12-weeks post-injection of 10,000 cells into NOD/SCID mice as described in Figure 1.  
(d) Flow cytometry analysis of the CloP following transient knockdown of β-catenin using siRNA at 48 hours post-knockdown with (e) an 
exemplary CloP scattergram analysis as described Figure 1 (n=3). Error bars indicate standard deviation of replicates. *P<.05 by student’s 
two-tailed t test. (f) Verification of transient knockdown of β-catenin by Western blot analysis at 48 hours post-knockdown. 
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lower intensity and more diffuse staining for β-catenin. 
These results highlight the heterogeneity of β-catenin 
localization amongst tumor subpopulations generated 
from the same isogenic background. Despite the nearly 
ubiquitous activating mutations in the Wnt signaling 
pathway seen in human colon cancer, similar observations 
of β-catenin expression heterogeneity have been reported 
for primary patient samples [13, 14].  

We investigated the dependency of the CloP on 
β-catenin. siRNA-mediated knockdown of β-catenin 
significantly reduced the CloP in the RKO and DLD-1 cell 
lines, though to a lesser extent in DLD-1 potentially due 
to a less robust knockdown of β-catenin (Figure 3d-f). 
These data demonstrate that CloP-initiated tumors contain 
elevated nuclear β-catenin, which is important for the 
maintenance of this unique population of tumor cells. 

DISCUSSION

CD133+ is a previously described marker of CSCs 
in human colon cancer, though it has been contested, 
and within this subpopulation CD26+ was described as 
a marker of human colon cancer CSCs with exclusive 
metastatic potential [15]. Our studies found that CD133 
was highly expressed in several colon cancer cell lines, 
which is an unexpectedly high expression for a CSC 
marker that has been previously noted [16-18]. In contrast, 
the CloP was consistently in the range of ~1-2% of the total 
population, which agrees with our previous observations 
[9]. We also found that CD26+ population in the examined 
colon cancer cell lines was unappreciable except SW620 
cells, which is expected as this is the only metastatic 
colon cancer cell line in the tested panel [15]. Comparing 
the overlap of the CloP with these canonical markers did 
not reveal any striking enrichment for CD133 or CD26 
within the CloP except for HT-29 cells, which were highly 
enriched for CD133+ cells. The heterogeneity of these 
results and the unreliable nature of surface markers in 
human colon cancer CSC studies prompted us to examine 
the ability of the CloP to initiate tumors in vivo and the 
exclusivity of this ability as a more direct and pertinent 
assay. 

Our observations and others clearly define β-catenin 
as potential drug target for depleting putative CSCs 
that drive tumor progression [19]. This in agreement 
with recent reports by others and us that intimately 
link β-catenin to the integrity of the CSC population, 
particularly with respect to self-renewal [13, 16]. Nuclear 
β-catenin is evident in 60% of resected colon cancers, 
though its intratumoral distribution of nuclear expression 
is heterogeneous and associated with a poor prognosis [20, 
21]. Wnt signaling has been intimately linked to the CSC 
population, including regulation of CSC-associated genes 
such as CD133, CD44, and MDR1 [22-24]. Colon cancer 
cells with increased Wnt signaling were shown to possess 
increased tumorigenic potential and CSC properties in 

vitro [13]. However, a more recent study refuted this 
observation and suggested a positive crosstalk between 
Wnt and MAPK signaling. Our studies suggest that the 
CloP, which potentiates tumors with increased nuclear 
β-catenin, have similar initial tumorigenic potential but 
instead possess a unique ability to continually propagate 
tumors.

While targeting the Wnt signaling pathway has 
proven difficult in the past, new therapies are in discovery 
and early clinical trials phases that target Wnt ligands 
or downstream mediators and effectors of this pathway 
[25]. These therapeutics provide an exciting opportunity 
to attack tumors by targeting CSCs, which is a promising 
therapeutic and has been suggested with other potential 
targets such as p53 restoration [9, 26] or inhibiting the 
insulin-like growth factor-1 receptor (IGF1R) [16] that 
have been suggested by us and others. Future studies 
should examine the potential of such therapeutics 
to deplete the CloP and their affect on overall tumor 
progression and should also address the importance of 
Notch, GSK3-β, FoxoM1, and miR-371-373 that can 
regulate β-catenin activity. It will be important to examine 
the contribution of the CloP to the CTC population, which 
is of great clinical importance in colon cancer [27] and 
may be related to the CSC population [28, 29]. Ultimately, 
the prevalence and prognostic value of the CloP should 
be evaluated in primary tumor specimens to further 
substantiate the clinical significance of these cells that we 
demonstrate preclinically herein. 

MATERIALS AND METHODS

Cell culture

Cell lines were obtained from ATCC and cultured 
under the recommended conditions. For expression 
analysis of CD133, CD26, and calcein-efflux in cultured 
cells from culture under resting conditions and log-phase 
growth were analyzed as previously described by flow 
cytometry analysis [9] using Calcein AM (Molecular 
Probes, Junction City, OR) at a working concentration 1 
nM for 30 minutes with vortexing. Gating was performed 
with isotype controls and data was processed with FlowJo 
software. Exemplary gating, controls, scatter plots, and 
histograms are shown in Figure S1. Antibodies and siRNA 
for β-catenin were obtained from Cell Signaling. Western 
blot analysis and transfection of siRNA was performed as 
previously described [30]. 

In vivo studies

All animal experiments were approved by the 
Institutional Animal Care and Use Committee at Penn 
State Hershey Medical Center. 8-week-old female 
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NOD/SCID mice were obtained from Charles River. 
Subcutaneous xenografts were established by injection of 
tumor cells in a 200μL suspension of 1:1 PBS:Matrigel 
(BD) in rear flanks.  Cells were maintained on ice 
following sorting and injected at equivalent numbers 
of viable cells using serial dilution of stock solutions 
that were enumerated in triplicate using a Cellometer 
(Nexcelom Bioscience LLC, Lawrence, MA) and Trypan 
Blue Solution (Mediatech). CloP and ChiP injections were 
in the same mice with one population per rear flank to 
minimize inter-mouse variability. Tumor incidence was 
monitored weekly by palpitation and caliper measurement 
of the depilated flanks and confirmed at endpoint by 
necropsy. Week 0 is defined as the time of tumor cell 
injection. Stem cell frequencies was determined using 
Extreme Limiting Dilution Analysis software [31]. 

For serial passage, tumors were harvested at 
endpoint immediately following sacrifice and subjected to 
manual and enzymatic digestion using Collagenase type 
3 (Worthington) at 155 units/mL in sterile serum- and 
antibiotic-free RPMI (Mediatech, Inc, Herndon, VA) for 
2 hours with intermittent vortexing. Digested tumor cells 
for each population were filtered through a 100 µm nylon 
mesh, pooled, enumerated, and reinjected as described 
above. 
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