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ABSTRACT
Enhancer is critical cis regulatory elements in gene expression. To understand 

whether and how the aberrant enhancer activation may contribute to cancer risk, the 
differentially methylated enhancers (eDMRs) in normal and malignant breast tissues 
were identified and analyzed. By incorporating genome-wide chromatin interaction, 
integrated analysis of eDMRs and target gene expression identified 1,272 enhancer-
promoter pairs. Surprisingly, two functionally distinct groups of genes were identified 
in these pairs, one showing better correlation to enhancer methylation (eRGs) and 
the other showing better correlation to promoter methylation (pRGs), and the 
former group is functionally enriched with cancer related genes. Moreover, enhancer 
methylation based clustering of breast cancer samples is capable of discriminating 
basal breast cancer from other subtypes. By correlating enhancer methylation status 
to patient survival, 345 enhancers show the impact on the disease outcome and the 
majority of their target genes are important regulators of cell survival pathways 
including known cancer related genes. Together, these results suggest reactivation 
of enhancers in cancer cells has the add-on effect and contributes to cancer risk in 
combination.

INTRODUCTION

Gene expression is a dynamic process and is 
precisely regulated by many factors through mainly 
two layers of mechanisms including the regulation of 
the chromatin compaction and the regulation of the 
interactions between transcriptional machinery and gene 
regulatory elements [1–3]. Chromatin compaction status 
also determines if the gene regulatory elements are 
accessible to transcriptional factors (TFs) [4–9]. Only 
when the TFs can bind these gene regulatory elements, 
these TFs will be able to mediate the interaction between 
the cis-regulatory elements which may cross from tens of 
kilobases to as far as several megabases [10–12]. 

The enhancer is one kind of very important cis-
regulatory elements in gene expression. A commonly 
recognized mechanism of the enhancer is their ability 

to attract the binding of activator proteins such as p300, 
which may be preceded by a sequence-specific factor 
binding and the formation of loops between the enhancer 
and the promoter [9, 13, 14]. Active enhancers are also 
enriched with unique epigenetic modifications such as 
the H3K4 mono-methylation and H3K27 acetylation 
[15]. RNA polymerase II (RNA polII), the major RNA 
polymerase transcribing most of the mammalian genes 
except the highly repetitive genes, is also an important 
component of enhancer binding complex [16, 17]. 
Although there is controversial data regarding the 
importance of RNA polII binding at enhancer in RNA 
polII recruitment to gene promoter, the enhancer does 
increase the pol II enrichment at the promoter and boost 
up the transcription activity [16, 17]. ChIA-PET, as a 
newly developed method, can capture the DNA fragments 
that contact to each other mediated by proteins [18, 19]. 
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Pol II ChIA-PET, for instance, is able to disclose the pairs 
of enhancer and promoter that interact with each other 
mediated by PolII [20]. 

DNA methylation is much more stable by comparing 
to other histone modifications but still subjected to 
dynamic regulation by both methylation and demethylation 
mechanisms [21]. Genome-wide demethylation of DNA 
is frequently observed in tumors and associated with 
genome instability [22]. But hypermethylated tumor 
suppressor promoters is also very common in tumors, 
suggesting there are independent mechanisms to regulate 
the global DNA methylation versus the gene-specific 
DNA methylation [23]. DNA methylation contributes to 
gene silencing involving many closely positioned CpG 
sites around the gene promoter. DNA methylation occurs 
at these CpG sites simultaneously and creates the locally 
hypermethylated DNA fragment which may further recruit 
other factors to establish stable silencing [22, 24]. 

The correlation between enhancer methylation and 
the gene expression is rarely depicted globally owing 
to some technical limitations. The recent achievements 
in measuring DNA methylation globally and the 
identification of enhancers using genomic data enables 
the investigation of the impact of enhancer methylation on 
gene expression [25–28]. In this current study, we took an 
extra approach by incorporating the chromatin interaction 
ChIA-PET data, in addition to the genome-wide enhancer 
methylation data, in order to further narrow down the 
enhancers to active enhancers only in tumor samples. 
By examining enhancers methylation status in breast 
cancer patient samples, we found that gene expression 
has a significant correlation to their enhancer methylation, 
providing important evidence that aberrantly reduced 
enhancer methylation contributes to the differential 
expression of cancer-related genes, as well as the survival 
risk of patients.

RESULTS

Differentially methylated high fidelity enhancers 
in breast cancer

Traditionally, enhancers are believed to be 
positioned to the immediate flanking regions of its 
regulated gene, even when one enhancer regulates 
multiple genes simultaneously, these genes are nearby 
and lineally positioned at the same locus [34–36]. Many 
recent studies define the enhancers using different 
criterions such as H3K27 acetylation, p300 binding, etc 
[13, 37–39]. Here we picked H3K27 acetylation to define 
potential active enhancers in MCF-7 cells and identified 
in total 14,200 active enhancers. For 3067 enhancers 
covered by 450K methylation array, their methylation 
status is compared between the normal tissues (97 
samples) and tumor tissues (783 samples) from the TCGA 
breast cancer cohort. Totally, 68% (2062 out of 3067) 

of the enhancers are differentially methylated (eDMRs) 
between cancer and normal samples, and nearly 70% of 
them are hypomethylated in the tumor, which suggested 
enhancers tends to be active in the tumor. (Figure 1A). 
This result was also observed in other studies for different 
cancer types, such as people found 67% of eDMRs are 
hypomethylated in melanoma [28]. 

By analyzing the polII ChIA-PET data in MCF7 
cells, we identified all the polII mediated chromosomal 
interactions firstly and obtained 2429 enhancer-promoter 
interaction pairs (E-P pairs) as revealed by polII ChIA-
PET. Limiting by both ChIA-PET data and methylation 
array data, these 2429 E-P pairs are formed by 1100 
enhancers and 1466 genes (Supplementary Figure 1A), of 
which there are 767 eDMR and 1262 DEGs (Differentially 
Expressed Genes between normal and tumor tissue), 
suggesting eDMR and DEGs are enriched in E-P pairs 
(Hypergeometric test p-value = 0.012 for eDMR and 
p-value = 4.44e–16 for DEGs). Next, the genes targeted 
by eDMR, non-eDMR and randomly selected genes 
were compared, and the DEGs are significantly enriched 
in eDMR group (hypergeometric distribution p-value: 
9.8e-08) but not non-eDMR or random group (p-value: 
~1 and 0.12), indicating DEG is more likely associated 
with eDMR. Functional annotation of these DEGs 
strongly suggests most of them are cancer-related genes 
(Figure 1B). Interestingly, half of these DEGs (685 out of 
1262) present both enhancer and promoter differentially 
methylated between normal and tumor tissues (Figue 1C), 
suggesting the enhancer and the promoter are both required 
for proper regulation of these genes. To determine whether 
the enhancer methylation or the promoter methylation that 
have a greater impact on gene expression, the correlation 
between enhancer methylation and gene expression and 
the correlation between promoter methylation and gene 
expression were compared. As shown in Figure 1D, the 
ratio of these two correlations, as an indicator, suggests 
that enhancer is more powerful in determining the gene 
expression. In total, 537 of 685 genes are significantly 
regulated by their enhancer methylation (with  
p-value < 0.05) (Supplementary Table 1), while promoter 
methylation only determined 38 genes expression. The 
relative importance of enhancer/promoter methylation 
was also checked with multiple regression with relative 
weight analysis [64], the enhancer methylation has 
a consistent significant effect on gene expression 
(Supplementary Figure 1B). For example, FLOT1 gene, 
an important promoter of breast cancer cell proliferation 
and migration [40], shows differential expression and 
differential methylation of both its enhancer and promoter 
between normal tissues and cancer tissues. Also, the 
enhancer methylation correlates with FLOT1 expression 
much better than promoter methylation (t-test:p < 0.05) 
(Figure 1E), suggesting the upregulation of FLOT1 in 
breast cancer, as observed in many other genes as well, is 
dominated by the activation of its enhancer [40–44]. 
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Figure 1: Identification of eDMRs and the target genes in breast cancer. (A) The differentially methylated enhancers (t-test  
p value < 0.05) in malignant breast tissues are shown as three categories: hypermethylated, hypomethylated and others. (B) Gene ontology 
result shows eDMR target DEGs are enriched with cancer related genes. Each dot represents one GOBP term (p < 0.05), and the red ones 
are cancer-related. (C) Most of DEGs in 2429 E-P pairs are differential methylation for both enhancer and promoter when compare breast 
tumor to breast normal samples (TCGA). Venn diagram shows the number of DEGs for each part. (D) For the DEGs with both enhancer 
and promoter differential methylation, the enhancer methylation status takes the leading role of gene expression regulating. The ratio of 
Spearman correlation between enhancer methylation and gene expression to the Spearman correlation between promoter methylation and 
gene expression is indicated by the height of each bar. Each bar represents one enhancer-promoter pair. More than one pairs were counted 
when genes interact with multiple enhancers. The black line is the cutoff of ratio equals 2. (E) An example to show rather than promoter, 
enhancer methylation correlates with gene expression. The upper panel shows the expression of gene FLOT1 and the methylation of its 
enhancer and promoter in normal and cancer samples. The lower panel shows the correlation between gene expression and methylation of 
enhancer and promoter. (F) ChIA-PET is advanced in identifying remote enhancer-target pairs. Figure shows the distribution of Spearman 
correlation of E-P pairs identified by ChIA-PET (Red, > 100kb; Yellow, < 100kb) and E-P pairs whose promoters lied near by enhancers 
(Light Gray, > 100kb; Dark Gray < 100kb). The insert panel within the figure shows the Spearman correlation for each pair of each group. 
Every dot represents one E-P pair, and the gray region has p-value > 0.05.
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To compare with the traditional method which 
assigns enhancer to its flanking region gene, a new list 
of E-P pairs was established with the 3067 enhancers. As 
expected, the short-distance E-P pairs, whether supported 
by ChIA-PET or assigned by traditional method, all 
showed negative correlation between the methylation of 
enhancer and target gene expression. However, for long-
distance E-P pairs (> 100kb), only E-P pairs supported by 
ChIA-PET showed the negative correlation (Figure 1F), 
suggesting ChIA-PET are much more reliable than 
traditional method in long-range target identification.

Enhancer methylation directly correlates with 
cancer-related genes dysregulation

To further validate the regulatory role of the enhancers 
in directing their associated gene expression, the correlation 
analysis was performed in the 497 TCGA breast cancer 
samples which have paired RNA-seq and methylation 
data. Of the 2429 E-P pairs identified from MCF-7 PolII 
ChIA-PET, 1272 E-P pairs, composed of 684 enhancers 
and 841 genes, present significant correlation between 
the enhancer methylation and gene expression (Spearman 
correlation p-value < 0.05) (Figure 2A). However, among 
the 23,827 DNA methylation array covered promoters, 
only 846 promoters show a significant correlation 
between the promoter methylation and gene expression. 
The effect of enhancer methylation on gene expression 
was further confirmed by comparing with the correlation 
between enhancer methylation and randomly selected 
target expression. The 684 regulator enhancers showed no 
correlation at all to their random targets (Figure 2B). 

To further validate the correlation of enhancer 
methylation and gene expression, the normal breast tissues 
contained in TCGA dataset were also examined. Among 
the 1272 E-P pairs, 982 E-P pairs show a significant 
correlation between the enhancer methylation and 
gene expression (Spearman correlation p-value < 0.05) 
(Figure 2C). The same analytical procedure was applied 
to the validation datasets (GSE59000) which contain 36 
breast cancer samples with paired gene expression and 
methylation data. Consistently, 809 of 1272 E-P pairs were 
found to have a consistent correlation between enhancer 
methylation and gene expression with that of TCGA 
tumor set (Figure 2D). Among the rest 463 inconsistent 
part, most of them (294) are caused by missing gene 
expression data as they use array instead of RNA-seq 
to detect expression. For example, GATA3 is strikingly 
high expressed in breast cancer (Supplementary Figure 
2), and the correlation between GATA3 expression and 
its enhancer methylation are significantly negative in both 
TCGA tumor set and validate dataset (Figure 2E). 

Enhancer regulates gene networks

Of noting is that one enhancer may regulate 
more than one promoter at the same time. For instance, 

one enhancer at ChrXq28 interacts with 23 promoters 
belonging to 17 different genes simultaneously. On 
the other hand, the gene YWHAZ interacts with four 
different enhancers simultaneously (Supplementary Figure 
3A–3B). By analyzing these intricate E-P pairs, many 
transcriptional networks containing multiple enhancers 
and promoters can be obtained (Figure 3A). Degree 
distribution of both the enhancer and promoter in this 
network follows the power-law distribution, suggesting 
the relevance between the enhancers and their targets is 
functional significance (Supplementary Figure 3C).

Among the 1272 E-P pairs, there are 138 enhancers 
actively participating in the regulation of more than two 
genes at the same time (Figure 3A), and 115 of them are 
differentially methylated in cancer and normal samples. 
Importantly, the genes regulated by the same enhancer 
are more likely co-expressed in the tumor samples, as 
disclosed by the hierarchical cluster analysis of gene 
expression correlation when three examples of gene sets 
were analyzed together (Figure 3B). Additionally, more 
than 83.5% of the hypomethylated enhancers have their 
targets genes up-regulated concomitantly in breast cancer 
(Supplementary Figure 3D). Moreover, 119 out of 138 
enhancers have their respective regulated genes in the 
same function term defined by MSigDB, which is very 
significant than random constructed E-P networks (20 out 
of 138), indicating that the genes regulated by the same 
enhancer are functionally correlated (Figure 3C). For 
example, the enhancer located in chr17q22 potentially 
regulates 16 genes, which is supported by PolII ChIA-
PET data and the correlation data of enhancer methylation 
versus gene expression in cancer samples (Figure 3D, 
Supplementary Table 1). Surprisingly, all of the 16 
genes are belong to the same genetic loci 17Q21_Q25, a 
frequently amplified chromosome region in breast cancer 
[45], suggesting this genetic locus is a risk factor for breast 
cancer. 

Divergent regulatory profile between enhancer 
and promoter disclosed by methylation 
correlated gene expression 

Previous studies suggest that promoter is enriched 
with CpG island and methylation of CpG island is an 
indicator of gene silencing [46]. But the enhancers 
and promoters involved in the 1272 E-P pairs show 
no significant preference to overlap with CpG Island 
(Supplementary Figure 4A). This result may be caused 
by the low resolution of the 450K array (Supplementary 
Figure 4B) because the methylation status of enhancers 
and promoters were calculated based solely on the CpG 
methylation measured by the 450K array for each sample. 
Correlation of gene expression and enhancer/promoter 
methylation identified enhancer regulated genes (eRG) 
and promoter regulated genes (pRG). Surprisingly, only 
41 genes were identified to be both eRG and pRG, and rest 
of genes are either eRG or pRG (Figure 4A). This result 
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reminds us that if there are any fundamental differences 
between eRG and pRG. Functional annotation identified 
mainly the GO terms related to metabolic activities for 
pRG, while eRG predominantly related to GO terms in 
macromolecule and RNA synthetic pathways, as well as 
intracellular responsiveness to stimuli including apoptosis 
(Figure 4B). This result indicates that pRG are more 
likely the housekeeping genes to maintain the static 
metabolism activity. eRG, however, seems to participate 

in the responsive activities which frequently associate 
with de novo RNA and protein synthesis, and sometimes 
the initiation of cell death programs. If this is the case, 
we suspect that the methylation of promoters of pRG 
should show less robust change among all the tumor 
samples comparing to the methylation of enhancers of 
eRG, because these pRGs should be able to maintain a 
steady expression even among the tumor samples. As 
expected, Calculation of the Coefficient of Variation 

Figure 2: Enhancer methylation negatively correlates with gene expression. (A and C) The number of negative correlated 
E-P pairs (blue) and positive correlated pairs (red) in TCGA breast cancer samples (A) and normal tissue samples (C). (B) The correlation 
between enhancer methylation and gene expression is not a random event. Figure shows the Spearman correlation for E-P pairs (p-value < 
0.05) identified by ChIA-PET (red) and also random control pairs identified by randomly selected genes as target for each enhancer (green). 
(D) The result for enhancer methylation regulating gene expression can be repeated in validate dataset. The pie chart shows the portion of 
consistent result. (E) An example to show the consistent correlation in validating dataset and TCGA tumor samples.
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Figure 3: Enhancer regulates a group of functionally related genes. (A) A network of enhancer-promoter interaction defined 
by polII ChIA-PET. Only show the enhancers with no less than four targets. (B) Genes targeted by the same enhancer tend to coexpressed 
with each other. Heatmap to show the Pearson Correlation of gene expression belong to 3 different enhancer target sets. Only the genes 
co-regulated by the same enhancer show high correlation. (C) Genes targeted by the same enhancer are functional related. The target genes 
(> 2) of each enhancer were checked for the functional correlation by mapping them to MSigDB signatures. The heatmap shows genes 
in the same gene set tend to lie in the same signature. The color represent the percentage of enhancer target genes overlap with signature 
genes. Each row represents one MSigDB signature. Each column represents one target gene set of 138 enhancers. (D) The genome figure 
shows the enhancer located in 17q22 and its interacting targets which belong to the frequently amplified genetic loci 17Q22_Q25 (one of 
MSigDB signature). The interactions between enhancer and target are defined by MCF-7 PolII ChIA-PET. The yellow line represents the 
enhancer loci. 
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(CV), a parameter to measure the variability, indicates 
that enhancers have significant higher CV (Figure 4C). 
eRG and pRG were further examined for enrichment of 
cancer-related pathways respectively. As expected, the 
eRG showed extremely significant enrichment in 7 out 
of 10 cancer hallmarks (Figure 4D) [47, 48]. However, 
pRG didn’t show such result, only 1 out of 10 hallmarks 
was enriched by pRGs (Supplementary Figure 4C). These 
data suggest cancer cells are fundamentally regulated by 
both the exogenous factors which generate impact through 
the genes in response to environmental stimulations and 
the endogenous factors which work through the genes 
regulating cell death pathways. 

Breast cancer subtypes can be characterized by 
enhancer methylation

ESR1 gene is the coding gene of Estrogen Receptor 
(ER) and shows differential expression among the cancer 
samples, with basal-like samples the negative expression 
and non-basal-like the positive expression (Figure 5A), 
consistent with its role in distinguishing the ER-negative 
versus ER-positive breast cancer subtypes. Among the 
1272 E-P pairs, there are four candidate enhancers, and 2 
of them may directly regulate ESR1 expression, supported 
by significant negative correlation (Spearman p-value 
< 0.05) between the enhancer methylation and ESR1 
expression. For example, the one located ~70kb upstream 
of ESR1 TSS has a Spearman correlation of −0.58 (p = 
1.8e-44) (Figure 5A). Similarly, some other eRGs such 
as FOXA1 and ERBB2 (Supplementary Figure 5A), 
were also found to be differentially expressed in basal 
vs. non-basal breast cancer samples probably owing to 
the differential enhancer methylation. To explore the 
possibility that the enhancer methylation may be able to 
distinguish different breast cancer subtypes, we compared 
the enhancer methylation profile of basal subtype with 
that of non-basal subtypes and identified 1541 subtype 
specific enhancers (sseDMR) with differential methylation 
from 3067 enhancers. Importantly, clustering analysis of 
the enhancers identified two groups of cancer samples 
which matched exactly the cancer subtypes as the basal 
subtype and non-basal subtypes (Figure 5B). In total, 879 
enhancers out of 1541 sseDMRs are hypermethylated in 
basal subtype, slightly more than that of 662 in non-basal 
subtypes (Figure 5C). Next, because we have assigned 
the target genes to each enhancer with PolII ChIA-PET 
data, the E-P pairs whose enhancers are sseDMRs can 
be separated into hypermethylated and hypomethylated 
groups according to the enhancer methylation status in 
basal vs. non-basal breast cancer subtypes. As expected, 
the hypermethylated enhancers in basal subtypes tend to 
have low expressed targets ( t-test p-value < 0.05 Basal V.S 
non-basal ), while the number of high expressed targets 
of hypomethylated enhancers is only slightly more than 
low expressed ones. (Figure 5D). To further investigate the 

functional significance of enhancer methylation in different 
breast cancer subtypes, the differentially expressed genes 
were used for gene ontology analysis. Interestingly, 
the low expressed target genes of the hypermethylated 
enhancers in basal subtype associated with the functions 
such as “response to hormones,” “response to endogenous 
stimulus” and response to chemicals” etc. (Figure 5E), 
which consistent with the features of the basal subtype of 
breast cancer. However, the functions enriched by all the 
low expressed genes in basal subtype without considering 
their enhancer methylation status were quite different 
from enhancer methylation-driven ones (Supplementary 
Figure 5B–5C). This observation suggests an enhancer 
methylation specific role in driving basal subtype 
associated genes dysregulation. 

Methylation status of enhancers predicts 
outcome of disease 

Methylation of tumor suppressors directly correlates 
with the tumor initiation, progression, and metastasis. 
However, previous studies have mainly studied the 
methylation of gene promoters [49, 50]. To demonstrate 
the importance of enhancer methylation in breast cancer 
progression, we analyzed the correlation of enhancer 
methylation and the patient survival. Kaplan-Meier 
analysis of the 3067 enhancers identified 345 enhancers 
whose methylation status separates the patients into two 
distinct groups with either bad or good overall survival 
significantly (log-rank p-value < 0.05). Comparing with 
the random result, 345 shows a significant effect on breast 
cancer prognosis (Figure 6A). Within the 345 survival 
associated enhancers, 98 of them are potential regulators 
of 120 genes (also known as eRGs). Gene ontology 
analysis of the 120 genes identified mainly cancer related 
functions like “Wnt signal pathway,” “wound healing” and 
“positive regulation of epithelial to mesenchymal transition” 
(Figure 6B), suggesting these genes are important regulators 
of cancer progression. We also found these 120 genes 
and their enhancers share some transcriptional factors, 
such as “MYC” and “FOS,” of which the majority are 
transcriptional activators (Figure 6C), suggesting these 
transcriptional factors may mediate the active transcriptional 
interaction between enhancer and promoter. Within these 
120 eRGs, 101 are negatively correlated with their enhancer 
methylation. And Cox proportional hazard regression 
model was used to select breast cancer risk genes from 
the 101 gene set. Totally 15 breast cancer risks genes 
were obtained (Benjamini & Hochberg FDR < 0.05) and 
6 of them (FAM84B, AAGAB, RPS25, SH3BP4, KRT80, 
TANK) showed the most significant correlation with the 
patient survival (Supplementary Figure 6A). Interestingly, 
the combination of all those 15 risk genes showed a more 
significant p-value in correlation with patient survival 
than any single gene (Figure 6D–6E), suggesting an 
accumulative effect and each of these genes only contributes 
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a tiny portion of the risk to the disease progression. 
Surprisingly, most of the enhancers of these genes (except 
SLC34A1) were hypomethylated, and the methylation 
status of them are able to distinguish the patient survival 
independently (Supplementary Figure 6B), suggesting an 
important mechanism of building up the cancer risk through 
turning on a group of enhancers. But we do notice that some 
members of this group of genes have a more significant 
impact on the patient risk such as CCDC83, PPFIBP2, 
KRT80, GADD45A, TANK, CCDC57, SLC34A1, RPS25 
and TACC2, because they predict the most significant 
difference in patient survival when combined (Figure 6G). 
Among this short list, GADD45A, TANK and TACC2 are 
already known risk related factor in breast cancer [51–53].

DISCUSSION

DNA methylation is represented by the methyl 
group modification occurring to the CpG pairs genome 
widely. Mechanically, the methyl group can be recognized 
by some proteins such as MeCPs which further bring in 
other repressive protein complexes including the ones 
building up the heterochromatin [54]. Therefore, DNA 
methylation frequently associates with the chromatin 
silencing. However, DNA methylation also goes through 
dynamic alteration according to the observations in 
recent years [21]. High-throughput DNA methylation 
measurement still relies on the oligo array which has very 
limited coverage of genome-wide CpG sites and only about 

Figure 4: The divergent pattern of enhancer and promoter methylation in repressing gene expression. (A) The methylation 
of enhancer and promoter regulate different type of genes. The pie chart shows the numbers of eRGs (enhancer regulated genes) and pRGs 
(promoter regulated genes). Gray part represents the genes that are both eRG and pRG. (B) eRGs and pRGs are different in function. Figure 
shows the gene ontology analysis result for eRGs and pRGs. Only the top 10 GO terms are shown for each type. (C) Enhancer methylation 
is more variable than promoter ones. Figure shows the coefficient of variation for all enhancers and promoters that are covered by 450k 
array. (D) eRGs are enriched in cancer hallmarks. Figure shows the enrichement result of eRGs for each cancer hallmark. In each box, 
shows the number of eRGs in hallmark (left) and the total number of genes in hallmark (right). Red line indicates significant enrichment 
(p-value < 0.05).
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1.73% of total CpG sites are detected [55]. Some very 
recent studies attempt to develop other sequencing-based 
high-throughput technologies, but the application is still 
not widely used [56–58]. Also, these novel technologies 
can hardly be applied to analyze tumor samples. Due to 

the low resolution of the methylation measurement, the 
enhancer we studied only account for a small portion of 
the genome. However, functional annotation of these 
enhancers still confirms that methylation of these enhancers 
tends to control gene expression negatively and appearance 

Figure 5: Enhancer methylation in different breast cancer subtypes. (A) Methylation of ChIA-PET identified ESR1 enhancers are 
related with ESR1 expression. The genome figure shows the position of ESR1 and its four enhancers. The gray bars represent the enhancers 
whose methylation status is positive correlated with ESR1 expression, while the yellow bars represent the negative ones. The lower panel 
(from left to right) shows the correlation between enhancer methylation and ESR1 expression for those two negative correlated enhancers 
within TCGA tumor samples and also shows the ESR1 expression in basal and non-basal TCGA samples. (B) Enhancer methylation can 
distinguish the basal from non-basal samples. Figure shows hierarchical cluster of TCGA breast cancer dataset according to 1541 sseDMRs 
methylation status. Rows are the sseDMRs and columns are samples. The pathological classification of each sample is on the top. The 
color in the heatmap matrix is the methylation value. (C) The pie chart shows the number of enhancers that are hypermethylated, hypo-
methylated, or no difference in basal samples comparing to non-basal samples. (D) The targets of hypermethylated enhancers tend to be 
low express in basal samples, and targets of hypomethylated enhancers tend to be high expressed. The diagram shows the number of genes 
for each type. (E) Genes actived by enhancer hypomethylation are functional different with those repressed by enhancer hypermethylation 
(basal V.S. non-basal). GO analysis results of these two type of genes are shown. Only top 10 go terms are shown for each type. 
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of hypomethylated enhancers in cancer cells is more likely 
an important contributor to cancer risk. However, more 
analysis with genome-wide methylation data in high 
resolution is required to get more conclusive results.

The reactivated enhancers in cancer may reflect a 
truth that these enhancers are a critical responder to the 
micro-environment where cancer initiated, because when 
the microenvironment becomes unfavorable and generates 

Figure 6: Enhancer methylation status predicts breast cancer risk. (A) The number of survival related enhancer is larger than 
random. Figure shows two random analysis results, the upper panel is the number distribution of random regions whose methylation level 
related with patient overall survival (log-rank p-value < 0.05). The random region used here is selected as described in method; the lower 
panel is the number distribution of enhancers whose methylation level related with overall survival for perturbed patients. The red line is 
the number of survival enhancer in real data. (B) Genes regulated by methylation of survival enhancer are functional related with cancer. 
Go analysis result of these genes are shown in figure. The size of the node represents the enrichment p-value (shown in log), and red dots 
indicate the function associated with cancer. (C) The transcriptional factors enrichment result for promoters and enhancers of 120 targets of 
survival enhancer. (D) The combination of 15 breast cancer risk genes shows more effective on predicting patient overall survival. The log-
ranked p-values of 15 breast cancer risks genes (black) and the combined p-values of all 15 genes (red) are shown in figure. (E) The overall 
survival curve for the combination of all 15 breast cancer risk genes. (F) The diversity of combination of 15 risk genes and the effect of 
them on prognosis. Figure shows all the log-rank p-value of combined survival analysis. The x-axis indicates the number of genes combined 
together in survival analysis. (G) The survival curve for the most significant combination model in survival analysis (The combination of 
gene CCDC83, PPFIBP2, KRT80, GADD45A, TANK, CCDC57, SLC34A1, RPS25 and TACC2). 
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the stress to the cells, the cells may choose to activate 
these enhancers, and therefore the downstream genes. 
These genes must be responsible for the responsiveness 
to the environmental factors. That’s probably the reason 
that we only found very limited overlapping between the 
eRGs and pRGs. Moreover, the functional divergence of 
eRG and pRG may directly indicate the eRGs are part of 
the response to cancerous environment and pRG, however, 
responsible for sustainable cell survival.  

Many studies have demonstrated the power of 
gene expression profiling in clustering the breast cancer 
samples to several subtypes and each subtype matches 
a particular type of cell representing a critical point in 
mammary gland differentiation tree [59, 60]. A known 
working model for enhancers to be involved in cancer is 
that gene fusion frequently results in the juxtaposition of 
oncogenes to some neighbor enhancers which activate 
the oncogene expression constitutively [61]. The other 
working model which was extensively discussed recently 
is the mutations occurring to enhancers which may work 
in cis or in trans to increase the risk of cancer [62]. But 
whether simply the methylation status of enhancers have 
an important role in regulating cancer gene expression is 
just the beginning to be addressed [26, 28, 63]. However, 
these studies only cover a very limited number of patient 
samples, and none of these studies focused on breast 
cancer. By studying breast cancer, we take advantage of 
the most extensive breast cancer public datasets produced 
by TCGA, as well as other public available breast cancer 
datasets. Most importantly, TCGA has the largest genome-
wide methylation measurement of breast cancer patient 
samples, which is the only opportunity to look into how 
methylation of enhancers may influence gene expression 
in real cancer samples. As a proof of principle, we do 
observe the significant correlation between the enhancer 
methylation and gene expression. By gradually narrow 
down the risk enhancers, we finally obtained 15 risk genes 
for breast cancer and the higher than normal expression 
of these genes is mainly because of the hypomethylated 
enhancers. Thus, by increasing the resolution of enhancer 
methylation measurement, a novel approach to identify the 
risk locus of cancer is expected.

MATERIALS AND METHODS

Data sources

The breast cancer methylation and gene expression 
data are from TCGA project, which contains 777 tumor 
samples and 101 normal control samples for RNA-seq 
data and 783 cancers and 97 normals for methylation data. 
Within this dataset, 487 tumors and 73 normal samples have 
both RNA-seq and Methylation 450K Bead Array data. And 
the subtype and clinical information are downloaded from 
cBioPortal [29, 30]. The MCF-7 pol II ChIA-PET data are 
from two different sources, one from Encode and the other 

from GEO (GSE33664) with four samples. Only the high-
confidence intra-chromosomal interactions supported by at 
least two replicates were included in this study.

The validation data used to reproduce the 
relationship between enhancer methylation and gene 
expression is from GSE59000, which contains 36 primary 
tumors with gene expression data and methylation data. 
The methylation data for MCF-7 and MDA-MB231 cell 
lines were downloaded from GSE65087, GSE44837 and 
GSE78875 [31, 32]. And all the histone binding data for 
MCF-7 were from Encode.

The CpG Island information and gene information 
were downloaded from UCSC (http://genome.ucsc.edu/) 
for the hg19 reference genome.

Enhancer-target prediction

We defined the promoter region as 2kb around 
the gene TSS and used the H3K27ac peak of MCF-7 
downloaded from Encode as potential enhancer regions. 
After filtering out the H3K27ac peaks that located within 
2.5kB around the TSS, we used bedtools suite to determine 
which ChIA-PET anchors are overlapped with enhancer 
or promoter region and got the enhancer-target interacting 
pairs supported by the pol II ChIA-PET.

We used the bedtools suite to identify the closest 
gene as the neighbor gene for each of the enhancers we 
defined. To compare the correlation between enhancer 
methylation and ChIA-PET target gene expression to the 
correlation between enhancer methylation and neighbor 
gene expression, we filtered out the pairs whose targets 
are both neighbor gene and ChIA-PET target of the 
corresponding enhancer.

Statistic

We used the two-side t-test to do the differential 
analysis to find eDMRs and DEGs. The correlation 
between methylation and expression was measured by 
Spearman rank correlation, and the co-expression analysis 
was measured by Pearson correlation. Significance was set 
at p < 0.05. We performed the gene ontology analysis with 
David online tools. Other enrichment analyses were done 
by performing the hypergeometric test. The coefficient of 
variation (CV) showed the extent of variability in relation 
to the mean, and it was calculated as follows:

CV =
σ
µ

σ, μ, represents the standard deviation and the mean.

Risk gene identification and combination 
survival

We used univariate Cox regression analysis to 
evaluate the disease risk for each target of enhancers, and 
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we selected the genes with FDR < 0.05 as the risk genes to 
do further analysis. For each gene, we could get a regression 
coefficient, which shows the high expression (plus) or low 
expression (minus) and is associated with the cancer risk.

To measure the effectiveness of the 15 breast cancer 
risk genes in survival prediction together, we construct 
a risk score with these 15 genes for each patient. The 
method we used to calculate the risk score is the same with 
a published paper [33]. Briefly, the formula considered 
both the direction and the power of genes in cancer risk 
and also took the expression into account. The risk score 
for each patient can be calculated as follows:

Risk Expscore i gene
i

=
=
∑β * ( )i
1

15

βi is the regression coefficient for gene i in previous 
analysis and the Exp is the expression of gene i in that 
patient. We split the patients with overall survival time 
into two group according to if the risk score is larger than 
0 or not, and working with Kaplan-Meier analysis to check 
if the risk score can use as a predictor to predict the patient 
survival outcome.

Random analysis

We random selected the genes from the total 
20502 genes detected by RNA-seq as enhancer target 
and calculated the correlation between the enhancer 
methylation and gene expression. We compared the 
random result with the real ones to show the regulation 
effect of enhancer on gene expression.

To strengthen the enhancer methylation effect in breast 
cancer prognosis, we create a simulated ‘enhancer’ set by 
randomly selected the CpG site and extended it by adding 
500bp length to each side to construct a fragment. The total 
number of enhancers we used in this analysis is 3067, so we 
random constructed 3067 fragments to do survival analysis. 
We did this random process for 100 times and compared the 
random results to the real one. Besides, we also did samples 
perturbation for 100 times to further support our result.

random E-P networks

To show the genes regulated by the same enhancer 
are functionally correlated, we randomly constructed 138 
E-P subnetworks. For each subnetwork, we randomly 
selected the genes from the total gene pool as the targets 
of respective enhancer and the number of the genes is 
arbitrarily from 2 to 16, which is the smallest and largest 
target number of the real subnetwork for 138 enhancers.
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