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Exosomes in diagnosis and therapy of prostate cancer
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ABSTRACT
Exosomes are small vesicular bodies released by a variety of cells. Exosomes 

contain miRNAs, mRNAs and proteins with the potential to regulate signaling 
pathways in recipient cells. Exosomes deliver nucleic acids and proteins to mediate the 
communication between cancer cells and stroma cells. In this review, we summarize 
recent progress in our understanding of the role of exosomes in prostate cancer. 
The tumorigenesis, metastasis and drug resistance of prostate cancer are associated 
with the cargos of exosomes such as miRNAs, lncRNAs and proteins. In addition, 
prostate cancer cells modulate surrounding stromal cells via the exosomes. Affected 
stromal cells employ the exosomes to modulate microenvironment and promote tumor 
growth and metastasis. Exosomes derived from prostate cancer cells contribute to 
cancer chemoresistance. The lipid bilayer membrane of the exosomes makes them 
promising carriers of drugs and other therapeutic molecules targeting prostate cancer. 
Furthermore, exosomes can be detected and isolated from various body fluids for the 
diagnosis of prostate cancer.

INTRODUCTION

Prostate cancer is a common solid malignancy and 
has high mortality [1]. Exosomes are small extracellular 
vesicles (EV) ranging from 50 to 150 nm in diameter. 
Exosomes have a double membrane structure with various 
cargo contents, such as miRNAs, mRNAs, proteins, lipids 
and viral particles [2]. Exosomes are released by the 
exocytosis of multivesicular bodies (MVBs) (Figure 1) 
[3]. The materials in vesicles can be transferred and alter 
signaling pathways in the recipient cells [4]. Exosomes 
are present in human body fluids such as the blood, urine 
and saliva, and can be isolated from cell culture medium 
[5]. The lipid bilayer membrane of exosomes protects their 
cargo from RNases and proteases, which allows them to 
act as good delivery vector in therapy [6].

Exosomes in prostate cancer progression

Tumor masses may arise from cancer stem cells 
which possess stem-like self-renewing ability [7]. 

Cancer stem cells were first found in leukemia, and later 
in other solid tumors including prostate cancer [8, 9]. 
Exosomes from cancer stem cells support prostate 
cancer tumorigenesis through promoting angiogenesis 
[10]. Recent studies suggest that exosomes from tumor 
microenvironment are important regulators to enhance 
prostate cells survival, proliferation, angiogenesis and 
the evasion of immune surveillance, which contribute 
to prostate cancer progression [10–12]. In particular, 
Soekmadji et al. discussed the potential of exosomes to 
provide candidate biomarkers for prostate cancer [13].

Tumor microenvironments are comprised of 
different types of cells, extracellular matrix, soluble 
factors, signaling molecules, and exosomes [14]. The 
cells include fibroblasts, inflammatory cells, lymphocytes, 
endothelial cells, epithelial cells, and mesenchymal stem 
cells. Soluble factors include growth factors, cytokines, 
and chemokines [15]. Carcinoma-associated fibroblasts 
(CAFs) known as myofibroblasts are induced and 
maintained by transforming growth factor-β (TGF-β)  
[15–19]. Prostate cancer cells derived exosomes can 
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present TGF-β to transform fibroblasts to myofibroblasts 
via the activation of TGF-β/SMAD3 signaling [20, 21]. 
MiR-155 secreted from cancer derived exosomes 
can repress the expression of its target tumor protein 
53-induced nuclear protein 1 (TP53INP1) to dictate 
CAF-like phenotypes in fibroblasts [22]. CAFs derived 
exosomes can transfer the miRNAs into neighboring 
epithelia causing the explosive growth of prostate 
cancer cells [23, 24]. CD81, miR-21 and miR-409 in 
CAFs derived exosomes affect invasion, proliferation, 
chemoresistance, and metabolism of cancer cells [25]. 
miR-21 could repress the expression of its targets 
apoptotic peptidase activating factor 1 (APAF1) and 
programmed cell death 4 (PDCD4) to inhibit the apoptosis 
and confer chemoresistance of cancer cells [26].

Cancer cells derived exosomes are also involved in 
the regulation of signaling pathways. C-Src, insulin-like 
growth factor I receptor and focal adhesion kinase are 
enriched in exosomes [27]. Androgen receptor (AR) can 
mediate the transcription of genes involved in prostate 
cancer cell proliferation and survival [28]. CD9 is an 
upstream regulator of AR, and exosomes can deliver CD9 
to modulate paracrine signaling to mediate the growth of 
androgen deprived prostate cancer [29]. 

Angiogenesis plays a key role in the development of 
prostate cancer [30]. Cancer derived exosomes can induce 

angiogenesis. For instance, the exosomes of prostate and 
ovarian cancer cells transfer sphingomyelin and CD147 
into endothelial cells to support the vascularization [25]. 
Exosomes also regulate immunity. Lundholm et al. found 
that exosomes of prostate cancer impaired cytotoxic 
function of lymphocytes, and decreased NKG2D receptor 
expression on natural killer cells and CD8+ T cells to 
promote tumor evasion from immune surveillance [31]. 
Other immunoregulatory molecules in cancer-derived 
exosomes such as FasL, TGF-β, galectin-9 and HSP72 
support the immune escape of cancer cells [25]. In 
addition, exosomes from cancer cells activate Fas/FasL 
pathway to induce the apoptosis of CD8+ T cells [32]. 
Therefore, exosomes from both cancer cells and tumor 
microenvironment cooperate to promote prostate cancer 
progression.

Exosomes in prostate cancer metastasis

Most deaths of advanced prostate cancer patients are 
due to the metastasis of prostate cancer. Exosomes derived 
from tumors can be taken by the cells of specific organs and 
assist the formation of the pre-metastatic niche. Prostate 
cancer has metastatic organotropism of the bone [33]. 
Normal human cells can express prostate-specific genes 
after culturing with exosomes derived from prostate cancer 

Figure 1: Exosomes are composed of a lipid bilayer and a variety of molecules derived from their original cells such as 
miRNAs, mRNAs, and proteins. Inside the cells, early endosomes are formed via endocytosis, early endosomes then develop to late 
endosomes, which form multivesicular bodies (MVBs) via the invagination of the membranes. The intraluminal vesicles (ILVs) are present 
in MVBs. Finally, MVBs fuse with the cell membrane and the ILVs will be released as exosomes.



Oncotarget97695www.impactjournals.com/oncotarget

tissues [34]. Exosomes from metastatic prostate cancer 
patients showed high contents of miR-21 and miR-141, 
which regulated osteoclastogenesis and osteoblastogenesis 
[35, 36]. Prostate cancer derived exosomes contained 
TGF-β which induced the conversion from bone marrow 
mesenchymal stem cells to fibroblasts [37]. Exosomes can 
prepare pre-metastatic niche. For example, exosomal miR-
21, miR-375 and miR-141 help cancer cells overcome the 
low-androgen conditions in distant metastatic organs [10]. 

In addition, prostate cancer derived exosomes carried 
integrin α3 and integrin β1 which promoted the migration 
and invasion of epithelial cells [38]. The integrin αvβ6 was 
transferred by exosomes and its expression was high in 
prostate cancer. The recipient cells will internalize integrin 
αvβ6 and express them on the surface [39]. Integrin αvβ3 
is highly expressed in many types of tumor and promotes 
the metastatic phenotype. In prostate cancer cells, integrin 
αvβ3 was co-expressed with synaptophysin which was 
considered a biomarker for aggressive neuroendocrine 
prostate cancer [40]. These exosomal integrins will activate 
Src phosphorylation and increase the expression of pro-
inflammatory S100 in recipient cells, and have the potential 
to predict organ-specific metastasis [41].

The epithelial-mesenchymal transition (EMT) plays 
a pivotal role in the conversion from benign to malignant 
cancers. Cancer derived exosomes can promote EMT 
via miRNAs and prepare the pre-metastatic niche [42]. 
Several signaling pathways such as TGF-β1, Wnt, EGF 
and HGF participate in the induction of EMT [43–46]. The 
exosomes from human breast milk could promote EMT 
via TGFβ2 [20]. miR-409 in exosomes from prostate 
cancer promoted EMT through the repression of tumor 
suppressor genes such as Ras suppressor 1 and stromal 
antigen 2 [23].

Metastasis is a highly inefficient process. Only 
0.01% circulating tumor cells (CTCs) shed from the 
primary tumors into the bloodstream and lymphatics 
can form metastatic lesions in distant organs [47]. EMT 
markers such as twist and vimentin were expressed 
at higher levels in CTCs of patients with metastatic 
breast cancer than in those of patients in the early stage 
[48]. Metastases-initiating cells (MICs) are special 
CTCs with sternness and enhance the growth, survival 
and colonization of prostate cancer cells in distant 
metastatic organs [11]. MICs have the ability to alter 
tumor microenvironment to promote reprogramming of 
non-tumorigenic prostate cancerous and non-cancerous 
epithelial and stromal cells, leading to their transformation 
and de-differentiation [49, 50]. Exosomes derived from 
MICs can promote EMT of prostate cancer cells through 
the activation of RANKL, FOXM1, and c-Myc [11].

Exosomes in prostate cancer drug resistance

Exosomes contribute to chemoresistance of cancer 
cells by complicated mechanisms. In cancer cells, 

chemotherapeutic drugs could be exported via exosomes 
[51]. Exosomes can shield cancer cells from therapeutic 
antibody attack, leading to the failure of antibody therapy 
[52]. Exosomal contents play an important role in the drug 
resistance of prostate cancer cells. For example, miR-34 in 
prostate cancer cells and cell-derived exosomes targeted 
Bcl-2 to regulate the response to docetaxel [53]. Exosomes 
could confer docetaxel-resistant cancer cells to docetaxel-
sensitive cancer cells [54]. A recent study identified 29 
deregulated miRNAs in exosomes from paclitaxel resistant 
prostate cancer cells, and these exosome-derived miRNAs 
may contribute to prostate cancer chemoresistance [55].  

AR is a key transcription regulator that is highly 
expressed in prostate cancer. AR isoform encoded by 
splice variant 7 lacks the ligand-binding domain and is 
associated with the resistance to hormonal prostate cancer 
therapies, especially enzalutamide and abiraterone [56]. 
Androgen-receptor splice variant 7 messenger RNA (AR-
V7) can be isolated from exosomal RNA in the blood and 
is a valuable resistance marker [56]. 

Exosomes for the diagnosis of prostate cancer

Present diagnostic markers such as prostate specific 
antigen (PSA) and carbohydrate antigens have substantial 
drawbacks such as false-negatives, false-positives and 
lack of tumor-type specificity [57]. Tumor biopsy is the 
only definitive method of diagnosis, but it is invasive. 
Novel prostate cancer biomarkers are required for clinical 
application. Exosomes can be isolated from human body 
fluids such as the blood, urine and saliva [58]. 

Exosomes can protect miRNAs against RNase 
degradation [59]. Huang et al. found that miR-1290 and 
miR-375 had the potential of predicting the prognosis 
of castration-resistant prostate cancer [60]. Exosomal 
miR-34a could induce docetaxel sensitivity in docetaxel-
resistant prostate cancer cells by inhibiting Bcl-2 
[30]. Exosomal miR-34a can be used as a predictive 
biomarker for the response to docetaxel [53]. A recent 
study showed that miR-182 of miR-183 cluster family 
was detected in prostate cancer cells derived exosomes 
from the serum [61].

Like the miRNAs, the proteins in exosomes can 
be the biomarkers for prostate cancer. Hosseini-Beheshti 
et al. characterized exosomal proteins from prostate cancer 
cells and identified annexin A2, calsyntenin 1, fatty acid 
synthesis, filamin C, folate hydrolase-1, and growth 
differentiation factor 15, which may be specific for prostate 
cancer diagnosis [62]. Duijvesz et al. identified biomarker 
exportin-1 [63]. Webber et al. found that Notch3, milk fat 
globule epidermal growth factor-factor 8, and inter-alpha-
trypsin inhibitor heavy chain H4 were enriched in prostate 
cancer exosomes [64]. Khan et al. reported that exosomal 
survivin was a potential biomarker for early detection of 
prostate cancer [65]. In addition, prostate cancer antigen 3 
(PCA3), flotillin 2, Rab3B and late endosomal/lysosomal 
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adaptor, MAPK and mTOR activator 1 (LAMTOR1) of 
exosomes could be diagnostic markers for prostate cancer 
[66, 67]. Exosomal lncRNAs also have the potential to 
be the biomarkers of prostate cancer. Exosomal lncRNAs 
may be involved in prostate cancer carcinogenesis and can 
be utilized for prostate cancer diagnosis [68]. 

Noninvasive and simple diagnostic assays 
are required for prostate cancer diagnosis. A novel 
noninvasive Urine Exosome Gene Expression Assay has 
been applied to reduce the number of unnecessary biopsies 
[69]. Moreover, a PCR-free efficient diagnostic method 
was developed for simultaneous and multiplexed detection 
of exosomal miRNAs [70]. These improvements of 
detection technology facilitate the application of exosomes 
for prostate cancer diagnosis.

Exosomes in prostate cancer therapy

Exosomes can be used as a delivery vector to 
target cancer cells and the contents can escape the 
attack by immune system [71]. Adipose-derived stromal 
cells (ASCs) derived exosomal miR-145 could reduce 
the activity of Bcl-xL and promote prostate cancer 
cell apoptosis via caspase-3/7 pathway. Therefore, 
ASCs derived exosomes can be used in prostate cancer 

therapy [72]. Engineered microvesicles can carry suicide 
mRNA/protein to inhibit Schwannoma growth [73]. Saari 
et al. used exosomes as the carriers to deliver paclitaxel 
to autologous prostate cancer cells and showed increased 
cytotoxic effect [74]. Encapsulation of anti-inflammatory 
agent curcumin in exosomes achieved a high concentration 
of curcumin in target tissues [75].

Exosomes are also utilized in tumor vaccination. 
Tumor derived exosomes often contain tumor specific 
antigens to activate dendritic cells which induce anti-
tumor response of T lymphocytes [76, 77]. Dendritic 
cells derived exosomes activate NK cells [78]. A recent 
study showed an efficient exosome-based tumor antigens-
adjuvant co-delivery system. CpG DNA modified 
exosomes derived from tumor cells could deliver tumor 
antigens to antigen presenting cells efficiently and show 
promise in cancer immunotherapy [79]. 

A new tool was developed for intracellular delivery 
of target proteins which was named exosomes for 
protein loading via optically reversible protein–protein 
interactions (EXPLORs) [71]. Nanoscale exosome-mimics 
(EMs) could be designed to produce sufficient quantity of 
vectors used for drug or gene delivery in cancer therapy 
[80]. A recent study showed that exosomes engineered 
as doxorubicin delivery platform for targeted therapy 

Figure 2: Implication of exosomes in prostate cancer. Prostate cancer cells modulate surrounding stromal cells via the exosomes. 
Affected stromal cells employ the exosomes to modulate microenvironment which can promote tumor growth and metastasis. Exosomes 
derived from prostate cancer cells could contribute to drug resistance of cancer. The lipid bilayer membrane of exosomes makes them 
promising carriers of drugs and other therapeutic molecules targeting prostate cancer.
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achieved high therapy efficiency [81]. However, all these 
studies are in the experimental stage. Further preclinical 
studies are needed to validate the potential of exosomes in 
prostate cancer therapy.

Perspective

Tumor derived exosomes orchestrate a series of 
processes, such as coagulation, vascular leakiness, and 
reprogramming of stromal recipient cells to provide pre-
metastatic niche and promote subsequent metastasis [82]. 
In addition, exosomes released by prostate cancer cells 
in tumor-bone interface promote osteoclast fusion and 
differentiation to support the metastasis of prostate cancer 
to the bone [83]. In summary, accumulating evidences 
confirm that exosomes are implicated in the progression 
and metastasis of prostate cancer (Figure 2). Many 
biological molecules are encapsulated in the exosomes 
from prostate cancer such as miRNAs, lncRNAs and 
proteins, and their expression levels differ from those 
of normal prostate cells. The easy isolation of exosomes 
from body fluid enables them as potential biomarkers of 
prostate cancer [84, 85]. Furthermore, the lipid bilayer 
membrane of exosomes makes them promising carriers of 
drugs and other therapeutic molecules to target prostate 
cancer. In the near future, we would expect that the power 
of this nano-sized vesicles would be realized to promote 
the clinical application of exosomes in prostate cancer 
diagnosis and therapy.
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