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ABSTRACT
Machine learning techniques for cancer prediction and biomarker discovery can 

hasten cancer detection and significantly improve prognosis. Recent “OMICS” studies 
which include a variety of cancer and normal tissue samples along with machine 
learning approaches have the potential to further accelerate such discovery. To 
demonstrate this potential, 2,175 gene expression samples from nine tissue types 
were obtained to identify gene sets whose expression is characteristic of each cancer 
class. Using random forests classification and ten-fold cross-validation, we developed 
nine single-tissue classifiers, two multi-tissue cancer-versus-normal classifiers, and 
one multi-tissue normal classifier. Given a sample of a specified tissue type, the 
single-tissue models classified samples as cancer or normal with a testing accuracy 
between 85.29% and 100%. Given a sample of non-specific tissue type, the multi-
tissue bi-class model classified the sample as cancer versus normal with a testing 
accuracy of 97.89%. Given a sample of non-specific tissue type, the multi-tissue multi-
class model classified the sample as cancer versus normal and as a specific tissue type 
with a testing accuracy of 97.43%. Given a normal sample of any of the nine tissue 
types, the multi-tissue normal model classified the sample as a particular tissue type 
with a testing accuracy of 97.35%. The machine learning classifiers developed in this 
study identify potential cancer biomarkers with sensitivity and specificity that exceed 
those of existing biomarkers and pointed to pathways that are critical to tissue-
specific tumor development. This study demonstrates the feasibility of predicting the 
tissue origin of carcinoma in the context of multiple cancer classes.

INTRODUCTION

Cancer has been characterized as a heterogeneous 
disease that is categorized by many different types and 
subtypes. In the United States, cancer is the second leading 
cause of death. In 2016, over 1.6 million new cases of 
cancer were diagnosed and over 600,000 people died from 
this disease; the disease accounts for approximately 23% 
of all deaths in the US each year [1]. Successful treatment 
depends on the timely diagnosis, and the five-year survival 
rate significantly increases with early detection. Diagnosis 
typically begins with symptomology, is supported by 
imaging technology, and is confirmed histopathologically 
by biopsy. These methods, however, suffer from low 
sensitivity and high costs.  

The identification of cancer-specific biomarkers is 
being evaluated as an alternative diagnostic and treatment 
option since it is minimally invasive and thus has the 
potential to lower the cost of diagnosis. Already, several 
biomarkers have been identified and used to some extent 
in diagnosis; however, they usually have low accuracy, 
selectivity, and specificity, and high false-positive, false-
negative rates of diagnosis [2]. Therefore, improving the 
process and tools for the discovery of new biomarkers is 
essential for future improvement in cancer diagnostics and 
successful treatment.

While many strategies for discovering biomarkers 
exist, selecting useful biomarkers is a challenging 
task [3, 4]. Examples of these strategies include 
gene-expression profiling, mass-spectrometry-based 
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proteomic profiling, protein arrays and secreted protein 
approach [5]. Genomic and proteomic technologies 
have increased the number of potential biomarkers 
under investigation [6]. Furthermore, analysis of a 
single biomarker or a combination of only a few is 
increasingly being replaced by multiparametric analysis 
of genes, RNA, or proteins [7–10]. Specifically, high-
throughput techniques such as microarrays and several 
machine-learning methods have been developed to 
study cancer classification and discovery of potential 
biomarkers [6, 11–20]. 

Many conventional biomarkers were established 
via discriminant analysis, through the comparison 
of cancerous tissues with normal tissues [21] or 
identifying nuanced differences among cancer subtypes 
[22, 23]. Progress in cancer biomarker identification has 
come through the application of machine learning to 
the analysis of high-throughput data from microarrays 
[24–29]. However, challenges remain in the application 
of machine learning to analyze biomarker data due to 
small sample sizes, the sheer size, and complexity of 
each dataset, as well as the diversity of experimental 
design [30].

The biomarker identification strategy outlined in this 
paper involves selecting genes whose differential expression 
in building cell structure, maintaining homeostasis, or the 
progression of cancer is a discriminating factor [31–34]. To 
achieve this, we developed single-tissue and multi-tissue 
machine learning cancer-versus-normal-classifiers using 
gene expression data that were used to identify tissue-
specific cancer biomarkers. These biomarkers were obtained 
from machine learning models using gene expression 
data obtained and normalized from 2,175 samples and 
span nine tissue types. A feature selection method was 
identified to select informative genes (predicted biomarkers) 
from preprocessed data. Machine-learning models were 
identified through the analysis of gene expression samples 
from human cancer and non-cancerous tissue types that 
accurately distinguish malignant tissue from normal tissue 
and different malignant tissue types from each other. 
Using functional characterization and pathway analysis, 
the known tissue-specific cancer-related pathways were 
validated, and novel cancer-related pathways and functional 
groups for each of the tissue-specific predicted biomarkers 
were identified. The diagnostic capacity of the biomarkers 
predicted by the methods in this study (and later assessed by 
comparing their sensitivity and specificity to the sensitivity 
and specificity of known biomarkers for all tissue types) 
showed significant improvements over existing biomarkers. 
The development of our cancer prediction models and 
identification of the potential biomarkers may facilitate 
accurate, unbiased cancer diagnosis and effective treatment, 
ultimately improving cancer prognoses. Furthermore, the 
gene-expression signatures discovered by this classification 
approach may lead to new clinical reagents for successful 
tumor diagnosis.

RESULTS

Identification of the best feature selection 
algorithm

Of all the combinations of feature selection 
algorithms and feature thresholds tested (Step 4 in 
Figure 1), the Filtered Attribute Evaluator with Ranker 
method (FAER) used with a feature threshold of the top 
1% genes performed the best (Supplementary Figure 1 
shows the workflow for identification of the best feature 
selection algorithm and Supplementary File 1 provide the 
performance details of the feature selection algorithms; 
see Methods for the list of feature selection algorithms 
and feature thresholds). As such, FAER with a feature 
threshold of 1% was used for feature selection throughout 
this study.

Predictive power of the models

Single-tissue models

Given a sample of a specific tissue type, single-
tissue models accurately classify the sample as cancer or 
normal. Each single-tissue model more accurately classified 
samples from the same tissue type (same-tissue) than it 
classified samples from other tissue types (across-tissues). 
The area under the ROC (receiver operating characteristics) 
curve for tissue-specific models ranged from 0.84 (Colon 
model) to 1 and is shown in Figure 2. Same-tissue testing 
accuracies ranged from 85.29% (Tongue Model) to 100% 
(Blood, Head and Neck and Lung Models). Across-tissues 
test accuracies ranged from 33.46% (Lung Model) to 
88.68% (Gastric Model). (More details can be found in 
Supplementary Figure 2 and Supplementary Table 1).

Among the two classifiers, the random-forests 
classifier performed better than the Support Vector 
Machine classifier for each model except the Tongue 
model (the Random Forests classifier yielded an 85.29% 
same-tissue testing accuracy compared to 94.11% by the 
Support Vector Machine classifier). The Random Forests 
classifier outperformed the Support Vector Machine 
classifier in the across-tissues testing accuracies for each 
model. Supplementary Figure 3A and 3B show the same-
tissue and across-tissues accuracies respectively. (To see 
differences between the performances of these classifiers, 
see Supplementary Table 2 and Supplementary Table 3). 
As a result, the models were constructed with Random 
Forests for the duration of this study.

A list of 244 genes (predicted biomarkers) was 
identified for each tissue type (See Supplementary File 2 for 
complete list of biomarkers for each tissue type and Table 2 
for the number of characterized and uncharacterized genes 
for each tissue type) is given in Supplementary File 3 
whereas, the list of uncharacterized genes is provided in 
Table 3.
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Multi-tissue bi-class model

Given a sample of any of nine tissue types, the 
multi-tissue bi-class model accurately classifies the sample 
as cancer or normal. The area under the ROC curve for the 
multi-tissue bi-class model is 0.88 and is shown in Figure 
3A. The multi-tissue bi-class model achieved training and 
testing accuracies of 97.33% and 97.89%, respectively. 
The model was more accurate in predicting a Cancer 
sample (Precision and Recall of 98.95% and 97.70%, 
respectively) than a Normal sample (Precision and Recall 
of 91.27% and 95.87%, respectively). (See Table 1 for 
Precision, Recall, and F1- score measures for both training 
and testing datasets.)
Multi-tissue multi-class model

Given a sample of any of the nine tissue types, the 
multi-tissue multi-class model accurately classifies the 
sample as cancer or normal, and as of a specific tissue 
type. The area under the ROC curve for the multi-tissue 
multi-class model is 0.97 and is shown in Figure 3B. The 

multi-tissue multi-class models achieved training and 
testing accuracies of 96.96% and 97.43%, respectively. 
The precision, recall, and F1- score for these models 
varied among classes (Figure 4). For the following 
classes, the model had 100% precision using the training 
dataset: blood-tumor, blood-normal, breast-tumor, gastric-
tumor, gastric-normal, and head and neck-tumor. For the 
following classes, the model had 100% recall using the 
training dataset: blood-normal, gastric-normal, head-and 
neck-tumor, head-and-neck normal, lung-tumor, lung-
normal, and tongue-normal. Out of all the classes, colon-
normal (precision: 33.33%), prostate-normal (precision: 
33.33%), and tongue-normal (precision: 28.57%) had 
the lowest precision using the training dataset (See 
Supplementary Table 4–6 for precision, recall, F1-score 
and confusion matrices). 
Multi-tissue normal multi-class model

Given a normal sample of any of the nine tissue 
types, the multi-tissue normal multi-class model accurately 

Figure 1: Schematic representation of the study workflow for each model. (1) Microarray gene expression data for each tissue 
type relevant to the model were collected from the NCBI Gene Expression Omnibus (GEO) repository. (2) The data were then normalized, 
and background correction was performed on these data. (3) The preprocessed data were then partitioned into training and testing sets. (4) 
Feature selection was conducted on the training dataset to extract the list of important genes. (5) The list of selected genes was then mapped 
to the training data to generate the feature vectors using a process called Dimensionality Reduction. (6) Feature vectors were trained to 
create multiple models. (7) Ten-fold cross-validation was used to identify the optimal model. (8) The model performance was assessed by 
the testing its accuracy using the testing dataset. (9) The model was used to predict the class labels for the samples in the unknown dataset. 
(10) The functional analysis was performed using the selected genes to retrieve the pathways and functional groups.
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classifies the sample as of a particular tissue type. The area 
under the ROC curve for the multi-tissue normal multi-
class model is 0.95 and is shown in Figure 3C. The multi-
tissue normal multi-class models achieved training and 
testing accuracies of 97.88% and 97.35%, respectively. 
The models’ precision and recall for each normal class 
using the testing dataset ranged from 87.5% to 100%, 
and from 95.45% to 100%, respectively (See Figure 5, 
Supplementary Tables 7–9 for details). 

Functional analysis

Enrichment of cancer tissue-specific genes in metabolic 
and signaling pathways

A total of 104 KEGG (Kyoto Encyclopedia of 
Genes and Genomes, [35]) pathways were identified for 
the nine tissue types. The gastric tissue genes had the 
most pathways (38), whereas the blood and lung tissue 
genes had the fewest pathways (4). The colon-tissue 
genes had the second highest number (14) of KEGG 

pathways (Figures 6-8, Supplementary Figures 4–6, and 
Supplementary File 4).

Significant pathways for each tissue type are 
presented below. 
Blood

Four pathways were identified using blood tissue 
genes. The only metabolic pathway identified was hsa00564: 
glycerophospholipid metabolism. The other three pathways 
are involved in intracellular signaling: hsa04015: Rap1 
signaling pathway, hsa04064: NF-kappa B signaling pathway 
and hsa04080: neuroactive ligand-receptor interaction.
Breast

Six pathways were identified using the breast tissue 
genes. Some of these pathways are involved in inter- 
or intra-cellular structures: hsa04510: focal adhesion 
and hsa04810: regulation of the actin cytoskeleton. 
The rest were signaling motifs: hsa04670: leukocyte 
transendothelial migration, hsa03010: ribosome and 
hsa05131: shigellosis pathway.

Table 1: Precision, recall and F1-Score for the multi-tissue bi-class model for training and testing 
data

Training Testing

Class of 
Samples

# of Tumor 
Samples

# of 
Normal 
Samples

Precision 
(%)

Recall 
(%)

F1-
Score

# of 
Tumor 

Samples

# of 
Normal 
Samples

Precision 
(%)

Recall 
(%)

F1-
Score

Tumor 849 9 98.95 97.70 98.32 854 4 99.53 97.82 98.67
Normal 20 209 91.27 95.87 93.513 19 211 91.74 98.14 94.83

Figure 2: ROC for single-tissue specific models. The area under the ROC curves is shown for each model. (A) Breast, (B) Colon, 
(C) Gastric, (D) Prostate, (E) Thyroid, and (F) Tongue. The ROC for the Blood, Head & Neck and Lung models are not shown due to the 
due to their AUC = 1.
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Colon

Colon tissue genes were used to identify 14 pathways. 
One of this pathways was a signaling pathway: hsa04725: 
cholinergic synapse. Another pathway was involved in 
disease development, hsa05204: chemical carcinogenesis. 
Most of the remaining pathways were involved in diverse 
metabolic functions: hsa00830: retinol metabolism, 
hsa00982: drug metabolism–cytochrome P450, hsa00983: 
drug metabolism–other enzymes, hsa00053: ascorbate and 
aldarate metabolism, hsa00040: pentose and glucuronate 

interconversions, hsa00140: steroid hormone biosynthesis, 
hsa00860: porphyrin and chlorophyll metabolism, 
hsa00980: metabolism of xenobiotics by cytochrome P450 
(For detailed results, refer to the Supplementary File 4).
Gastric

Gastric tissue genes were used to identify 38 
pathways. Many of the pathways were involved in 
synaptic function: hsa04724: glutamatergic synapse, 
hsa04727: GABAergic synapse, hsa04725: cholinergic 
synapse, hsa04728: dopaminergic synapse, hsa04726: 

Table 2: Distribution of characterized and uncharacterized genes for each tissue type

Tissue Predicted Biomarkers 
(Characterized Genes)

Predicted Biomarkers 
(Uncharacterized Genes)

Blood 170 74
Breast 239 5
Colon 240 4
Gastric 238 6

Head & Neck 243 1
Lung 224 20

Prostate 238 6
Thyroid 240 4
Tongue 237 7

Figure 3: ROC for multi-tissue models. The area under the ROC curves is shown for each model. (A) multi-tissue bi-class model, 
(B) multi-tissue multi-class model, (C) multi-tissue normal multi-class model.
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serotonergic synapse. Other pathways were involved in the 
different signaling aparati (hsa04062: chemokine signaling 
pathway, hsa04014: ras signaling pathway, hsa04070: 
phosphatidylinositol signaling system, hsa04151: PI3K-
Akt signaling, hsa04071: sphingolipid signaling, hsa04744: 
phototransduction, and hsa04022: cGMP-PKG signaling 
pathway). The disease-related pathways included hsa05200: 
pathways in cancer, hsa05034: alcoholism, hsa05142: 
Chagas disease, hsa05146: amoebiasis, hsa04930: type 
II diabetes mellitus, hsa05213: endometrial cancer. The 
remaining pathways are involved in various forms of 
fatty acid chain metabolism: hsa00562: inositol phosphate 
metabolism, hsa00564: glycerophospholipid metabolism, 
hsa00592: alpha-Linolenic acid metabolism, hsa00565: ether 
lipid metabolism, hsa00563: glycosylphosphatidylinositol 
(GPI)-anchor biosynthesis, hsa00590: arachidonic acid 
metabolism (Supplementary File 4).

Head and neck

Using the Head and Neck tissue genes we identified 
ten pathways. Most of these pathways are specific to 
cellular signaling and regulation of signaling pathways: 
hsa04015: Rap1 signaling, hsa04610: complement and 
coagulation cascades, hsa04550: signaling pathways 
regulating pluripotency of stem cells, hsa04014: Ras 
signaling, hsa04151: PI3K-Akt signaling and has03018: 
RNA degradation. The disease-related pathways involve 
hsa05150: Staphylococcus aureus infection, hsa05218: 
melanoma, hsa05200: pathways in cancer, and hsa05217: 
Basal cell carcinoma.
Lung

Four pathways were identified using lung tissue 
genes. Three of these pathways were involved in signal 
transduction: hsa04080: neuroactive ligand-receptor 

Figure 4: Performance of the multi-tissue multi-class models for each class. (A) Precision and recall using the training dataset. 
(B) Precision and recall using the testing dataset.

Figure 5: Performance of the multi-tissue normal multi-class model for each class. Precision and Recall values are shown for 
each of the nine tissue types using the testing dataset.
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Table 3: List of uncharacterized genes predicted as biomarkers from different tissue types
Potential Biomarker (Uncharacterized genes) Tissue

CTC-265F19.1 Blood

CTC-360P9.3 Blood

CTC-378H22.2 Blood

CTC-384G19.1 Blood

CTC-400I9.1 Blood

CTC-428G20.6 Blood

CTC-436K13.5 Blood

CTC-459F4.3 Blood

CTC-462L7.1 Blood

CTC-471C19.1 Blood

CTC-471F3.6 Blood

CTC-471J1.2 Blood

CTC-527H23.4 Blood

CTC-550B14.7 Blood

CTD-2002J20.1 Blood

CTD-2008P7.1 Blood

CTD-2012K14.6 Blood

CTD-2021H9.3 Blood

CTD-2033C11.1 Blood

CTD-2035E11.5 Blood

CTD-2036P10.3 Blood

CTD-2076M15.1 Blood

CTD-2083E4.4 Blood

CTD-2083E4.7 Blood

CTD-2118P12.1 Blood

CTD-2130O13.1 Blood

CTD-2196E14.6 Blood

CTD-2199O4.3 Blood

CTD-2199O4.7 Blood

CTD-2251F13.1 Blood

CTD-2256P15.2 Blood

CTD-2269F5.1 Blood

CTD-2281E23.2 Blood

CTD-2284J15.1 Blood

CTD-2286N8.2 Blood

CTD-2287O16.5 Blood

CTD-2293H3.1 Blood

CTD-2302E22.4 Blood

CTD-2310F14.1 Blood

CTD-2311B13.7 Blood

CTD-2313J17.5 Blood

CTD-2314B22.3 Blood

CTD-2325A15.5 Blood

CTD-2366F13.2 Blood

CTD-2373J6.1 Blood

CTD-2377D24.6 Blood

CTD-2520I13.1 Blood

CTD-2534I21.8 Blood

CTD-2537I9.16 Blood

CTD-2537I9.5 Blood

CTD-2540F13.2 Blood

CTD-2541J13.1 Blood

CTD-2541M15.1 Blood

CTD-2542L18.1 Blood

CTD-2547L24.4 Blood

CTD-2553C6.1 Blood

CTD-2554C21.3 Blood

CTD-2555O16.4 Blood

CTD-2561B21.11 Blood

CTD-2587H24.10 Blood

CTD-2587M23.1 Blood

CTD-2611O12.6 Blood

CTD-2616J11.10 Blood

CTD-2619J13.13 Blood
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CTD-2619J13.17 Blood

CTD-2639E6.4 Blood

CTD-2647L4.1 Blood

CTD-3028N15.1 Blood

CTD-3046C4.1 Blood

LOC730139 Blood

LOC731424 Blood

LOC80154 Blood

LOC90834 Blood

LQFBS-1 Blood

AX746733 Breast

RP11-114H24.6 Breast

RP11-255C15.3 Breast

RP11-348B17.1 Breast

RP11-403P17.4 Breast

LA16C-381G6.1 Colon

LOC100652770 Colon

RP11-295M18.6 Colon

RP11-38P22.2 Colon

GS1-103B18.1 Gastric

GS1-111G14.1 Gastric

GS1-18A18.2 Gastric

GS1-124K5.9 Gastric

GS1-164F24.1 Gastric

GS1-304P7.2 Gastric

FLJ11292 Head And Neck

RP11-69I8.2 Lung

RP3-406C18.2 Lung

RP4-710M16.1 Lung

AC007967.3 Lung

LOC613037 Lung

LOC100127886 Lung

RP1-217P22.2 Lung

AC009947.3 Lung

RP11-770J1.4 Lung

RP11-209A2.1 Lung

RP5-1184F4.5 Lung

MGC13053 Lung

RP3-391O22.2 Lung

LOC649330 Lung

RP3-406P24.1 Lung

RP13-258O15.1 Lung

RP5-1118D24.2 Lung

GS1-124K5.9 Lung

RP1-190J20.2 Lung

RP1-192P9.1 Lung

AC004941.5 Prostate

LOC100506119 Prostate

RP1-101G11.2 Prostate

RP11-297L17.2 Prostate

AX746823 Prostate

RP11-96K19.4 Prostate

RP6-24A23.7 Thyroid

LOC100506558 Thyroid

LOC101930400 Thyroid

LOC102725271 Thyroid

CTA-384D8.35 Tongue

RP11-353N14.2 Tongue

CTC-444N24.11 Tongue

RP11-539I5.1 Tongue

LOC101928615 Tongue

GS1-111G14.1 Tongue

RP11-250B2.3 Tongue



Oncotarget85700www.impactjournals.com/oncotarget

interaction, hsa04024: cAMP signaling, and hsa04924: 
renin secretion. The fourth pathway is involved in 
hsa04260: cardiac muscle contraction.
Prostate

Prostate tissue genes were used to identify eight 
pathways. These include several metabolic pathways: 
hsa00480: glutathione metabolism, hsa00051: fructose 
and mannose metabolism, hsa00982: drug metabolism–
cytochrome P450, hsa00030: pentose phosphate pathway 
and hsa00052: galactose metabolism. The other pathways 
are hsa04512: ECM-receptor interaction signaling 
pathway, hsa05200: pathways in cancer, and hsa04510: 
focal adhesion, a structural pathway.
Thyroid

Nine pathways were identified using thyroid tissue 
genes. The signaling pathways included hsa04512: ECM-
receptor interaction and hsa04151: PI3K-Akt signaling. A 
few structural pathways were identified, including hsa04510: 
Focal adhesion, hsa05205: proteoglycans in cancer and 
hsa04360: axon guidance. The only metabolic pathway 
identified was hsa00350: tyrosine metabolism. The disease-
related pathways include hsa05222: small cell lung cancer, 
hsa05200: pathways in cancer, and hsa05146: amoebiasis.

Tongue

Twelve pathways were identified using tongue-
tissue genes. Many of the identified pathways were 
disease-related, including hsa05323: rheumatoid arthritis, 
hsa05146: amoebiasis, hsa05200: pathways in cancer, 
hsa05142: Chagas disease, hsa05132: Salmonella 
infection, hsa05222: small cell lung cancer, and hsa05140: 
leishmaniasis. The only structural pathway was hsa05205: 
proteoglycans in cancer. The following four signaling 
pathways were hsa04620: Toll-like receptor signaling, 
hsa04062: chemokine signaling, hsa04512: ECM-receptor 
interaction, and hsa04060: cytokine-cytokine receptor 
interaction.

Enrichment of cancer tissue-specific genes in various 
functional groups

Using tissue-specific genes, functional groups 
were identified related to protein kinase inhibitor activity 
(GO:0004860), negative regulation of JAK-STAT cascade 
(GO:0046426), myosin complex (GO:0016459), G-protein 
coupled receptor signaling pathway (GO:0007186), 
GTPase activity (GO:0003924), signal transducer activity 
(GO:0004871), flavone metabolic process (GO:0051552), 
tissue homeostasis (GO:0001894), amino acid transmembrane 
transporter activity (GO:0015171), regulation of MAPK 
cascade (GO:0043408), type I interferon signaling pathway 
(GO:0060337), and others. Figures 9–11 show the 
functional groups with the top five Gene Ontology (GO) 
groups with the total number of genes from each tissue-
specific gene list. See Supplementary File 5 for full list of 
functional groups.
Predicted biomarkers perform better than existing 
biomarkers

A total of 244 potential biomarkers were identified for 
each tissue type distributed across the different cancer types 
(Supplementary File 2). The quality of these predictions 
was assessed by comparing the sensitivity and specificity 
of biomarkers to the sensitivity and specificity of existing 
biomarkers collected from the literature (Supplementary 
Tables 10–16). Biomarkers predicted by our machine learning 
models resulted in higher sensitivity and specificity for each 
tissue type than those of existing biomarkers (Figure 12). 

DISCUSSION

In this study, machine learning models were 
developed to analyze a large-scale human gene-expression 
dataset to identify cancer biomarkers within nine tissue 
types. Given the presence of cancer, machine learning 
models were also equipped to distinguish between cancer 
types. A machine-learning method to select informative 

Figure 6: Number of significant pathways for the genes (predicted biomarkers) from each tissue type. A pathway was 
significant if its p-value was less than or equal to 0.05 and it had a minimum of three tissue-specific genes.
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Figure 7: KEGG Pathway mapping for each tissue type using identified genes (potential biomarkers). A pathway was 
considered significant if its p-value was less than or equal to 0.05 and it had a minimum of three tissue-specific genes.
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Figure 8: Number of selected genes (potential biomarkers) in pathways for each tissue type. A pathway was considered 
significant if its p-value was less than or equal to 0.05 and it had a minimum of three tissue-specific genes.
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Figure 9: Top five significant Gene Ontology groups with the total number of predicted tissue genes. A functional group 
was considered significant if its p-value was less than or equal to 0.05 and if it had a minimum of three tissue-specific genes. (A) Blood, 
(B) Breast, (C) Colon, (D) Gastric

Figure 10: Top five significant Gene Ontology groups with the total number of predicted tissue genes. A functional group 
was considered significant if its p-value was less than or equal to 0.05 and it had a minimum of three tissue-specific genes. (A) Head & 
neck, (B) Lung, (C) Prostate, (D) Thyroid 
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genes (potential biomarkers) was identified for each tissue 
type. Four different classifiers were developed: (1) models 
which, given a sample of a specific tissue type, accurately 
classify the sample as cancer or normal (“single-tissue”), 
(2) a model which, given a sample of any of nine tissue 
types, accurately classifies the sample as cancer or normal 
(“multi-tissue bi-class”), (3) a model which, given a 
sample of any of the nine tissue types, accurately classifies 
the sample as cancer or normal, and as of a specific tissue 
type (“multi-tissue multi-class”), and (4) a model which, 
given a normal sample of any of the nine tissue types, 
accurately classifies the sample as of a particular tissue 
type (multi-tissue normal multi-class). (See Figure 13A 
and Supplementary Table 17 for distribution of samples 
among tissue types.) The classifiers, trained to incorporate 
a vast array of different tissue types, and the predicted 
biomarkers may facilitate accurate, unbiased cancer 
diagnosis and effective treatment, ultimately improving 
prognoses.

Machine learning methodology 

The selection of relevant genes involved in 
different types of cancer remains a challenge [36, 37]. 
Moreover, for diagnostic purposes, it is important to find 
a small subset of genes that are sufficiently informative 
to distinguish between different cancer types. To extract 
useful gene information from cancer microarray data and 
reduce dimensionality, feature-selection algorithms were 
systematically investigated in this study. To this end, a 
feature selection method was identified (FAER with 1% 
feature threshold) from twelve feature selection algorithms 
to select informative genes (potential biomarkers) for 
each tissue type. As we showed, selecting relatively small 
subsets of genes significantly improved the performance 
of our classification models. The single-tissue models 
were tested using the testing data from all the nine tissues 
as part of the negative control. Each single-tissue model 
more accurately classified samples from the same tissue 

Figure 11: Top five significant Gene Ontology groups with the total number of predicted tongue tissue genes. A functional 
group was considered significant if its p-value was less than or equal to 0.05 and if it had a minimum of three tissue-specific genes.

Figure 12: Performance of predicted biomarkers with known biomarkers for each tissue type. (A) Sensitivity of the 
existing biomarkers (breast: 50.1%, colon:63%, gastric:87.95%, head&neck:60%, lung:85%; prostate:67%, tongue:79%) is represented by 
box plot (blue) and sensitivity of our predicted biomarkers (breast:100%, colon:97.92%, gastric: 99.37 %, head & neck:100%, lung:100%; 
prostate:100%, tongue:96.3%) is represented by cross mark (orange). (B) specificity of the existing biomarkers (breast:66.89%, colon:90%, 
gastric: 90.3%, head& neck:92.9%, lung:82%; prostate:70%, tongue:80%) is represented by box plot (blue) and specificity of our predicted 
biomarkers (breast:98.46%, colon: 100%, gastric: 100%, head & neck:100%, lung:100%; prostate:95%, tongue:86.67%) is represented by 
cross (orange). 
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type (same-tissue) than it did samples from other tissue 
types (across-tissues). The multi-tissue bi-class and multi-
class models were not only able to classify the sample as 
cancer or normal but also the tissue of origin. Moreover, 
this feature selection process also identified genes that are 
closely related to the pathways and functional groups of 
various cancers. 

Metabolic pathways

The metabolism of a tumor depends on both the 
genotype and tissue of origin and has implications regarding 
the design of therapies targeting tumor metabolism [38]. 
Tissue-specific genes pointed to metabolic pathways that 
may be critical to tumor development in general and tissue-
specific tumor development (see the list of pathways in 
Supplementary File 4). Metabolic rewiring is essential 
for the progression of many types of cancer [39, 40]. We 
discuss the metabolic pathways for selected tissues below.

Blood

The metabolic pathway identified using the blood 
tissue genes is glycerophospholipid metabolism, and 
there is an increase of acyl-glycerophospholipids in acute 
myeloid leukemia [41].

Colon

Most of the metabolic pathways identified using the 
colon tissue genes have known links to colon cancer. One 
such pathway is retinol metabolism; retinoids are known 
to play a role in the prevention and treatment of colorectal 
cancer [42–44]. Some of the colon-cancer genes identified 
also include steroid hormone biosynthesis, as the bacterial 
cells in the gut produce steroid hormones that can have 

implications for colon cancer [45]. Some colon cancer 
genes also identified include metabolism of xenobiotics; 
biotransformation of xenobiotics occurs in the human 
colon and rectum, and it is known to be associated with 
colorectal cancer [46–48]. Pentose and glucuronate 
interconversions were also identified using colon-tissue 
genes. The heightened metabolic demands of colon cancer 
cells are known to result in increased glucose uptake and 
glycolytic flux relative to normal tissues [49, 50]. One 
common feature of the altered metabolism in cancer is 
the increased glucose uptake and fermentation of glucose 
to lactate, a phenomenon known as the Warburg Effect 
[51, 52]. In tumor cells and other proliferating cells, the 
rate of glucose uptake dramatically increases, even in the 
presence of oxygen and fully functioning mitochondria.
Gastric

Many of the pathways identified using gastric 
tissue genes are involved in various forms of fatty acid 
chain metabolism: inositol phosphate metabolism, 
glycerophospholipid metabolism, ether lipid metabolism, 
glycosylphosphatidylinositol (GPI)-anchor biosynthesis, 
arachidonic acid metabolism and alpha-Linolenic acid 
metabolism. α-linolenic acid is known be the most 
effective in suppressing the growth of gastric cancer 
cells [53]. These results suggest that the metabolism of 
fatty acids may play a critical role in the tumorigenesis 
of gastric cancer. Levels of metabolism of fatty acids in 
cancer cells are known to vary across tissue types [54].
Prostate

Some of the metabolic pathways identified using the 
prostate tissue genes are glutathione metabolism and pentose 
phosphate metabolism. The glutathione S-transferases 

Figure 13: Sample Distribution of Tumor and Normal samples by tissue of origin. (A) Distribution of Tumor and Normal 
samples (2175) by tissue of origin. (B) Distribution of Tumor (1716) samples by tissue of origin. (C) Distribution of Normal (459) samples 
by tissue of origin.
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(GSTs) enzymes are known to be involved in the metabolism 
of numerous potential prostate carcinogens [55, 56]. Cancer 
cells display an increased demand for glucose. Clinical data 
suggested that the glucose-6-phosphate dehydrogenase 
(G6PD), the rate-limiting enzyme in the pentose phosphate 
pathway, is upregulated in prostate cancer [57].
Thyroid

Using the thyroid tissue genes, we identified a 
tyrosine metabolism pathway where the thyroid gland 
uses tyrosine residues to generate T3 and T4, metabolic 
hormones known to be involved in thyroid cancer [58, 59].

Signaling pathways

Signaling pathways controlling cell growth, cell 
division, cell death, cell fate, and cell motility are almost 
invariably altered in cancer [60]. Many of the signaling 
pathways found in this study were identified using tissue-
specific genes (discussed below). 
Blood

The pathways identified using the blood tissue genes 
are involved in intracellular signaling (Rap1 signaling, 
NF-kappa B, and neuroactive ligand-receptor interaction 
signaling). Ras is known to induce myeloproliferative 
disorders and acute myeloid leukemia [61, 62]. Nuclear 
factor-kappaB is constitutively activated in human acute 
myeloid leukemia cells [63–68]. 
Gastric

Signaling pathways and interaction networks were 
altered in gastric cancer tissues [69, 70]. The pathways 
identified using the gastric tissue genes were involved in 
signaling aparati (chemokine signaling, Ras signaling, 
phosphatidylinositol signaling, PI3K-Akt signaling, sphingolipid 
signaling, phototransduction, and cGMP-PKG signaling). 
Phototransductive proteins are expressed to increase intracellular 
calcium in tumor cells for gastric cancer patients [71, 72]. 

Head and neck 

Most of the pathways identified using head and neck 
genes are specific to cellular signaling and regulation of 
signaling pathways known to be involved in head and neck 
cancer, including complement and coagulation cascades, 
signaling pathways regulating pluripotency of stem cells, 
Ras signaling, PI3K-Akt signaling and RNA degradation. 
Rap1 signaling, Rap1, and Rap1GAP are known to play a 
role in the progression of squamous-cell carcinoma of the 
head and neck. Rap-1A pathway is also associated with 
survival, tumor progression, and metastasis of oral cavity 
squamous cell carcinoma patients [73, 74]. 

Infectious disease-related pathways

Many cancers have been attributed to infections 
[75–77]. Cancers caused by infections are thought to result 

from one or more of the following: immune suppression, 
chronic inflammation, and dysregulated inflammation 
[78–80]. Many of these infectious disease-related pathways 
were found using the tissue-specific genes identified in 
this study. For example, the Staphylococcus aureus (gram 
positive bacteria) pathway was found using head and neck 
genes. Staphylococcus aureus is known to be present in oral 
squamous-cell carcinoma tissue [81] and is also abundant 
in the blood of oral cancer patients [82]. The infectious 
disease-related pathways identified using the gastric 
tissue genes include Type II diabetes mellitus and Chagas 
disease. Type II diabetes mellitus is known to increase the 
risk of gastric cancer [83]. Chagas disease affects several 
gastrointestinal regions, but there is no apparent relationship 
with the growing incidence of cancer [84]. 

Gene ontology functional analysis

A Gene Ontology-based similarity assessment indicates 
that the selected genes for each tissue type are functionally 
diverse, further validating our gene selection method. 
Blood 

Many of the functional groups identified are known 
to be involved in cancer. For example, protein-kinase 
inhibitor activity (GO:0004860) and negative regulation of 
JAK/STAT cascade (GO:0046426) groups were identified 
using the blood tissue genes. Tyrosine kinase inhibitors 
are known to be useful in the treatment of acute myeloid 
leukemia [85]. The JAK/STAT signaling pathway is a 
known target for the treatment of leukemia [86].
Breast

One of the many functional groups found by the 
methods of this study was the breast-cancer gene list, 
which includes the myosin complex (GO:0016459). 
Myosin is known to promote breast cancer malignancy 
by enhancing tumor cell proliferation [87]. Mutant p53-
associated motor protein myosin upregulation is known 
to promote breast cancer invasiveness and metastasis 
[88, 89]. Myosin light-chain kinase is known to play a role 
in the proliferation and migration of breast cancer cells [90]. 
Colon

A few of the many functional groups found using 
our colon cancer gene list include the G-protein coupled 
receptor signaling pathway (GO:0007186) and GTPase 
activity (GO:0003924). G-protein coupled receptor 
kinase-5 is known to regulate proliferation and chemokine 
gene expression in human colon cancer epithelial cells 
[91]. G-protein-coupled receptors for short-chain fatty 
acids are known to suppress colon cancer [92]. GTPase 
activation is known to be present in colon cancer [93]. 

Gastric

The flavone metabolic process (GO:0051552) was 
identified using gastric tissue genes. Flavone, derived from 
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plants, is known to induce apoptosis in human gastric-
cancer cells [94]. 

Lung

Significant functional groups found using lung 
tissue genes include the G-protein coupled receptor 
signaling pathway (GO:0007187) and the regulation of 
MAPK cascade (GO:0043408). The G  protein-coupled 
receptor is known to promote tumorigenesis and is 
highly expressed in lung cancer [95]. Overexpression of 
G  protein-coupled receptors is known to correlate with 
poorer tumor differentiation and higher tumor proliferation 
in non-small-cell lung cancer [96]. Expression of Mitogen-
Activated Protein Kinase is known to present in patients 
with small cell lung cancer [97–100]. 

Biomarkers

Biomarkers can be used in clinical settings for patient 
assessment, estimates of morbidity, screening for cancer, 
distinguishing benign tissue from malignant tissue, and 
determination of prognosis. The sensitivity and specificity of 
biomarkers identified in this study exceeded those of known 
biomarkers for all compared tissue types, suggesting that 
these predicted biomarkers are robust indicators of cancer. 
Further research may include the testing blood-based 
biomarkers from the list of biomarkers under consideration 
for this study. For example, blood-based biomarkers 
have been used for diagnosis, prognosis and treatment of 
colorectal cancer [7, 101], breast cancer [8, 102], prostate 
cancer ([103], ovarian cancer [104], and lung cancer [9].

Machine learning cancer prediction models were 
developed to identify potential biomarkers for unbiased 
cancer diagnosis and effective treatment, ultimately improving 
prognoses. Large publicly-available tissue-specific microarray 
gene expression data were used for cancer type prediction, 
as well as characterization of tissue-specific normal samples 
into their various tissues of origin. A logical next step in this 
work would be the application of machine learning to the 
generation of a working model of both homeostatic and cancer 
developmental processes for cancer biomarker detection 
and early diagnosis. Such work would require collection of 
numerous forms of data (such as methylation, metabolic and 
even miRNA data) from a diverse panel of patients including 
but not limited to, demographic information, normal tissue 
controls, tumor characteristics, different forms of cancer, 
subtypes of cancer, and perhaps even other inflammatory 
diseases such as rheumatoid arthritis, from patients at varying 
stages of disease progression and development.

MATERIALS AND METHODS

Data collection

Microarray gene expression data were collected 
from NCBI Gene Expression Omnibus (GEO) repository 

[105]. A total of 2,175 tissue samples, both normal and 
cancerous, were collected from nine distinct tissues: 
blood (595), breast (171), colon (105), gastric (333), 
head and neck (82), lung (542), prostate (56), thyroid 
(224), and tongue (67). The detailed sample distribution 
is shown in Figure 13, and Supplementary Table 16. The 
accession numbers for the data are as follows: blood data: 
GSE6891, GSE267, GSE43346, GSE63270; breast data: 
GSE5460, GSE2361, GSE20437, GSE43346; colon data: 
GSE64857, GSE4107, GSE2361, GSE43346; gastric 
data, GSE2361, GSE43346, GSE19826, GSE62254, 
GSE8167; head and neck data: GSE45153, GSE10300, 
GSE43346, GSE8987; lung data: GSE1133, GSE10072, 
GSE2361, GSE43346, GSE16538, GSE19804, GSE21369, 
GSE24206, GSE63074; prostate data: GSE46602, 
GSE6369, GSE1133, GSE2361, GSE43346; thyroid data: 
GSE33630, GSE5054, GSE58545, GSE2361, GSE43346, 
GSE60542, GSE3467, GSE3678, GSE35570; tongue data: 
GSE52915, GSE9844, GSE1133, GSE43346. Samples used 
in this study were collected directly from patients according 
to experimental design. The frequency of data derived 
from tissue samples was balanced across tissue classes and 
entered into a composite data set. The data were collected 
from the following three Affymetrix Human Genome: HG-
U133_Plus_2, HG-U133A, and HG-U133A_2.

Normalization and background correction

Normalization and preprocessing are essential 
steps for the analyses of high-throughput data including 
microarrays. The Affy R module 1.54 [106] from 
Bioconductor package (https://bioconductor.org/packages/
release/bioc/html/affy.html) was used to remove the 
technical variation from noisy data and background noise 
from signal intensities. The Quantile Normalization Method 
[107] was used to normalize the data, and the background 
correction was performed using the Robust Multi-Average 
(RMA) [108] parameter method. Quantile normalization 
method relies on the assumption that observed global 
changes across samples are due to unwanted technical 
variability. We used quantile normalization since it is a 
simple, fast, one-size-fits-all solution for transforming all 
the arrays to have a common distribution of intensities. 
The algorithm maps every value on any one chip to the 
corresponding quantile of the standard distribution. The 
intensities of all probes on each chip into one standard 
distribution shape, which is determined by pooling all the 
individual chip distributions. We used RMA because it 
has a smaller standard deviation at all levels of expression 
compared to dChip and MAS5.0 [108].

Probe to gene mapping

Using the information provided in Affymetrix 
annotation files (http://www.affymetrix.com/support/
technical/annotationfilesmain.affx), probe names were 
replaced with their respective gene names. Since multiple 
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probes can also correspond to the same gene, the expression 
values for duplicate entries were averaged within samples. 
All preprocessed data were randomly divided into equal-
sized subsets of training and testing datasets. Since the 
datasets are unbalanced across classes, class distributions 
are approximately preserved for each tissue using stratified 
partitioning for training and testing sets.

Identification of best feature selection algorithm

The key to construction of accurate and 
unbiased machine learning models from microarray 
gene expression data is identification of the features 
(genes) best able to predict tissue class and cancer 
status [109]. The test set must be kept separate from 
the model training set Support Vector Machine (SVM) 
[110], IBk K-nearest neighbor [111], and Naive Bayes 
[112] were used to identify the best feature selection 
algorithm. The following 12 feature selection algorithms 
were used to create the models: (Chi Squared_Ranker, 
ClassifierSubsetEvaluator_GeneticSearch,ConsistencySub
setEvaluator_BestFirst, ConsistencySubsetEvaluator_Geneti
cSearch,ConsistencySubsetEvaluator_LinearFWDSelection,  
FilteredAttributeEvaluator_Ranker, GainRatioAttribute 
Evaluator_Ranker, LatentSemanticAnalysis_Ranker, One 
RAttributeEvaluator_Ranker, ReliefFAttributeEvaluator_

Ranker, SymmetricalUncertAttributeEval_Ranker, Wrapper 
SubsetEval_GeneticSearch) and 13 feature thresholds (Top 
1%, 2%, 3%, 4%, 5%, 10%, 20%, 25%, 33%, 50%, 66%, 
75%, 100%) is shown. 

Machine learning classification model construction

Machine learning classification models can be 
categorized into the following four groups: (1) models 
which, given a sample of a specific tissue type, classify the 
sample as cancer or normal (“single-tissue”), (2) models 
which, given a sample of any of the nine tissue types, 
classify the sample as cancer or normal (“multi-tissue bi-
class”) (3) models which, given a sample of any of the 
nine tissue types, classifies the sample as cancer or normal 
and as of a specific tissue type (“multi-tissue multi-class”) 
and (4) a model which, given a normal sample of any of 
the nine tissue types, classifies the sample as of a particular 
tissue type (“multi-tissue normal multi-class”). (See 
Figure 13A and Supplementary Table 17 for distribution 
of samples among tissue types). The overall workflow of 
the model construction is given in Figure 14. Models were 
constructed using Random Forests and Support Vector 
Machine. The configurable CancerDiscover software 
pipeline [113] was used to perform all the machine 
learning steps in this study.

Figure 14: Types of machine learning classification model construction with the model name, the total number of 
models, the number of classes, and disease states of sample source for each model type. Green box: unlabeled data; blue box: 
cancer label; yellow box: normal label; BlC: blood-cancer, BlN: blood-normal, BrC: breast-cancer, BrN: breast-normal, CoC: colon-cancer, 
CoN: colon-normal, GaC: gastric-cancer, GaN: gastric-normal, HeC: head and neck-cancer, HeN: head and neck-normal, LuC: lung-cancer, LuN: 
lung-normal, PrC: prostate-cancer, PrN: prostate-normal, ThC: thyroid-cancer, ThN: thyroid-normal, ToC: tongue-cancer, ToN: tongue-normal.
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Machine learning algorithms and framework

Support Vector Machines (SVMs) and Random 
Forests were used to construct the models for this study. 
These machine-learning methods were chosen because 
of their extensive and successful applications to datasets 
from genomic and proteomic domains [114, 115]. Some of 
the cancer classification tasks were binary (two classes), 
and the others were multiclass (more than two classes). 
Though SVMs are designed for binary classification, 
they can also be used for multiclass classification by 
a one-versus-rest approach [116]. The one-versus-rest 
approach for classification is known to be among the 
best-performing methods for multicategory classification 
for microarray gene expression [30]. Models were also 
constructed using Random Forests (RF), which can 
solve multicategory problems natively through direct 
application. 

The Random Forests algorithm is well suited to the 
classification of genomic data because of the following 
advantages (i) it performs embedded feature selection 
(ii) it incorporates interactions between predictors: (iii) 
it allows the algorithm to accurately learn both simple 
and complex classification functions; (iv) it is applicable 
to both binary and multicategory classification tasks 
[117]. Feature selection and model construction was also 
accomplished using WEKA (Waikato Environment for 
Knowledge Analysis) [118] version 3.8.

Measures

Accuracy was defined as the overall ability of 
models to categorize testing sample data correctly. 
Reported measures included the numbers of true positives 
(TP), true negatives (TN), false positives (FP), and false 
negatives (FN). A true-positive count is the number of 
samples in a dataset which were correctly categorized into 
classes. A false-positive count is the number of samples 
in a dataset which were sorted into the wrong category. 
A true negative count represents the number of samples 
which were not classified into a class to which they do 
not belong, and false negatives are samples which are not 
classified into the class to which they do belong. 

Accuracy, Sensitivity (or Recall), Specificity, Precision, 
and F1-score are derived from the measures mentioned above 
as follows: accuracy is the ratio of correctly predicted samples 
to the total number of samples. Sensitivity is the proportion 
of true positives that are predicted as positives. Specificity 
is the proportion of true negatives which are predicted as 
negatives, and Precision is the ratio of true positives to the 
total number of true negatives and true positives. Lastly, 
F1-score is defined as the harmonic mean of Precision and 
Recall and is calculated by first multiplying precision and 
recall values, then dividing the resulting value by the total 
of precision and recall, and finally, multiplying the result by 
two. The Accuracy, Sensitivity, Specificity, Precision, and F1-
Score are given by: 

TP TNAccuracy
TP TN FP FN

+
=

+ + +

/ TPRecall Sensitivity
TP FN

=
+

TNSpecificity
TN FP

=
+

TPPrecision
TP FP

=
+

*1 2* Precision RecallF Score
Precision Recall

− =
+

Model selection and accuracy estimation

For model selection and accuracy estimation, we 
used 10-fold cross-validation [30, 115]. This technique 
separates data into ten parts and uses nine parts for the 
model generation while predictions are generated and 
evaluated by using the one part. This step is subsequently 
repeated ten times, so each part (internal test set) is tested 
against the other nine parts (internal train set). The average 
performance over the ten accuracies is accepted as an 
unbiased estimate of the model’s performance. 

Functional analysis

We used Database for Annotation, Visualization, and 
Integrated Discovery (DAVID) v6.8 [119] for functional 
analysis. For each of the nine tissue type provided to 
DAVID, the tissue-specific gene list consisting of top 
244 (1%) of genes were used to classify samples of a 
particular tissue type as either cancerous or normal (See 
Supplementary File 2). Within DAVID, KEGG was chosen 
for pathway analysis. Of the pathways returned, only those 
with a p-value of less than or equal to 0.05 and with three 
or more of our genes were considered. Within DAVID, 
Functional Annotation analysis was used for sorting the 
genes according to functional groups. Of the functional 
groups returned, only those with a p-value of less than or 
equal to 0.05 and with three or more of the genes identified 
in this study were considered.

Abbreviations
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- Database for Annotation, Visualization, and Integrated 
Discovery; KEGG - Kyoto Encyclopedia of Genes and 
Genomes; ML - Machine Learning; SVM - Support Vector 
Machine; RF - Random Forests; GEO - Gene Expression 
Omnibus; RMA – Robust Multi Average; GO – Gene 
Ontology; TP - True Positives; TN - True Negatives; FP 
- False Positives; FN - False Negatives; ROC- Receiver 
Operating Characteristics
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