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ABSTRACT
Unlike population-level approaches, single-cell RNA sequencing enables 

transcriptomic analysis of an individual cell. Through the combination of high-
throughput sequencing and bioinformatic tools, single-cell RNA-seq can detect more 
than 10,000 transcripts in one cell to distinguish cell subsets and dynamic cellular 
changes. After several years’ development, single-cell RNA-seq can now achieve 
massively parallel, full-length mRNA sequencing as well as in situ sequencing and 
even has potential for multi-omic detection. One appealing area of single-cell RNA-
seq is cancer research, and it is regarded as a promising way to enhance prognosis 
and provide more precise target therapy by identifying druggable subclones. Indeed, 
progresses have been made regarding solid tumor analysis to reveal intratumoral 
heterogeneity, correlations between signaling pathways, stemness, drug resistance, 
and tumor architecture shaping the microenvironment. Furthermore, through 
investigation into circulating tumor cells, many genes have been shown to promote 
a propensity toward stemness and the epithelial-mesenchymal transition, to enhance 
anchoring and adhesion, and to be involved in mechanisms of anoikis resistance and 
drug resistance. This review focuses on advances and progresses of single-cell RNA-
seq with regard to the following aspects:

1. Methodologies of single-cell RNA-seq
2. Single-cell isolation techniques
3. Single-cell RNA-seq in solid tumor research
4. Single-cell RNA-seq in circulating tumor cell research 
5. Perspectives

INTRODUCTION

RNA sequencing (RNA-seq) has recently been 
developed as a powerful tool for investigating the 
intracellular transcriptome based on next-generation 
sequencing (NGS) [1]. “Salt-and-pepper” variation 
is ubiquitous throughout a cell population or tissue, 
and this results in cell-to-cell transcriptomic diversity 
[2]. However, most current transcriptomic studies are 
performed on a bulk level and typically investigate the 
average of variable transcriptomes from millions of cells. 
Moreover, it is difficult to evaluate dynamic changes in 
an individual cell (10–20 pg total RNA) [3, 4] with the 
current population-based RNA-seq methods, which for 

mammals, require hundreds of thousands to millions of 
cells (0.1–5 µg total RNA) [5, 6]. In contrast, single-
cell RNA-seq (scRNA-seq) has the potential to easily 
overcome these obstacles. 

Since 2009, a plethora of scRNA-seq technologies 
have been developed, providing an unbiased measurement 
of expression profiles at a single-cell resolution. In an 
effort to enhance RNA detection sensitivity and full-length 
transcript quantitation and to reduce technical variability, 
massively parallel sequencing, in situ sequencing and 
multi-omic sequencing are enabling in-depth identification 
of new cell types, sub-populations and biomarkers. In 
terms of single-cell manipulation and isolation from a 
potentially heterogeneous population of different types of 
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cells, approaches such as micromanipulation, microfluidics, 
fluorescence-activated cell sorting (FACS), and laser-
capture microdissection (LCM) are well developed and 
applied. In addition, computational tools have emerged in 
a short period of time to assess the functional implications 
of stochastic transcription by dissecting variabilities and 
background noises such as those due to expression changes 
of genes involved in cell cycle [4, 7, 8].

The diverse applications of scRNA-seq include 
embryogenesis and stem cell differentiation, organ 
development, immunity, whole-tissue subtyping, neurobiology 
and tumor biology. Notably, cancer research is becoming even 
more intriguing, as intratumoral heterogeneity and the tumor 
microenvironment can now be studied with scRNA-seq. 
Solid tumors, cell lines, and circulating tumor cells (CTCs) 
are hot topics in the single-tumor cell research arena, showing 
a powerful capacity to reveal transcriptomic heterogeneity, 
signaling pathways related to drug resistance, immune 
tolerance and intratumoral heterogeneity. In this review, we 
mainly discuss the significant progresses in the scRNA-seq 
and its applications in cancer research.

Advances in single-cell RNA sequencing 
technologies

Single-cell RNA-seq was first reported in 2009 
by Tang et al. for analyzing the mouse blastomere 
transcriptome at a single-cell resolution [5] and many 
protocols with pros and cons have been developed 
(Table 1). Islam et al. then developed the single-cell 
tagged reverse transcription sequencing (STRT-Seq) 
method by adopting a template switching oligonucleotide 
(TSO) to barcode the 5ʹ end of transcripts, allowing for 
unbiased amplification in comparisons across multiple 
samples [9]. Ramsköld et al. applied both a TSO in the 
Smart-Seq protocol to obtain full-length cDNA as well as 
the transposase Tn5 to barcode 96 samples. This method 
successfully evaluated distinct biomarkers, isoforms and 
single nucleotide polymorphisms (SNPs) for sequencing 
of CTC RNA from melanoma patients [10]. Later, Picelli 
et al. introduced Smart-Seq2, a modified protocol for 
Smart-Seq, resulting in higher sensitivity and improved 
coverage and accuracy using the locked nucleic acid 
(LNA), a modified inaccessible RNA nucleotide [11]. 
Tamar et al. established a Cel-Seq protocol via an 
in vitro transcription (IVT) technique that linearly 
amplified mRNA from single cells in a multiplexed 
barcoding manner [2, 12]. Pan et al. adopted rolling circle 
amplification (RCA) in single-cell analysis, a whole 
transcriptome amplification method for small amounts 
of DNA, and Lee et al. applied this method to FISSEQ 
in situ single-cell RNA seq [13, 14]. Moreover, Islam et 
al. tagged cDNA with unique molecule identifiers (UMI), 
providing a powerful tool for adjusting amplification bias, 
enhancing sensitivity and reducing background noise 
[3]. Achieving 96 single-cell parallel Smart-Seq2-based 

RNA-seq, Pollen et al. devised the microfluidic system 
Fluidigm C1 [15]. Two similar droplet-based massively 
parallel single-cell RNA-seq techniques, namely, Drop-
Seq and Indrop-Seq by Klein et al. and Macosko et al., 
respectively, were released in May, 2015 [16, 17]. These 
techniques allowed several thousands of cells to be 
sequenced in a unique barcode-wrapped droplet. Fan et al. 
further established a massively parallel single-cell RNA-
seq protocol facilitated by magnetic beads and combining 
cell capture and poly(A) selection, which could analyze 
up to 100,000 cells in microwells [18]. Fan et al. also 
achieved single-cell circRNA sequencing using a single-
cell universal poly(A)-independent RNA sequencing 
(SUPeR-Seq) protocol [19]. 

To profile primary human radial glia, intracellular 
staining combined with fixed and recovered intact single-
cell RNA-seq (FRISCR-Seq) was developed by Thomsen 
et al., with little bias and similar gene expression yield, 
even when fixation and purification were introduced [20]. 
Macaulay et al. were the first to simultaneously conducted 
a single cell’s genome and transcriptome sequencing by 
G&T-Seq, and Hu et al. simultaneously sequenced the 
methylome and transcriptome of a single cell using the 
single-cell methylome and transcriptome sequencing 
(scMT-Seq) technique [21, 22]. Hou et al. invented 
single-cell triple-omics sequencing (scTrio-seq), which 
simultaneously analyzed genomic copy-number variations 
(CNVs) and the DNA methylome and transcriptome from 
individual single hepatocellular cancer cells [23]. More 
recently, Habib et al. developed Div-Seq, a scalable single-
nucleus RNA-seq (sNuc-Seq)-based technique to identify 
closely related hippocampal cell types and track dynamic 
changes in the newborn neuron transcriptome with high 
sensitivity [24]. 

In terms of bioinformatics, tools for analyzing RNA-
seq data from bulk populations can partly be applied to 
transcriptomic data at the single-cell level, yet many new 
computational strategies are needed to normalize raw data 
and exploit featured transcriptional kinetics [7]. Buettner 
et al. revealed that confounders such as the cell cycle, 
technical noises and biological variabilities contribute to 
cell-to-cell variation. However, cell cycle noises can be 
reduced by the single-cell latent variable model (scLVM), 
a cell cycle-based expression profile correction method 
[7]. Other efforts have also been made to reduce single-
cell transcriptomic noises, including pathway and gene 
set overdispersion analysis (PAGODA) by FAN et al., 
inferring stochastic transcriptomic kinetics by Kim et 
al. and single-cell differential expression (SCDE) by 
Kharchenko et al., which addresses data correction using 
previously-annotated pathways and gene sets, as well 
as automatically-detected gene sets amplification bias 
and dropout events via a Bayesian approach [25–27]. 
Stubbington et al. developed the TraCeR method, which 
was able to reconstruct full-length, paired T cell receptor 
sequences from V(D)J regions to link single T lymphocyte 
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specificity with functional responses as well as the 
transcriptional landscape [28]. 

Mitochondrial RNAs may cause biased 
interpretation of sequencing data, and have been observed 
to increase in broken cells or cells undergoing apoptosis, 
due to the loss of cytoplasmic RNA. However, reports 
showed that models like support vector machine (SVM) 
can filter out confounding samples and reduce artifacts 
effectively [3, 29]. Finally, remodeling of single-cell 
subpopulations, trajectories and bifurcation events can be 
achieved by many microevolution analyses. Without given 
temporal information, Moncole and Waterfall adopted 
independent component analysis (ICA) and k-means to 
produce clusters and infer a pseudo temporal ordering 
by minimum spanning tree (MST) [30, 31]. Given time 
course data, single-cell clustering using bifurcation 
analysis (SCUBA) is able to detect bifurcation events 
based on stochastic differential assumption [32].

To summarize, several landmarks achieved using 
the above technical advances are described below

Poly(A) selection-based reverse transcription

A poly(A)-based method initiated the first single-
cell RNA-seq technique, and this method is now widely 
applied as a standard protocol in single-cell RNA-seq. To 
synthesize first-strand cDNA in a microliter or nanoliter 
reaction, oligo-dT primers are applied for hybridization 

of poly(A)-tailed mRNA from the 3ʹ end. In this step, 
most undesirable tRNAs and rRNAs are removed, 
though many non-(A)-tailed lncRNAs are also excluded. 
Followed by incorporation with proper adapters, cDNA is 
amplified by several orders of magnitude using PCR-based 
amplification, IVT or RCA. Typical examples include 
Tang et al.’s scRNA-seq and Quartz-Seq [33].
Full-length transcript sequencing

This technique has a significant impact on research 
into dynamic changes in exons, introns, and alternative 
splicing, as these events are observed at a single-cell 
resolution. For example, in the Smart-Seq2 protocol, a 
typical full-length single-cell RNA-seq technique, cDNA 
is not only synthesized from the 3’ end, but 5’-3’ coverage 
is also guaranteed by TSO, which eliminates 3’ bias. Apart 
from TSO-based techniques, Phi29-mRNA amplification 
(PMA) and semi-random primed PCR-based mRNA 
transcriptome amplification (SMA) amplify cDNA by 
rolling amplification using the Phi29 enzyme and semi-
random primers, respectively [34]. Representative 
methods include PMA/SMA-Seq, Multiple Annealing and 
Looping-Based Amplification Cycles (MALBAC)-based 
RNA-seq [35], Smart-Seq and Smart-Seq2.
Adoption of a unique molecular identifier

Another milestone in single-cell RNA-seq is the 
application of UMI for identifying the exact number of 
transcripts in a cell and thus quantifying sensitivity. As 

Table 1: Main contributions to scRNA-seq technologies
Year First Author Protocol Significance
2009 Tang [5] scRNA-seq First single cell RNA sequencing method
2011 Islam [9] STRT-Seq 5ʹ sequencing with Template Swithing Oligo
2012 Ramsköld [10] Smart-Seq Full length mRNA sequencing
2012 Hashimshony [12] Cel-Seq In vitro transcription, linear amplification
2013 Picelli [11] Smart-Seq2 Enhanced single cell RNA-seq sensitivity 
2013 Pan [13] RCA Total RNA sequencing with Rolling Circle Amplification
2014 Lee [14] FISSEQ In situ single cell RNA-seq
2014 Islam [3] UMI Higher sensitivity by Unique Molecule Identifier
2014 Pollen [15] Microfluidics Massively paralleled, 96 cells per batch
2015 Klein [16] inDrop-Seq Massively paralleled, 3000 cells per batch
2015 Macosko [17] Drop-Seq Massively paralleled, 44800 cells per batch
2015 Fan [18] Cyto-Seq Massively paralleled, 10000–100000 cells per batch
2015 Fan [19] SUPeR-Seq circRNA sequencing
2015 Macaulay [22] G&T-Seq Simultaneous sequencing on genome and transcriptome
2016 Thomsen [20] FRISCR-Seq scRNA-seq after staining and FACS
2016 Hu [21] scMT-Seq Simultaneous sequencing on transcriptome and methylome
2016 Hou [23] scTrio-Seq Simultaneous sequencing on CNV, transcriptome and methylome
2016 Habib [24] Div-Seq In situ single nucleus RNA sequencing 
2016 Nichterwitz [33] LCM-Seq In situ RNA-seq with laser capture microdissection
2016 Faridani [34] Small RNA-seq Analysis of microRNAs, tRNAs and small nucleolar RNAs
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first reported by Islam et al., UMI comprises a 5 base-pair-
length random nucleotide, which is incorporated into the 5ʹ 
end of cDNA during reverse transcription. Therefore, the 
absolute scale of measurement is achieved by counting the 
number of known spike-ins. Noise introduced by reverse 
transcription can also be eliminated by UMI incorporation. 
Typical examples include Islam’s single-cell RNA-seq, 
Drop-Seq, Indrop-Seq and Cyto-Seq.
Massively parallel single-cell RNA-seq

This highly multiplexed profiling technique shows 
the potential to not only reduce technical noise during 
library preparation but to enhance reproducibility. 
Currently high-throughput single-cell RNA-seq 
approaches are achieved using microfluidics and robotics, 
collecting hundreds to thousands of cells per batch at a 
much larger scale and in a faster process than manual 
selection. The first reported massively parallel single-cell 
RNA-seq, namely MARS-Seq, sorted and classified cell 
types ab initio from more than 4,000 cells from splenic 
tissues using an unsupervised clustering algorithm 
[36]. Fluidigm C1 facilitated single-cell cDNA library 
preparation with reaction lines in which 96 individual 
samples were reverse transcribed. As the total volume 
of a library preparation chamber is approximately 300 
nanoliters, less reagent is consumed compared to a regular 
setup (25 microliters). Droplet-based approaches such as 
Drop-Seq and inDrop-Seq as well as 10× Genomics can 
prepare thousands of libraries in even smaller droplets 
[37]. However, there are also disadvantages to throughput 
enhancement: as the sequencing depth and coverage are 
much lower, quantitation normally relies on 3ʹ reads. 
MARS-Seq, Fluidigm, Drop-Seq, inDrop-Seq and 10× 
Genomics are included in this category.
Multi-omic simultaneous sequencing

These multiple layer profiling methods are capable 
of simultaneously obtaining information regarding the 
transcriptome, methylome and genome. By measuring 
more than 6,000 promoter methylation sites and 4,600 
transcripts in an individual cell, scMT-Seq, a combination 
of reduced representation bisulfite sequencing (RRBS) and 
Smart-Seq2, revealed the regulative relationship between 
the epigenomic status and expression pattern. Using scTrio-
Seq, Hou et al. not only showed positive correlations 
between CNVs and expression (Pearson r = 0.73) but also 
demonstrated a powerful tool for simultaneously obtaining 
information from three cellular omes. Intriguingly, this 
study also validated that promoter methylation negatively 
correlates with gene expression, whereas methylation 
on the gene body promotes it. Correlations among 
-omes provide new insights into the dynamics of gene 
regulation. More recently, Faridani et al. described a novel 
technique for simultaneous detection of microRNAs, 
fragments of tRNAs and small nucleolar RNAs from 
single cells at a low-input level, shedding new light on 
non-coding RNA [38]. CircRNA-seq, small RNA-seq,  

scMT-Seq, scTrio-Seq and G&T-Seq have all been 
reported in this research field.
Tissue decomposition single-cell RNA-seq

This approach is now widely adopted to define new 
cell and tissue types through unsorted single-cell RNA-
seq and unsupervised digital transcriptome clustering. 
Since the development of bulk RNA-seq, human, mouse 
and rat body map projects and transcriptomic landscapes 
have been plotted at the organ and tissue levels [39–41]. 
However, combined with tissue decomposition, single-cell 
sorting, microfluidic approaches and single-cell RNA-seq 
are now able to distinguish rare cell subtypes in solid 
organs. For instance, Jaitin et al. revealed heterogeneity 
in dendritic cell subpopulations and new cell types in 
an LPS stimulation experiment, and Treutlein et al. 
discovered a new cell type on day E18.5 during mouse 
distal lung epithelia development. Zeisel et al. and Tasic 
et al. molecularly classified the mouse hippocampus and 
cortex through single-cell RNA-seq, and a diversity of 
neuron and glia subtypes were identified. La Manno et  al. 
studied ventral midbrain development, identifying 25 and 
26 clusters in mouse and human, respectively [36, 42–45].  
These findings undoubtedly advance the fields of 
development biology, histopathology, immunology, 
neurology and cancer biology.
In situ single-cell RNA-seq

This revolutionary technique combines analysis of 
the single-cell transcriptome and its spatial distribution. 
In the process of in situ scRNA-seq, cells of interest are 
identified by specific staining such as fluorescence, and 
then followed by manual or robotic picking. Fluorescent in 
situ RNA sequencing (FISSEQ) was first reported to have 
potential for in situ investigations of cellular phenotypes, 
gene regulation, and the cellular microenvironment [14]. 
Achim et al. successfully sequenced tissues of interest 
from P. dumerilii using whole-mount in situ hybridization 
(WMISH) and parallel single-cell RNA-seq (Fluidigm 
C1) [46]. Similar approaches include Nichterwitz’s LCM-
Seq of frozen mouse spinal sections [47] and Lovatt’s 
transcriptome in vivo analysis (TIVA) of live tissues [48]. 
Notably, electrophysiological phenotype recording-oriented 
single-cell RNA-seq (Patch-Seq) is achieved via integration 
of patch-clamp and cell aspiration techniques [49]. 

Generally, 0.05~0.1 million mapped reads are 
sufficient to distinguish cell types as reported using 
Fluidigm C1, or Drop-seq or 10× Genomic protocols 
[17, 50, 51]. However, deeper sequencing is also seen 
in the ab initio cell identification, mutation calling and 
identification of RNA splicing events, with reads ranging 
from 5~20 million per sample [10, 42, 52, 53].  By far, 
there is no research showing difference of quantitation 
results between single-end and paired-end reads. However, 
paired-end mode shows advantage at fusion or splicing 
discoveries but generates few reads. Multiplexing of 
samples per lane depends on the desired sequencing 
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depth and lane capacity of each instrument. For example, 
normally 0.5~2 million reads per sample can be obtained 
from a pooled library with 96~384 barcodes sequenced by 
a HiSeq 2500 sequencer. 

Single-cell isolation techniques

Because single-cell RNA-seq is based on an 
individual cell or subcellular apparatus, e.g., the nucleus, 
isolation of target cells from complex and heterogeneous 
tissues is an initial and essential step. Manual picking, 
single-cell FACS, microfluidics and LCM are currently 
adopted as mainstream single-cell isolation methods. Here 
we briefly introduce the principles of these techniques and 
discuss their advantages or disadvantages (Table 2).

CTC isolation, a specialized application in this field, 
is achieved by employing surface marker detection, size 
screening, gradient separation and cluster capture. On one 
hand, CTCs have significant diagnostic value because 
these cells are rare in a patient’s blood; on the other hand, 
methods with higher sensitivity and specificity need to 
be developed. Widely adopted CTC isolation methods 
include magnetic bead capture, microfluidic enrichment, 
size filtering and image-based selection.
Manual picking

As a user-friendly method, manual picking of single 
cells has been employed in many protocols, such as in 
Smart-Seq, Smart-Seq2 and Cel-Seq library preparation. 
Normally, a mouth pipette or micropipette is used to 
select a target single cell under a microscope and place 
it into lysis and reverse transcription tubes [10–12, 53]. 
In addition, rare cells such as CTCs can be fluorescently 
stained for surface markers, and doublets are avoidable 
through manual inspection. However, compared to 
automated cell-picking devices, this method has neither 
a satisfying sensitivity nor a high-throughput and speed 
capacity per batch [3, 54, 55].
Microfluidics

By analyzing physiological properties such as the 
size, charge, magnetism, and surface markers of different 
cell types, microfluidic devices enable efficient single-
cell separation, cell culture, and library preparation in 
integrated fluidic microsystems [15, 56, 57]. DEP-Array, 
Fluidigm, CTC-iChip, Cyto-Seq and Drop-Seq belong to 
this category [58]. In terms of CTC application, antibody-
specific beads or image-based microfluidic devices, 
including CTC-iChip, HbCTC-Chips, MagSweeper and 
CellSearch systems, are adopted to isolate these specific 
rare cells. Advantages of microfluidics include not only 
simultaneous single-cell library preparation in a higher 
throughput manner than manual manipulation but also 
higher sensitivity and reproducibility [54]. Dramatic 
improvements are needed for multi-marker-based cell 
sorting to reduce false positive/negative and doublets in 
downstream sequencing [16, 59].

Fluorescence-activated cell sorting (FACS)

This multi-channel, fluorescent antibody dye-
based cell sorting approach has been broadly applied 
in many single-cell transcriptome studies [24, 60–62]. 
Using uniquely tagged fluorophores, cell subpopulations 
of interest are sorted within only minutes into a 96-well 
or 384-well plate for library preparation [60, 63, 64]. 
However, on the one hand, rare CTCs, which have a 
frequency below one in a million, are not easily detected 
and isolated by current FACS methods; on the other 
hand, flow cytometry is not able to handle a starting cell-
suspension volume less than several microliters [64, 65]. 

Laser-capture microdissection (LCM)

Under direct microscopic visualization, LCM 
can harvest cells of interest or isolate specific cells 
by cutting unwanted tissues in either formalin-fixed 
paraffin-embedded (FFPE) or cryostat sections using UV 
or infrared (IR)-coupled microscopy. Commonly used 
LCMs include LDM systems by Leica, PixCell systems 
by Molecular Devices, and photoactivated localization 
microscopy (PALM) systems by Zeiss [66, 67]. Guided by 
a target beam, a minimal 7.5-µm spot-sized laser is rapidly 
pulse-fired at frozen sections, FFPE sections, direct smear 
or Touch Preps [68]. Research shows rather low RNA 
integrity numbers (RINs), 2.1–2.4 for FFPE samples 
[69], though RNA remains intact, with an RIN > 8.5, on 
frozen slides [70, 71]. The first application of LCM-based 
single-cell RNA-seq was performed and named LCM-
Seq, showing a high gene detection rate, reproducibility 
and advantages in mouse and human neuron in situ 
heterogeneity analyses [47]. As a prospective visualized 
single-cell isolation method, improvements regarding 
precision and noise reduction during UV/IR dissection are 
needed for the LCM technique [72]. 

CTC detection and isolation

CTCs are extremely rare, with only one tumor cell 
per billion normal blood cells in the circulation, and exist 
in a single or cluster form [73, 74]. Several methods have 
been developed to identify CTCs according to different 
principles, such as cell marker-based detection (EpCAM, 
CK or other cancer-specific antigens), size filtration, 
gradient separation, and luminescence reporter systems. 
Membrane marker detection and isolation approaches are 
currently in wide use. Normally 1~10 mL of freshly taken 
whole blood is loaded into an anticoagulant tube. Then 
CTCs are either directly identified by positive selection, or 
enriched by negative selection, followed by marker-based 
identification. This technique category includes the FDA-
approved CellSearch system by Johnson & Johnson, the 
dielectric field array-based automatic cell sorting system 
DEP-Array by Silicon Biosciences, the continuously 
updated CTC-Chips by Harvard University, and image 
recognition and manipulation-facilitating CellCelector by 
Lab Solutions [10, 75–80]. In addition, physical separation 
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methods such as Cluster-Chip by Harvard University, 
isolation by size of epithelial tumour cells (ISET) by 
Rarecells, CellSieve by Creatv MicroTech, and the 
OncoQuick gradient reagent by Greiner Bio-one have been 
adopted for diagnostic and academic fields [79, 81–84].  
(Table 3). 

Single-cell RNA-seq for deciphering the solid 
tumor architecture

Cancer heterogeneity generating from diverse 
single-tumor cell subpopulations imposes great challenges 
for clinical diagnosis and treatment. Single-cell RNA-seq 
has the potential to identify genomic and transcriptomic 
information from intratumoral cells and to provide 
new insight into tumor heterogeneity. Recently, single-
cell transcriptomic analysis has enabled the functional 
characterization of abnormal cell-to-cell interactions, drug 
resistance, the intratumoral architecture and the immune 
microenvironment with solid tissue decomposition and 
isolation methods. (Figure 1A)
Glioma 

Patel et al. resected and dissociated five human 
glioblastomas and generated single-cell RNA-seq 
data using the SMART-seq protocol. Unanticipated 
heterogeneity was revealed in 430 single cells showing 
transcriptional diversity related to oncogenic signaling, 
proliferation, complement system and immune response, 
and hypoxia. Therapeutic targets such as EGFR, 
PDGFRA, PDGFA and other proteins pertinent to glioma 
were also expressed mosaically. It is also worth noting that 
evidence of stemness in vivo was found to correlate with 
transcription factors (TFs), such as POU3F2, NFIA, and 
NFIB [61]. Tirosh et al. profiled 4,347 single cells from 
six IDH1 or IDH2 mutant human oligodendrogliomas and 
revealed a rare undifferentiated subtype showing stem 
cell potential alongside astrocyte and oligodendrocyte 
subpopulations. Cell-cycle gene expression signatures 
distinguishing G1/S and G2/M were applied to show 
proliferative and self-renewal potential in 10% of the 
population. This finding supported the cancer stem 
cell hypothesis at the single-cell level, with essential 
implications in glioma therapy [85].

Melanoma

Tirosh et al. analyzed 4645 single cells from 19 
melanoma patients by FACS and Smart-Seq2 RNA-seq. 
Several cell subpopulations were identified, including 
tumor cells, stromal cells, cancer-associated fibroblasts 
(CAFs), endothelia, T cells, B cells, and macrophages. 
Intrapatient and interpatient heterogeneity revealed the 
MITF-AXL drug resistance axis, whereas KDM5B was 
found to be inversely related to the cell cycle and tumor 
proliferation, i.e., showing a static status. Analysis of 
infiltrating immune cells further showed that enhanced 
cytotoxicity and proliferation of CD8+T cells were 
accompanied by several elevated exhaustion markers, 
such as PD-1, TIM-3 and CTLA-4. This study not only 
demonstrated heterogeneity between tumor cells but 
characterize the intratumoral ecosystem with consequences 
for future targeted and immune therapy [60].
Hepatocellular carcinoma 

Hou et al. simultaneously analyzed genomic CNVs 
and the epigenome and transcriptome from individual 
single hepatocellular cancer cells using scTrio-Seq 
[86]. Two populations of single cancer cells were 
distinguished through a combination of CNV, methylation 
and expression profiling. Differentially expressed genes 
from one subpopulation were enriched in the acute 
inflammatory response, innate immune response, and 
complement activation pathways, showing immune 
responsiveness; another population expressed a greater 
degree of invasive-cell markers and was thus more likely 
to evade immune surveillance.
Lung cancer

Kim et al. analyzed the transcriptome of single 
cells from patient-derived xenograft (PDX) tumor tissue 
with lung adenocarcinoma origin. Intra-tumoral SNV and 
expression heterogeneity were revealed using a collection 
of highly heterogeneous genes, including KRASG12D, 
across cells. The study also reported that after in vitro 
chemotherapeutic screening, the drug-resistant population 
exhibited downregulation of cell cycle-related genes, 
whereas ion transporter activity was enhanced [87]. 
Suzuki et al. sequenced 336 LUAD cells from 7 different 
cell lines using the Fluidigm C1 technique to reveal 

Table 2: Advantages and disadvantages of single cell isolation methods
Isolation Methods Advantages Disadvantages

Manual Picking Low cost, accurate isolation Low throughput, low sensitivity

Single cell FACS Surface marker sorting Low capture rate on rare cells

Microfluidics
High sensitivity,
High throughput,
Automatic library preparation

Marker based sorting is not applicable
Affected by cell size (Fluidigm)
Doublet (Drop-Seq)
False Pos/Neg (CTC-Chips)

LCM Cell dissected from spatial origin Low accuracy, currently only available to frozen sections



Oncotarget53769www.impactjournals.com/oncotarget

transcriptomic changes before and after multi-tyrosine 
kinase inhibitor vandetanib treatment [88]. Target genes of 
vandetanib such as EGFR and RET were slightly affected 
by treatment with the drug, though relative expression of 
housekeeping genes and ribosomal genes was significantly 
reduced. The authors inferred that a robust transcriptional 
control of these target genes may not be allowed to alter 
their expression during acquisition of drug resistance. 
Interestingly, based on the PCA plot, the vandetanib-
sensitive cell line remained together with the same cell 
line after drug treatment, whereas the drug-resistant 
population was separated.

Renal carcinoma

Kim et al. performed single-cell RNA-seq on 
metastatic renal cell carcinoma, primary tumor PDX, 
and metastatic PDX samples from a renal carcinoma 
patient. Principal component analysis revealed that 
cells with metastatic foci were distant from the primary 
tumor, whereas PDX samples were close to metastatic 
foci, indicating the reliability of the PDX model in 
metastasis research. In addition, single-cell sequencing 
revealed that the two originally mutually exclusive 
signaling pathways, i.e., EGFR-activated and Src/FAK-

Table 3: Methods for the identification and isolation of circulating tumor cells (CTCs)
CTC Identifier Company or Organization Isolation mechanics Blood (mL) Principle
CellSearch [80] Johnson & Johnson Antibody conjugated beads 7.5

Membrane 
antigen 
detection

LiquidBiopsy [85] Cynvenio Biosystems Inc Antibody conjugated beads 7.5
MagSweeper [86] Illumina Antibody conjugated beads 

and magnetic rods
7.5

CTC-Chips [87–89] Harvard Medical School Antibody conjugated beads 
and coated rods 

1.0–3.0

ICeap [90] Tohoku University Antibody conjugated beads 
and FACS

4.0

IsoFlux [91] Isoflux Antibody conjugated beads 
and microfluidics

7.5

FACS [92, 93] BD/Beckman Coulter Fluorescence activated single 
cell sorting

7.5

DEPArray [76] Silicon Biosciences Image based 
dielectrophoresis 
microfluidics

104 cells*

CellCelector [77] Automated Lab Solutions Image based automatic single 
cell manipulation

103~104 cells*

Accu-Cyte [94] Rarecyte Image based automatic single 
cell manipulation

7.5

SET-iFISH [95] Cytelligen Image based manual single 
cell manipulation

6.0

Cluster-Chip [83] Harvard Medical School CTC cluster trap 4.0

Physical 
separation

ISET [81] Rarecells Size filter 10.0
CellSieve [82] Creatv MicroTech Size filter 7.5~10.0
OncoQuick [96] Greiner Bio-One Gradient separation 15.0–30.0
Spiral biochip [97] UNSW/MIT/NUS DFF based spiral 

microfluidics
7.5

Microchannel Chip [98] Ventana Medical Systems Size filtration based 
microfluidics

2.0

Vortex Chip [99] UCLA Wall shear stress 
microfluidics

7.5

CTC-RV [100] Johns Hopkins University Tissue specific adenovirus 
reporter system

1.0
Fluorescence 
reporterAd5/35E1aPSESE4 [100] NCC, South Korea Tissue specific adenovirus 

reporter system
5.0

*CTC enriched in advance.
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activated subsets of cells, were masked in the population. 
Through experimental validation, a combination drug 
administration experiment exhibited a greater inhibitory 
effect on tumor growth and induced more apoptosis 
compared to monotherapy both in vitro and in vivo [52].

Single-cell RNA-seq for understanding the 
nature of CTCs 

CTC detection as a promising liquid biopsy has been 
employed in many cancers for diagnosis and prognosis 
purposes. More than 19,000 publications can be retrieved 
in PubMed using the key phrase “circulating tumor cell” 
(Feb, 2017). Early CTC studies focused on cell number 
in metastatic breast cancer patients using CellSearch 
systems to stain and count cells. A predictive model was 
established by associations between survival rates and 
CTC numbers [89]. Similar results that a higher number of 
CTCs indicates a poorer prognosis have been validated in 
many other cancer types, such as prostate, lung, colorectal 
and ovarian cancers [90]. 

With the development of scRNA-seq, it is now 
possible to observe changes in the transcriptome, alternative 
splicing and single-nucleotide variations in an individual 
CTC and to perform detailed studies on the mechanisms 
of anoikis resistance, metastasis, drug resistance, cancer 
stemness and other common traits in cancer (Figure 1B). 
Below, we discuss some of the progresses made in patient-
oriented CTC research (Table 4). 
Pancreatic ductal adenocarcinoma

In an early study, Yu et al. collected and sequenced 
CTCs from pancreatic ductal adenocarcinoma 

(PDAC) using a combination of CD45- and EpCAM+ 
fluorescence-aided manual picking and HbCTC-Chip 
enrichment techniques. Activation of the non-classical 
WNT pathway was found to play an important role in 
anoikis resistance, enhanced anchorage-independent 
sphere formation, and metastasis potential, which was 
thought to be associated with fibronectin up-regulation 
[80, 91]. Using the scRNA-seq technique, CTCs from 
75 pancreatic cancer KPC mice were sequenced and 
classified on the basis of single-cell stratification; 
CTC-c, CTC-plt and CTC-pro types were subclassified 
according to surface markers. The findings suggested the 
heterogeneity of the CTC transcriptome and revealed that 
the extracellular matrix gene SPARC promotes distant 
metastasis [92].
Melanoma

Cann et al. utilized human LNCaP, PC-3 and 
T24 cell lines to mimic human CTC incorporation 
into the peripheral blood of healthy volunteers and 
applied MagSweeper and CellSearch techniques to 
isolate simulated CTCs from the blood samples and 
from prostate cancer patients. Smart-Seq single-cell 
RNA-seq technology was also used and the reliability 
of the MagSweeper technology verified; the integrity 
of the CTC transcriptome RNA was greater than that 
of the simulated cell lines, suggesting that CTCs have 
a short half-life [93]. Ramsköld et al. employed the 
MagSweeper apparatus to sort melanoma CTCs and 
compare differentially expressed genes between CTC 
and primary melanoma cell lines using Smart-Seq single-
cell sequencing, finding 9 novel upregulated membrane 
surface antigen candidates [10].

Figure 1: scRNA-seq technology facilitates cancer research when coping with solid tumor tissues and circulating tumor 
cells. (A) Findings of abnormal cell-to-cell interaction, drug resistance, and intratumoral immune microenvironment are achieved with 
tissue decomposition technologies. (B) Circulating Tumor Cells (CTCs) were captured and sequenced to explain the rationale underlying 
anoikis resistance, cluster induced metastasis, EMT transformation and stemness.
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Breast cancer

Using the HbCTC-Chip enrichment technique, 
Aceto et al. found that clusters of CTCs were more likely 
to generate lung metastases than single free CTCs in a 
breast cancer xenograft mouse model. Using single-cell 
RNA-seq, it was found that the CTC clusters exhibited 
higher expression of desmosomal proteins and adhesion-
connexin genes, such as desmoplakin, than single 
CTCs. Interestingly, when Plakoglobin expression was 
downregulated by RNA interference, fewer CTC clusters 
were found in the model, and the metastatic rate was 
greatly reduced [78]. Moreover, Sarioglu et al. designed 
the Cluster-Chip system to specifically capture CTC 
clusters from cancer patients and found that in addition 
to CTC-specific biomarkers, macrophage/monocyte 
markers were also expressed by the CTC clusters, 
showing that tissue-derived macrophages migrated with 
these CTC clusters [94]. Yu et al. employed HbCTC-Chip 
to capture CTCs from 11 patients with breast cancer; 
during the course of follow-up, RNA-FISH revealed that 
the epithelial-mesenchymal transition (EMT) state of 
CTCs from patients with advanced disease were of the 
M-type (mesenchymal), whereas the remission stage was 
associated with E-type (epithelial) cells. CTC single-cell 
RNA-seq from a 5-point follow-up patient showed that 
E- and M-type transcripts, altered by the TGF-b pathway 
and the FOXC1 transcription factor, could be transformed 
at different stages of the treatment course [95].

Prostate cancer

Miyamoto et al. isolated 77 CTCs from 13 prostate 
cancer patients and performed single-cell RNA-seq, 
and the results showed CTC heterogeneity rich in many 

aspects, such as androgen receptor mutation, androgen 
receptor splicing, and ncWNT pathway activation. In 
this study, some patients demonstrated resistance to 
castration treatment, and their CTCs were activated for 
the non-classical WNT pathway. The results showed that 
the WNT5A gene was highly related to chemotherapeutic 
resistance because when WNT5A was knocked down by 
shRNA, the tumor became drug sensitive; overall, the 
findings suggest that pathogenesis of castration-resistant 
prostate cancer (CRPC) is strongly related to the non-
classical WNT pathway [96]. Additionally, Hwang 
et al. carried out CTC transfection using the adenovirus 
Ad5/35E1aPSESE4 strain, which contains the PSA/
PSMA promoter enhancer for specific GFP expression, to 
identify CTCs. By employing single-cell RNA-seq, this 
study revealed that MMP9, Cofilin1, and FCER1G are 
associated with prostate cancer metastasis in vitro as well 
as in animals and patients [97]. 
Colorectal cancer

Grillet et al. sequenced CTCs and primary tumors 
from colorectal cancer patients and found differentially 
expressed genes between these two groups. Through 
integrated analysis of previously published breast cancer 
CTC qPCR data [98], melanoma CTC transcriptome 
sequencing data [99], and colorectal cancer and prostate 
cancer microarray data [100], AGR2, CEACAM5, 
CLDN3, CK18, EpCAM and FGFR3 were found to be 
commonly differentially expressed between CTCs and 
primary tumors [101]. In addition, CTCs exhibited higher 
levels of the stem cell surface markers CD44, CD26 
and ALDH1A1 than primary tumors and metastases, 
indicating that metastatic CTCs might express stem cell 
biomarkers.

Table 4: Transcriptomic studies of CTCs
First Author Year CTC Isolation Marker/Device Library / Sequencer Cancer Type Significance

Yu [107] 2012 CK/EpCAM/HbCTC-Chip SuperscriptIII+TdT/Helicos Pancreatic Carcinoma WNT pathway in anoikis and 
metastasis 

Ramsköld [10] 2012 EpCAM/MagSweeper Smart-Seq/Hiseq2000 Melanoma First CTC single cell RNA-seq

Yu [108] 2013 CK/HER2/HbCTC-Chip SuperscriptIII+TdT/Helicos Breast Cancer EMT evidence in CTCs

Ting [73] 2014 CK/CTC-iChip Tang’s scRNA-seq/SOLiD Pancreatic Carcinoma SPARC gene promotes metastasis, 
CTC subtyping

Aceto [78] 2014 EpCAM/HER2/CTC-iChip SuperscriptIII+TdT /SOLiD Breast Cancer Higher metastasis in cluster than 
single cell

Sarioglu [83] 2015 Cluster-Chip SuperscriptIII+TdT /SOLiD Multiple Cancer Types Macrophage like cells found in 
CTC clusters

Hwang [109] 2015 Fluorescence Microscopy SENSE/Hiseq2000 Prostate Cancer PSA promoter applied in tracking 
and CTC Staining

Miyamoto [110] 2015 EpCAM/CDH11/CTC-iChip Tang’s scRNA-seq/SOLiD Prostate Cancer WNT pathway mediated drug 
resistance

Grillet [111] 2016 RosetteSep N/A Colon Cancer Stemness in colorectal carcinoma 
CTCs

Jordan [112] 2016 EpCAM/HER2/CTC-iChip Tang’s scRNA-seq/Hiseq2000 Breast Cancer Drug resistance and HER2 
expression
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DISCUSSION AND PERSPECTIVES

After several years of development, single-
cell RNA-seq has allowed for breakthroughs in both 
technologies and applications in oncology research. 
Despite significant technical noise and low sequencing 
depth, this powerful transcriptomic tool has greatly 
influenced and contributed to biomedical research. 
However, there are limitations and room for improvement 
in terms of technologies, bioinformatic tools and practical 
applications in tumor biology.

Currently, single-cell RNA-seq is mainly based 
on oligo (dT)-mediated reverse transcription of RNAs 
with poly(A) tails, allowing for the effective removal 
of ribosomal RNA (rRNA) via negative selection. 
Nonetheless, this method also excludes regulation-
related RNAs without poly(A) tails such as long non-
coding RNA and microRNAs. Attempts have been made 
to overcome the (A) tail restriction, yet the results have 
not been satisfying. For example, the RCA amplification-
based in situ fluorescence single-cell sequencing method 
developed by Lee et al. achieved unselected RNA reverse 
transcription with random hexamers, but 42.7% of the 
amplicons were aligned to ribosomal RNA [14]. As 
another example, SUPeR-Seq sequencing using poly(N) 
primer enabled accurate quantification of circular RNA. 
However, due to a theoretical 5ʹ bias, linear RNAs were 
also biasedly amplified, and therefore this protocol has not 
been widely used. Regardless, Ribominus and Ribozero 
(Thermo and Illumina, respectively) are commercially 
available due to their ability to simultaneously sequence 
mRNA and non-coding RNA by removing ribosomal 
RNA [5, 6, 102]. To our knowledge, there is currently 
no report of a ribosome removal protocol that is suitable 
for single-cell RNA application, possibly because of the 
degradation and loss of RNA during complex steps in 
library construction and purification. Further improvement 
of single-cell non-coding RNA-seq will provide a deeper 
understanding of how gene regulation operates in a given 
cell type. 

A low signal-to-noise ratio is another challenge of 
single-cell RNA-seq technology. Thus, it is necessary to 
standardize cell isolation, library preparation, and other 
automated workflows as much as possible to minimize 
bias introduced by human error [54, 55]. By measuring 
the number of detectable transcripts, sensitivity (RNA 
capture efficiency), and technical noise, the use of standards 
or standard cell lines can, to some degree, improve the 
reliability of scRNA-seq. Universal human reference RNA 
(UHRR) and human brain reference RNA (HBRR) are 
widely applied as exogenous standards in bulk population 
RNA-seq (SEQC 2014), and ERCC spike-in is used as 
an internal references, contributing to technical noise 
reduction and sensitivity enhancement [103, 104]. Due to 
the complicated steps involved in cell isolation and library 
preparation, RNA standards are not ideal mimics of a “real” 

single cell. Therefore, it is considerably important to establish 
standard cell lines in future quality control [53, 104]. 

In the field of cancer cell research, single-cell 
RNA-seq has the potential to assess the influence of the 
tumor microenvironment on disease progression, the 
diversity of tumor antigens and TCR/BCRs, associations 
between tumor metastasis and CTCs and drug resistance-
induced heterogeneity. In the simultaneous presence of 
immune and non-immune responses, drug-responsive 
and -sensitive subpopulations can be identified within the 
tumor tissue, with the combination of tissue decomposition 
and single-cell RNA-seq approaches [86, 87]. CAFs are 
thought to be closely associated with the mechanism of 
drug resistance, and strong expression of complement in 
CAFs is highly correlated with the number of infiltrating 
T lymphocyte (TIL) [60]. However, it remains to be 
determined how tumor cells escape immune monitoring, 
particularly how CAFs interact with TIL cells. In addition, 
tumor recognition depends on lymphocyte activation and 
clonal expansion, which is initiated by TCR and BCR 
recognition. Sequences of complementary-determining 
regions on T cell or B cell receptors might correlate with 
their downstream activities, such as immunotolerance-
induced tumor load and the level of chemokine secretion. 
Nonetheless, the mechanisms by which tumor antigens 
alter the behaviors of T and B cells and TCR/BCR 
sequences play function in tumor immunology need to be 
unresolved [28, 105].

Benefiting from tumor heterogeneity studies, drug 
development will in time become more accurate. Because 
the traditional methods of bulk sequencing can mask drug-
resistant subclones, targeted and chemotherapy therapeutic 
effects are limited due to hidden and rare subpopulations 
with drug-resistance mutations or pathways. Kim et al.’s 
research highlighted the value of single-cell RNA-
seq in tapping every possible drug-sensitive clone and 
monitoring drug-resistant subgroups at an early stage, as 
the possibility of recurrence is high with the current first-
line chemotherapy and targeted therapy [52]. 

Liquid biopsy-obtained CTCs should be investigated, 
as studies by Yu and Miyamoto et al. have shown that 
ncWNT pathway activation is associated with pancreatic 
and prostate cancer resistance [91, 96]. CTC transcriptome 
sequencing can also monitor the EMT phenotype in breast 
cancer during the course of progression and treatment 
[96]. In addition, the results of Grillet et al. contribute 
to diagnosis and prognosis in that they reported a highly 
metastatic gene biomarker panel shared by CTCs for many 
cancer types. However, the efficiency and accuracy of CTC 
capture is still challenging and may affect downstream 
RNA-seq applications. Ring et al. spiked 10 human breast 
cancer cell lines into human peripheral blood and used 
EpCAM target magnetic beads and RNA fluorescence flow 
cytometry (IE/FACS) to recover the mimic CTCs. This 
elegant experiment showed that the recovery rate of cancer 
cells greatly (ranging from 69.5% to 0.004%) depends on 
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the cancer molecular classification, especially with regard 
to surface markers [106].

With respect to many significant findings in the 
CTCs, some analyses were based on the comparison 
between CTCs and the primary tumor tissues. 
Confounding factors in the impure tumor tissues such 
as stromal and immune signals may cause biased 
interpretation. Therefore, comparison between single 
tumor cells from primary site and CTCs is more reliable to 
reveal mechanisms like metastasis. Isolation and handling 
protocols also alter single-cell transcriptome, and should 
be further addressed. Additionally, as the specificity 
and sensitivity of the CTC capture rate varies across 
patients and cancer types, a better bioinformatic tool is 
required to validate a large number of sequenced CTC 
samples containing leukocyte, platelet and microvesicle 
contamination. A shallow sequencing depth is another 
limitation in this field, which possibly results in a biased 
evaluation of CTC heterogeneity and dynamics. 

Finally, the role of bioinformatics in single-cell 
transcriptome research cannot be ignored, as the reliability 
of the bioinformatic method directly determines the 
accuracy of the experimental results, particularly when 
results are directly related to drug development or therapy. 
Accurate definition of tumor cells is also a priority in 
single-cell RNA-seq data analysis. In a previous study of 
melanoma tissue dissociation and sequencing, melanoma 
cells were not detected in 5 of 19 patients, though more 
unclassified cells were found using the given cell-type 
characterization algorithm, suggesting that errors or 
biases in cell classification may exist [60]. The study was 
the first to utilize a common subset of cells such as T, 
B and endothelial cells as a negative selection criterion 
for the tumor; the same method of Petal et al. for tumor 
definition was applied, in which a 100-genes expression 
window was extracted to infer the CNV status and thus 
to define the cell types themselves [61]. Although Hou et 
al. ultimately demonstrated a correlation between CNV 
and expression profiles by simultaneous determination 
of DNA and RNA at the single-cell level, a moderate 
correlation coefficient is more ambiguous and may result 
in cell classification bias [86]. Definition of a cancer type 
by setting a threshold of gene expression level is based on 
known data, generally from bulk-seq results, for example, 
PSA, PSMA, and AMACR for prostate cancer. However, 
further elucidation is required to assess the suitability of 
this approach for analysis of ab initio cell types and the 
cancer architecture in a heterogeneous microenvironment 
[96]. What is more, it is of great challenges to remove 
confounders such as the technical noises as they 
might mislead data interpretation. During handling 
procedures, blood contaminations, apoptosis, necrosis 
or protocol specific stimulation induced transcriptomic 
variation should also be studied. Furthermore, it is 
expected that revolutionary bioinformatic tools will be 
developed for analyzing single-cell RNA-seq data with 

exclusive normalization of raw data and measurement of 
transcriptional kinetics, which is not typically observed in 
population sequencing data. 

Despite the uncertainty of the developing wetlab 
and drylab protocols, one thing is clear: scRNA-seq 
is providing new insight into cancer biology. Indeed, 
single-cell transcriptomic analysis has revolutionized our 
understanding of gene regulation networks, metastasis and 
the complexity of intratumoral cell-to-cell heterogeneity, and 
this technology is expected to eventually benefit patients in a 
way that has never been available at the bulk level.

Abbreviations

Acronym Definition
CAF cancer-associated fibroblast
CNV genomic copy-number variation
CRPC castration-resistant prostate cancer
CTC circulating tumor cells
DEP dielectrophoresis
EMT epithelial-mesenchymal transition
FACS fluorescence-activated cell sorting
FFPE formalin-fixed paraffin-embedded 
FISSEQ fluorescent in situ RNA sequencing
FRISCR-Seq  fixed and recovered intact single-cell 

RNA-seq 
G&T-Seq genome and transcriptome sequencing 
ICA independent component analysis
IVT in vitro transcription
LCM laser-capture microdissection
LNA locked nucleic acid
MALBAC  multiple annealing and looping-based 

amplification cycles
MARS-Seq massively parallel single-cell RNA-seq
MST minimum spanning tree
NGS next-generation sequencing
PAGODA  pathway and gene set overdispersion 

analysis 
PDAC pancreatic ductal adenocarcinoma 
PMA Phi29-mRNA amplification 
RCA rolling circle amplification
RIN RNA integrity numbers 
RRBS  reduced representation bisulfite 

sequencing 
SCDE single-cell differential expression 
scLVM single-cell latent variable model 
scMT-Seq  single-cell methylome and 

transcriptome sequencing 
scRNA-seq single-cell RNA-Seq
scTrio-seq single-cell triple-omics sequencing 
SMA  semirandom primed PCR-based mRNA 

transcriptome amplification 
SNP single nucleotide polymorphism
sNuc-Seq single-nucleus RNA-seq 
STRT-Seq  single-cell tagged reverse transcription 

sequencing
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SUPeR-Seq  single-cell universal poly(A)-
independent RNA sequencing 

SVM support vector machine
TIL infiltrating T lymphocyte 
TIVA transcriptome in vivo analysis 
TSO template switching oligonucleotide
UBRR human brain reference RNA
UHRR universal human reference RNA 
UMI unique molecule identifiers
WMISH whole-mount in situ hybridization
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