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ABSTRACT
Previous genome-wide association and validation studies suggest that LIM 

domain only 1 (LMO1) gene polymorphisms affect neuroblastoma susceptibility. In 
this work, we used Taqman methodology to genotype four LMO1 polymorphisms 
(rs110419 A > G, rs4758051 G > A, rs10840002 A > G and rs204938 A > G) in 118 
neuroblastoma cases and 281 controls from Northern China. Odds ratios (ORs) and 
95% confidence intervals (CIs) were used to evaluate the association. We found that 
rs4758051 G > A was associated with a decreased neuroblastoma risk (AA vs. GG: 
adjusted OR = 0.28, 95% CI = 0.13–0.62; AG/AA vs. GG: adjusted OR = 0.62, 95% 
CI = 0.40–0.97; AA vs. GG/AG: adjusted OR = 0.33, 95% CI = 0.15–0.69). Likewise, 
carrying the rs10840002 G allele was also associated with a decreased neuroblastoma 
risk in this Northern Chinese population. In a combination analysis using Southern 
and Northern Chinese populations, we found that those carrying the rs110419 G, 
rs4758051 A or rs10840002 G allele were at decreased neuroblastoma risk, and this 
finding was supported by a false-positive report probability analysis. These results 
further verify that LMO1 polymorphisms are protective against neuroblastoma. Case-
control studies with larger samples and using other ethnicities are still needed to 
confirm our conclusion.

INTRODUCTION

Neuroblastoma is a common solid tumor derived 
from primordial sympathetic neural precursors and has 
complicated clinical manifestations [1]. Around the world, 
it ranks as the third leading cause of cancer-related death 
in children [2]. In China, neuroblastoma accounts for 
nearly 10% of childhood tumors, and its incidence is about 
7.7 cases per million [3]. Despite great achievements in 
multimodality treatment, the 5-year survival rate for 
neuroblastoma remains at less than 40% [4]. Moreover, 
due to their chronic health conditions, survivors have 

difficulty finding marriage partners and employment 
[5]. Thus, neuroblastoma remains a great burden for the 
affected children and for their families and society [6].

The etiology of neuroblastoma is not yet fully 
understood, and the risk factors affecting the susceptibility 
to neuroblastoma have not been well documented [7]. 
Epidemiological studies suggest children may be more 
susceptible to neuroblastoma if their parents were exposed 
to environmental risk factors, including radiation sources, 
wood dust and hydrocarbons [8, 9]. However, most 
children whose parents are exposed to environmental risk 
factors do not develop neuroblastoma [10]. Mounting 
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evidence suggests genetic polymorphisms may somehow 
influence the predisposition to neuroblastoma [11–15].

The LIM domain only 1 (LMO1) gene is located on 
chromosome 11p15 and encodes an intertwining LIM-only 
transcriptional regulator [16]. LMO1 is a member of the 
LMO gene family [17, 18] and is highly expressed in bone 
marrow and the nervous system [19], though it was first 
identified at human T cell acute lymphoblastic leukemia 
chromosomal translocations [20]. LMO1 protein has been 
implicated in the initiation and development of several 
cancers [18]. In addition, LMO1 gene single nucleotide 
polymorphisms (SNPs) reportedly affect susceptibility to 
acute lymphoblastic leukemia [21] and neuroblastoma [16]. 

We previously investigated the association 
between LMO1 polymorphisms and neuroblastoma risk 
in a Southern Chinese population [22]. Given the likely 
genetic variation across different regions, the respective 
roles of genetic factors in neuroblastoma risk may differ. 
Therefore, to further confirm the relationship between 
LMO1 polymorphisms and neuroblastoma risk, we 
performed the current hospital-based case-control study 
using subjects from Northern China.

RESULTS

Population characteristics

The demographic characteristics of the included 118 
cases and 281 controls are summarized in Supplementary 
Table 1. No significant differences were observed in the 
age (P = 0.189) or gender (P = 0.196) distribution between 
cases and controls. According to the INSS criteria [23], 15 
(12.82%) patients were classified as stage I, 31 (26.50%) 
as stage II, 19 (16.24%) as stage III, 49 (41.88%) as stage 
IV, and 3 (2.56%) as stage 4s neuroblastoma. Among 
these, 89 (75.42%) tumors originated in the adrenal gland, 
19 (16.10%) in the mediastinum, and 10 (8.47%) and other 
regions.

LMO1 polymorphisms and neuroblastoma risk 
in Northern Chinese children

The genotype frequencies of the four LMO1 
polymorphisms and their associations with neuroblastoma 
risk are listed in Table 1. Among the controls, all four 
tested SNPs were in Hardy-Weinberg equilibrium (all 
PHWE > 0.05). Moreover, the analyses indicated that 
carrying the rs4758051 A allele had a protective effect 
against developing neuroblastoma (AA vs. GG: adjusted 
odds ratio (OR) = 0.28, 95% confidence interval (CI) = 
0.13–0.62, P = 0.002; AG/AA vs. GG: adjusted OR = 
0.62, 95% CI = 0.40–0.97, P = 0.035; AA vs. GG/AG: 
adjusted OR = 0.33, 95% CI = 0.15–0.69, P = 0.003). 
Similarly, we found that carrying the rs10840002 G allele 
was associated with a decreased risk of neuroblastoma 
(GG vs. AA: adjusted OR = 0.42, 95% CI = 0.21–0.85, 

P = 0.016; GG vs. AG/AA: adjusted OR = 0.48, 95%  
CI = 0.26–0.91, P = 0.025). However, we failed to detect an 
association between the rs110419 A > G or rs204938 A > G 
polymorphism and neuroblastoma risk, whether or not 
adjusted for age and sex.

LMO1 polymorphisms and neuroblastoma risk 
in combined subjects

To further elucidate the association between LMO1 
polymorphisms and neuroblastoma risk, we combined 
our present results the data from our earlier study [22]. In 
the combination analysis (Table 2), we found that those 
carrying the rs110419 G allele were at decreased risk of 
neuroblastoma (AG vs. AA: adjusted OR = 0.67, 95% CI 
= 0.51–0.88, P = 0.004; GG vs. AA: adjusted OR = 0.58, 
95% CI  =  0.40–0.84, P = 0.004; AG/GG vs. AA: adjusted 
OR = 0.65, 95% CI = 0.50–0.83, P = 0.001), as were those 
carrying the rs4758051 A allele (AA vs. GG: adjusted 
OR = 0.57, 95% CI = 0.39–0.84, P = 0.005; AA vs. 
 GG/AG: adjusted OR = 0.59, 95% CI = 0.41–0.84,  
P = 0.004) or the rs10840002 G allele (GG vs. AA: 
adjusted OR = 0.66, 95% CI = 0.46–0.95, P = 0.026; GG 
vs. AG/AA: adjusted OR = 0.68, 95% CI = 0.49–0.94,  
P = 0.020). No significant association was observed 
between rs204938 A  >  G and neuroblastoma risk.

False-positive report probability (FPRP) analysis 
showed that all of the statistically significant associations 
remained noteworthy, when a prior probability of 
association of 0.25 was considered. At a prior probability 
level of 0.1, all except one association (rs10840002 A > G) 
remained noteworthy. At a prior probability level of 
0.01, only the association between rs110419 A > G and 
neuroblastoma risk remained noteworthy (FPRP = 0.168). 
Detailed information from the FPRP analysis is listed in 
Table 3.

DISCUSSION

In the present case-control study, we further verified 
the effect of LMO1 polymorphisms on neuroblastoma 
risk in a Northern Chinese population. Consistent 
with our earlier findings [22], we observed that LMO1 
polymorphisms were associated with a decreased risk of 
neuroblastoma. To our knowledge, this is the first study 
to validate the association between LMO1 polymorphisms 
and neuroblastoma risk using two resident groups in 
China. This combined analysis improves the statistical 
power for assessing the impact of LMO1 polymorphisms 
on neuroblastoma risk.

A previous genome-wide association study 
revealed that LMO1 polymorphisms were associated with 
predisposition to neuroblastoma [16]. In that study, Wang 
et al. detected four SNPs in LMO1 gene (rs110419 A > G, 
rs4758051 G > A, rs10840002 A > G and rs204938 A > G) 
that were associated with neuroblastoma risk in subjects 
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of European ancestry. Thereafter, case-control studies 
conducted with Italian [24], African-American [25] 
and Northern Chinese [26] populations verified LMO1 
polymorphisms to be factors affecting neuroblastoma risk. 
In 2016, we conducted the first epidemiological study on 
the effect of LMO1 polymorphisms on neuroblastoma 
susceptibility in a Southern Chinese population [22]. 
We genotyped the aforementioned LMO1 SNPs in 256 
cases and 531 controls. We only found that the rs110419 
A > G polymorphism was associated with a significantly 
lower neuroblastoma risk. However the strength of that 
conclusion was limited by the small sample. We have 
therefore now expanded the size of our sample.

Here, we assessed the relationship between LMO1 
polymorphisms and neuroblastoma risk in an additional 
118 cases and 281 controls. Our analysis indicates that 
carrying the rs4758051 A or rs10840002 G allele is 
associated with decreased risk of neuroblastoma in a 

Northern Chinese population. In our earlier study of a 
Southern Chinese population, we detected a significant 
protective association between only the rs110419 A > G 
polymorphism and neuroblastoma risk [22]. Two possible 
explanations for this discrepancy are as follows. First, the 
small sizes of the samples used in these two studies means 
the statistical power of analyzing the association between 
a single polymorphism and cancer risk is small. Second, 
because these two studies were conducted in different 
regions in China, the inconsistency may be attributable 
to differences in the genetic variations, environmental 
exposures, and gene-environment interactions across the 
different regions.

To increase the representation for our conclusions, 
we combined the results from our present study with 
those from our earlier one. The combined analysis 
indicated that carrying the rs110419 G, rs4758051 A or 
rs10840002 G allele was associated with a decreased risk 

Table 1: Association of LMO1 polymorphisms with neuroblastoma susceptibility in children from 
Henan province

Genotype Cases
(N = 118)

Controls
(N = 281) P a Crude OR

(95% CI) P Adjusted OR
(95% CI)b Pb

rs110419 (HWE = 0.677)
 AA 47 (39.83) 86 (30.60) 1.00 1.00
 AG 54 (45.76) 142 (50.53) 0.70 (0.43–1.12) 0.134 0.69 (0.43–1.11) 0.122
 GG 17 (14.41) 53 (18.86) 0.59 (0.31–1.13) 0.109 0.57 (0.30–1.09) 0.090
 Additive 0.179 0.75 (0.55–1.03) 0.074 0.74 (0.54–1.01) 0.060
 Dominant 71 (60.17) 195 (69.40) 0.074 0.67 (0.43–1.04) 0.075 0.65 (0.42–1.03) 0.064
 Recessive 101 (85.59) 228 (81.04) 0.286 0.72 (0.40–1.31) 0.287 0.71 (0.39–1.28) 0.253
rs4758051 (HWE = 0.946)
 GG 50 (42.37) 88 (31.32) 1.00 1.00
 AG 59 (50.00) 138 (49.11) 0.75 (0.47–1.19) 0.228 0.76 (0.48–1.21) 0.252
 AA 9 (7.63) 55 (19.57) 0.29 (0.13–0.63) 0.002 0.28 (0.13–0.62) 0.002
 Additive 0.006 0.60 (0.43–0.84) 0.003 0.60 (0.43–0.83) 0.002
 Dominant 68 (57.63) 193 (68.68) 0.034 0.62 (0.40–0.97) 0.035 0.62 (0.40–0.97) 0.035
 Recessive 109 (92.37) 226 (80.43) 0.003 0.34 (0.16–0.71) 0.004 0.33 (0.15–0.69) 0.003
rs10840002 (HWE = 0.620)
 AA 42 (35.59) 78 (27.76) 1.00 1.00
 AG 62 (52.54) 144 (51.25) 0.80 (0.50–1.29) 0.360 0.81 (0.50–1.31) 0.389
 GG 14 (11.86) 59 (21.00) 0.44 (0.22–0.88) 0.021 0.42 (0.21–0.85) 0.016
 Additive 0.064 0.69 (0.50–0.95) 0.025 0.68 (0.50–0.94) 0.021
 Dominant 76 (64.41) 203 (72.24) 0.119 0.70 (0.44–1.10) 0.120 0.69 (0.44–1.10) 0.119
 Recessive 104 (88.14) 222 (79.00) 0.031 0.51 (0.27–0.95) 0.034 0.48 (0.26–0.91) 0.025
rs204938 (HWE = 0.687)
 AA 77 (65.25) 168 (59.79) 1.00 1.00
 AG 36 (30.51) 97 (34.52) 0.81 (0.51–1.29) 0.377 0.82 (0.51–1.32) 0.415
 GG 5 (4.24) 16 (5.69) 0.68 (0.24–1.93) 0.470 0.70 (0.25–1.98) 0.499
 Additive 0.565 0.82 (0.56–1.19) 0.288 0.83 (0.57–1.20) 0.323
 Dominant 41 (34.75) 113 (40.21) 0.306 0.79 (0.51–1.24) 0.306 0.80 (0.51–1.26) 0.343
 Recessive 113 (95.76) 265 (94.31) 0.552 0.73 (0.26–2.05) 0.554 0.74 (0.26–2.09) 0.575
aχ2 test for genotype distributions between neuroblastoma patients and controls.
bAdjusted for age and gender.
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Table 2: LMO1 polymorphisms and neuroblastoma susceptibility in combined subjects

Genotype Cases
(N = 374)

Controls
(N = 812) Pa Crude OR

(95% CI) P Adjusted OR
(95% CI)b Pb

rs110419 (HWE = 0.239)
AA 150 (40.11) 245 (30.17) 1.00 1.00
AG 171 (45.72) 417 (51.35) 0.67 (0.51–0.88) 0.004 0.67 (0.51–0.88) 0.004
GG 53 (14.17) 150 (18.47) 0.58 (0.40–0.84) 0.004 0.58 (0.40–0.84) 0.004
Additive 0.003 0.74 (0.62–0.89) 0.001 0.74 (0.62–0.89) 0.001
Dominant 224 (59.89) 567 (69.83) 0.001 0.65 (0.50–0.83) 0.001 0.65 (0.50–0.83) 0.001
Recessive 321 (85.83) 662 (81.53) 0.068 0.73 (0.52–1.02) 0.068 0.73 (0.52–1.03) 0.069
rs4758051 (HWE = 0.271)
GG 145 (38.77) 282 (34.73) 1.00 1.00
AG 185 (49.47) 380 (46.80) 0.95 (0.73–1.24) 0.688 0.95 (0.73–1.24) 0.698
AA 44 (11.76) 150 (18.47) 0.57 (0.39–0.84) 0.005 0.57 (0.39–0.84) 0.005
Additive 0.014 0.80 (0.67–0.96) 0.014 0.80 (0.67–0.96) 0.014
Dominant 229 (61.23) 530 (65.27) 0.178 0.84 (0.65–1.08) 0.178 0.84 (0.65–1.08) 0.182
Recessive 330 (88.24) 662 (81.53) 0.004 0.59 (0.41–0.85) 0.004 0.59 (0.41–0.84) 0.004
rs10840002 (HWE = 0.233)
AA 132 (35.29) 260 (32.02) 1.00 1.00
AG 186 (49.73) 384 (47.29) 0.95 (0.73–1.25) 0.736 0.96 (0.73–1.26) 0.744
GG 56 (14.97) 168 (20.69) 0.66 (0.46–0.95) 0.025 0.66 (0.46–0.95) 0.026
Additive 0.062 0.83 (0.70–0.99) 0.042 0.83 (0.70–0.99) 0.043
Dominant 242 (64.71) 552 (67.98) 0.265 0.86 (0.67–1.12) 0.266 0.87 (0.67–1.12) 0.270
Recessive 318 (85.03) 644 (79.31) 0.019 0.68 (0.49–0.94) 0.020 0.68 (0.49–0.94) 0.020
rs204938 (HWE = 0.485)
AA 241 (64.44) 522 (64.29) 1.00 1.00
AG 119 (31.82) 262 (32.27) 0.98 (0.76–1.28) 0.904 0.98 (0.76–1.28) 0.908
GG 14 (3.74) 28 (3.45) 1.08 (0.56–2.09) 0.813 1.07 (0.55–2.08) 0.834
Additive 0.961 1.01 (0.81–1.25) 0.967 1.00 (0.81–1.25) 0.976
Dominant 133 (35.56) 290 (35.71) 0.959 0.99 (0.77–1.28) 0.959 0.99 (0.77–1.28) 0.958
Recessive 360 (96.26) 784 (96.55) 0.798 1.09 (0.57–2.09) 0.798 1.08 (0.56–2.08) 0.820
aχ2 test for genotype distributions between neuroblastoma patients and controls.
bAdjusted for age and gender.

Table 3: False-positive report probability values for significant findings in combined subjects

Genotype Crude OR 
(95% CI) Pa Statistical 

Powerb

Prior probability
0.25 0.1 0.01 0.001 0.0001

rs110419 A > G
 AG vs. AA 0.67 (0.51–0.88) 0.004 0.606 0.017 0.051 0.370 0.856 0.983
 GG vs. AA 0.58 (0.40–0.84) 0.004 0.256 0.044 0.120 0.601 0.938 0.993
 AG/GG vs. AA 0.65 (0.50–0.83) 0.001 0.392 0.006 0.018 0.168 0.671 0.953
rs4758051 G > A
 AA vs. GG 0.57 (0.39–0.84) 0.005 0.284 0.050 0.137 0.635 0.946 0.994
 AA vs. GG/AG 0.59 (0.41–0.85) 0.004 0.259 0.044 0.122 0.605 0.939 0.994
rs10840002 A > G
 GG vs. AA 0.66 (0.46–0.95) 0.025 0.557 0.119 0.288 0.816 0.978 0.998
 GG vs. AG/AA 0.68 (0.49–0.94) 0.020 0.521 0.103 0.257 0.792 0.975 0.997

aChi-square test was used to calculate the genotype frequency distributions.
bStatistical power was calculated using the number of observations in the subgroup and the OR and P values in this table.
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for neuroblastoma. The larger sample in the combined 
analysis highlights the important protective effect of 
LMO1 polymorphisms on neuroblastoma risk. In addition, 
the FPRP analysis also enhances the robustness of our 
findings.

Although this is a relatively large sample for 
investigating the correlation between LMO1 polymorphisms 
and neuroblastoma risk in the Chinese, several limitations 
still exist. First, we only genotyped four SNPs in this study, 
other potentially functional polymorphisms not discovered 
in genome-wide association studies were omitted. These 
include the rs2168101 G > T polymorphism, which was 
recently found to be associated with neuroblastoma 
[14]. Second, all of the subjects were recruited from two 
hospitals and most lived in Southern or Northern China, 
which inevitably caused selection bias. Third, we failed to 
assess several important environmental factors, including 
dietary intake, paternal exposures, and the subjects’ living 
environment. The absence of such information limits 
our ability to conduct a gene-environmental interaction 
analysis. Fourth, the sample size is still not large enough to 
ensure a robust conclusion. Fifth, the potential mechanisms 
of action of the four polymorphisms were not studied. 
Experimental analysis of the mechanisms of potentially 
functional LMO1 polymorphisms is needed.

In summary, we have further confirmed the protective 
effect of LMO1 polymorphisms on neuroblastoma 
susceptibility in a Chinese population. More case-
control studies based on other ethnicities and multicenter 
investigations are encouraged to support these observations.

MATERIALS AND METHODS

Study subjects

The recruitment criteria for neuroblastoma patients 
and controls were described previously [22, 27, 28]. 
A total of 118 neuroblastoma patients and 281 healthy 
controls from Henan province (Northern China) were 
ultimately included in the study [29]. Briefly, all children 
with neuroblastoma histologically confirmed at The First 
Affiliated Hospital of Zhengzhou University between 
August 2011 and April 2017 were enrolled in the study. 
During the same period, 281 age- and gender-matched 
controls were also recruited at the same hospital. Before 
their participation, we obtained informed written consent 
for all subjects. The present study was approved by the 
Institutional Review Board of the hospital.

SNP selection and genotyping

Four LMO1 SNPs (rs110419 A > G, rs4758051 G > A, 
rs10840002 A > G and rs204938 A > G) identified as being 
associated with neuroblastoma in an earlier genome-wide 
association study were selected (Supplementary Table 2) [16]. 
Genotyping these four SNPs was performed using Taqman 

real-time PCR. The detailed procedure can be found in our 
earlier study [30]. To ensure the accuracy of the genotyping 
results, about 10% of the samples were also genotyped by 
sequencing [31, 32], and 100% genotype concordance was 
obtained.

Statistical analysis

The goodness-of-fit χ2 test was applied to assess 
whether the selected SNPs were in Hardy-Weinberg 
equilibrium among the controls. Two-sided χ2 tests 
were employed to compare demographic variables and 
genotype frequencies between cases and controls. To 
evaluate the strength of the relationship between LMO1 
polymorphisms and neuroblastoma susceptibility, ORs 
and 95% CIs were calculated using unconditional logistic 
regression analyses. To determine whether the significant 
findings were “noteworthy”, we adopted the FPRP analysis  
[33, 34]. We calculated FPRP for a range of prior 
probabilities from 0.0001 to 0.25 and used 0.2 as a cut-point 
for FPRP. Values of P < 0.05 were considered statistically 
significant. SAS software (version 9.4; SAS Institute, Cary, 
NC) was used to perform all statistical analyses.
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