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ABSTRACT
This study investigated the cortical thickness and topological features of human 

brain anatomical networks related to attention deficit/hyperactivity disorder. Data 
were collected from 40 attention deficit/hyperactivity disorder children and 40 normal 
control children. Interregional correlation matrices were established by calculating 
the correlations of cortical thickness between all pairs of cortical regions (68 regions) 
of the whole brain. Further thresholds were applied to create binary matrices to 
construct a series of undirected and unweighted graphs, and global, local, and nodal 
efficiencies were computed as a function of the network cost. These experimental 
results revealed abnormal cortical thickness and correlations in attention deficit/
hyperactivity disorder, and showed that the brain structural networks of attention 
deficit/hyperactivity disorder subjects had inefficient small-world topological features. 
Furthermore, their topological properties were altered abnormally. In particular, 
decreased global efficiency combined with increased local efficiency in attention 
deficit/hyperactivity disorder children led to a disorder-related shift of the network 
topological structure toward regular networks. In addition, nodal efficiency, cortical 
thickness, and correlation analyses revealed that several brain regions were altered 
in attention deficit/hyperactivity disorder patients. These findings are in accordance 
with a hypothesis of dysfunctional integration and segregation of the brain in patients 
with attention deficit/hyperactivity disorder and provide further evidence of brain 
dysfunction in attention deficit/hyperactivity disorder patients by observing cortical 
thickness on magnetic resonance imaging.

INTRODUCTION

Attention deficit/hyperactivity disorder (ADHD) 
is one of the most common childhood behavioral 
disorders. Subjects who are diagnosed with ADHD 
are usually hyperactive, impulsive, and inattentive 
[1]. There are approximately 5 – 8% ADHD patients 
worldwide. Although ADHD is a common childhood 
neurodevelopmental disorder, it usually continues into 
adulthood [2].

Many neuropsychological and neuroanatomical 
studies have demonstrated that ADHD symptoms are 
associated with functional [3, 4] and anatomical [5, 
6] abnormalities including various neural regions: 
cerebellum, ventrolateral prefrontal cortex, dorsolateral 
prefrontal cortex, striatum, and parietal cortex. These 
cortical regions are the main components of the cognition 
and attention parallel networks [1]. Increasing numbers of 
studies of ADHD have recently focused on brain network 
disorders instead of regional brain changes. 
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The continuous development of graph theory 
methods has allowed investigators to determine the 
topological features of complex brain networks. Watts 
and Strogatz [7] first defined “small-world networks” as 
graphs with a few random long-distance connections and 
many local connections, which were indicative of near-
optimum structural networks. Since then, complex brain 
networks have become a hot spot in neuroscience [8-11]. 
Many recent studies have reported that the small-world 
features of brain networks were altered in brain diseases 
such as epilepsy [12], Alzheimer’s disease [13], spinal 
core injury [14], schizophrenia [15], and brain tumor [16]. 
Increasing evidence has also demonstrated that ADHD is 
closely related to brain function network abnormalities 
[17, 18]. However, to date, the underlying architecture 
of the brain anatomical network in ADHD patients is still 
poorly understood. Study of this network is necessary to 
reveal how the brain function of ADHD subjects is related 

to their structural substrates from intrinsically structural 
organizational principles in the human brain. In the present 
study, we hypothesized that the topological organization of 
brain structural networks was altered in ADHD children.

To test this hypothesis, morphological measurements 
by in vivo magnetic resonance imaging (MRI) were used 
to construct large-scale anatomical networks of the brain 
of both ADHD and control children. Cortical thickness 
was selected as a morphometric characteristic because 
it reflects both mental and neurological disorders as well 
as normal development. First, we measured the thickness 
of the gray matter of the human cerebral cortex using 
computational neuroanatomy and segmented the whole 
cerebral region into 68 areas. Then, we established and 
analyzed a set of correlation matrices by calculating 
the correlations of cortical thickness between all pairs 
of the cortical cortex of the whole brain. The resulting 
correlation matrices were subjected to further thresholds 

Table 1: Group characteristics
ADHD (n = 40) Control (n = 40) P Value

Age (years) 12.47 ± 2.01 11.76 ± 1.75 0.02 
Gender (M/F) 40/0 40/0
Full IQ 110.57 ± 13.42 115.76 ± 13.53 0.067 

Values are presented as the mean ± SD; Abbreviations: M: male, F: female; Independent t-test.

Table 2: Significant cortical thinning regions of the brain in ADHD patients compared with controls 

Region
Mean (standard error)

F 1, 80 value P value
ADHD NC

Caudal middle frontal. L 2.7876(0.01596) 2.8372(0.01679) 4.540 0.035
Entorhinal. L 3.4096(0.04336) 3.5744(0.04161) 7.518 0.007
Fusiform. L 2.8907(0.02055) 2.9682(0.02042) 7.131 0.008
Inferior parietal. L 2.7725(0.01801) 2.8266(0.01679) 4.848 0.029
Inferior temporal. L 2.9804(0.02351) 3.0675(0.02568) 6.192 0.014
Lateral orbitofrontal. L 2.9607(0.02510) 3.0509(0.02071) 7.784 0.006
Pars opercularis. L 2.8211(0.01702) 2.8954(0.01759) 9.144 0.003
Pars orbitalis. L 2.9883(0.03099) 3.0889(0.02737) 5.975 0.016
Pars triangularis. L 2.7925(0.01933) 2.8531(0.02021) 4.657 0.032
Rostral middle frontal. L 2.6494(0.01902) 2.7393(0.01686) 12.567 0.001
Superior frontal. L 3.0709(0.01604) 3.1496(0.01631) 11.757 0.001
Temporal pole. L 3.6461(0.04065) 3.7937(0.02991) 8.752 0.004

Caudal middle frontal. R 2.7539(0.01681) 2.8220(0.01858) 7.276 0.008

Fusiform. R 2.9273(0.02133) 2.9976(0.02139) 5.394 0.021
Inferior temporal. R 3.0389(0.02238) 3.1484(0.02310) 11.513 0.001

Lateral orbitofrontal. R 2.8731(0.02366) 2.9793(0.02029) 11.732 0.001

Medial orbitofrontal. R 2.7169(0.02709) 2.8192(0.01969) 9.544 0.002

Pars orbitalis. R 2.9479(0.02420) 3.0620(0.02760) 9.507 0.002

Pars triangularis. R 2.7621(0.01954) 2.8282(0.01674) 6.678 0.011

Precentral. R 2.6211(0.01918) 2.6836(0.01757) 5.799 0.017

Rostral middle frontal. R 2.6064(0.01814) 2.6708(0.01809) 6.289 0.013

Superior frontal. R 2.9713(0.01700) 3.0689(0.01673) 16.696 0.000

Temporal pole. R 3.7414(0.04008) 3.8985(0.03145) 9.684 0.002

Abbreviations: NC, normal control; L, left; R, right.



Oncotarget44787www.impactjournals.com/oncotarget

to create a binary matrix to construct an undirected and 
unweighted graph. Then, the topological features of 
the graph were computed by graph theoretical analysis. 
Finally, we analyzed the correlations between the average 
cortex thickness and clinical symptoms of ADHD.

RESULTS

Cortical thickness differences

The present study used ANOVA to investigate the 
difference in cortical thickness between the two groups. As 
shown in Table 2, we observed several abnormal cortical 
thicknesses concentrated in the frontal and temporal 
regions in ADHD patients. Many brain regions showed 
significant ADHD-associated thinning, especially in some 
bilateral homologous regions. For example, decreased 
bilateral hemisphere cortical thickness appeared in the 
pars orbitalis, caudal middle frontal, lateral orbitofrontal, 
fusiform, inferior temporal, pars opercularis, pars 
triangularis, superior frontal, rostral middle frontal, and 
temporal pole in the ADHD group. In addition, ADHD 
patients also had a reduced thickness in entorhinal, 
inferior parietal region of the left hemisphere, and medial 
orbitofrontal, precentral region of the right hemisphere, 
respectively.

Correlations of cortical thickness between brain 
regions

Figure 1C shows the cortical thickness correlation 
coefficient matrices of the ADHD and normal controls 
groups. Combined with statistical analysis, the present 
study found a significant correlation in differences 
between the two groups in different pairs of Regions of 
Interest (ROIs) (Table 3). For example, increased positive 
correlations between the left entorhinal and left fusiform, 

between the left caudal anterior cingulate and right isthmus 
cingulate, between the left caudal anterior cingulate and 
right medial orbitofrontal, and between the right fusiform 
and right rostral anterior cingulate were observed in the 
ADHD patients compared with the controls. Additionally, 
in the ADHD subjects, we also noticed several decreased 
positive correlations, which were involved in the left 
precuneus, right caudal anterior cingulate, right caudal 
anterior cingulate, and right superior parietal regions 
(Table 3).

Small-world features of structural networks

Figure 2 illustrates the global efficiency computed 
in the regular, random, and real structural networks of 
ADHD and normal control groups as the function of cost. 
We found that the global efficiency of the two groups 
were ascendant as the cost rose, and was intermediate 
between the regular and random networks (Figure 2A). 
The permutation test results of global efficiency (Figure 
2B) showed that at all ranges of cost values, the structural 
networks of the ADHD group manifested declining global 
efficiency (the difference between ADHD Eglob (G) and the 
control Eglob (G) was lower than the mean difference value 
of global efficiency). For the range of costs (0.05–0.25), 
Eglob (G) was significantly lower in the ADHD group than 
the normal control group (P < 0.05), and when the cost 
was 0.06, the difference between the two groups was the 
most significant (P = 0.001). For the range of costs (0.26–
0.4), the trend curve was almost consistent with the lower 
boundary of the 95% confidence interval.

Additionally, we also observed that the local 
efficiency of the real networks of the two groups was 
enhanced with an increase in cost. However, unlike global 
efficiency, the local efficiency of the real brain networks 
was larger than that of the random network and was lower 
than that of the regular network for a cost > 0.085 (Figure 
3A). The permutation test results of local efficiency 

Table 3: Significant interregional cortical correlations in ADHD patients compared with controls

Region Region Correlation, r Z scoreADHD NC
Increased positive correlations in ADHD
Left entorhinal Left fusiform 0.72 0.39 5.09
Left caudal anterior cingulate Right isthmus cingulate 0.42 -0.04 4.25

Left caudal anterior cingulate Right medial orbitofrontal 0.53 0.09 4.15

Right fusiform Right rostral anterior cingulate 0.53 0.16 4.45
Decreased positive correlations in ADHD
Left precuneus Right caudal anterior cingulate -0.09 0.34 4.96
Right caudal anterior cingulate Right superior parietal -0.21 0.27 4.53

The r values are indicative of correlation coefficients of cortical thickness between regions in the ADHD patients or normal 
controls (NC). Z scores are the results of Z statistics. All listed Z scores in this work are significant (P < 0.05, FDR-corrected).
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Figure 1: The flowchart illustrates the construction of structural cortical networks. A. Two representative cortical thickness 
maps (left: normal control subject; right: ADHD subject). The color bar indicates the range of thickness. B. The cerebral cortex of subjects 
was parcellated into 68 cortical regions (left: lateral surface; right: medial surface), and each color indicates an individual region. C. The 
symmetric correlation matrix (68 × 68) was obtained by computing Pearson’s correlation coefficients between the thickness of each possible 
pair of the 68 regions for each subject (left: normal control subject; right: ADHD patient). The color bar indicates Pearson’s correlation 
coefficients between regions. D. The correlation matrix of C was thresholded into a binarized matrix (left: normal control subject; right: 
ADHD patient) by a cost threshold.
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Figure 2: The global (A) efficiency is shown as a function of the cost for random (crosses), regular (points), ADHD 
(circles), and control (triangles) brain networks. The permutation test results of global efficiency are shown in B. The asterisks 
indicate differences of global (B) efficiency between ADHD and control groups; crosses indicate mean differences of global (B) efficiency; 
curve of dashes indicate the upper and lower boundaries of the 95% confidence interval.
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(Figure 3B) showed that at most range of cost values, 
the structural networks of the ADHD group showed an 
increased local efficiency (the difference between the 
ADHD Eloc (G) and the control Eloc (G) was higher than the 
mean difference value of local efficiency). For the range of 
costs (0.31–0.4), Eloc (G) was significantly greater for the 
ADHD group compared with the control group (P < 0.05), 
and at a cost of 0.375, the most significant between-group 
difference (P = 0.0342) was observed.

Previous results demonstrated that costs of 0.06 and 
0.375 produced the most significant differences between 
the two groups. Therefore, a comparison of the global 
efficiency and local efficiency of real brain networks in 

cost = 0.06 and cost = 0.375, respectively, was made. 
When cost = 0.06, there was no significant between-
group difference for Eloc (G) (Figure 3B, P = 0.072). In 
addition, the local efficiency of the real brain networks 
were larger than the regular brain networks for a cost < 
0.085 (Figure 3A), which indicated that for cost < 0.085, 
the real brain networks could not constitute a small-world 
network. Similarly, when cost = 0.375, the Eglob (G) of the 
ADHD group was significantly lower than in the control 
group (Figure 2B, P = 0.041) and the Eloc (G) of the 
ADHD group was significantly higher than in the control 
group (Figure 3B, P = 0.034). These results suggested the 
structural networks of the two groups possessed small-

Table 4: Regions with significant changes in nodal efficiency in ADHD patients at a cost of 0.095
Region Hemisphere P value

Decreased nodal efficiency in ADHD

Inferior temporal L 0.043

Pars triangularis L 0.039

Entorhinal R 0.004

Medial orbitofrontal R 0.012

Transverse temporal R 0.009

Increased nodal efficiency in ADHD 

Paracentral lobule R 0.002

Superior frontal L/R 0.003/0.038

Abbreviations: L, left; R, right.

Table 5: Correlation between the cortical thickness of left and right brain regions and ADHD_Index 

Left brain regions
ADHD_Index

Left brain regions
ADHD_Index

r Sig r Sig
Caudal anterior cingulate -.200* 0.017 Rostral anterior cingulate -.223** 0.007
Caudal middle frontal -.219** 0.009 Rostral middle frontal -.211* 0.011
Cuneus .239** 0.004 Superior frontal -.256** 0.002
Entorhinal -.174* 0.037 Supramarginal -.194* 0.02
Fusiform gyrus -.184* 0.028 Temporal pole -.226** 0.007
Inferior parietal -.166* 0.048 Pars opercularis -.190* 0.023
Inferior temporal -.185* 0.027 Pars orbitalis -.229** 0.006
Lateral orbitofrontal -.198* 0.018 Pars triangularis -.185* 0.027
Lingual gyrus .166* 0.048 Pericalcarine .348** 0
Middle temporal -.172* 0.04 Precentral gyrus -.167* 0.046

Right brain regions ADHD_Index Right brain regions ADHD_Index
r Sig r Sig

Caudal middle frontal -.168* 0.045 Middle temporal -.226** 0.007
Cuneus .213* 0.011 Pars orbitalis -.200* 0.017
Fusiform gyrus -.189* 0.024 Pars triangularis -.188* 0.024
Inferior temporal -.249** 0.003 Pericalcarine .231** 0.005
Lateral orbitofrontal -.246** 0.003 Superior frontal -.291** 0
Medial orbitofrontal -.175* 0.036 Temporal pole -.311** 0

Statistical significance (*P < 0.05; **P < 0.01, two tailed).
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Figure 3: The local (A) efficiency is shown as a function of the cost for random (crosses), regular (points), ADHD 
(circles), and control (triangles) brain networks. The permutation test results of local efficiency are shown in B. The asterisks 
indicate differences of local (B) efficiency between ADHD and control groups; crosses indicate mean differences of local (B) efficiency; 
curve of dashes indicate the upper and lower boundaries of the 95% confidence interval.
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world architecture when cost = 0.375. However, previous 
studies posited that the brain network is economical 
and efficient with a comparatively low cost [36]. Thus, 
a cost of 0.375 may be not true for real brain networks. 
According to the above results, we chose a cost of 0.095 
to compare the Eglob and Eloc again (Figure 4). As expected, 
the Eglob (G) of the ADHD group was significantly lower 
than in the control group (Figure 4 left, P = 0.04) and the 
Eloc (G) of the ADHD group was significantly higher than 
in the control group (Figure 4 right, P = 0.047). Under 
this cost value, both networks manifested small-world 
characteristics for their global and local efficiency when 
compared with the matched regular and random networks 
(Figures 2A, 3A). Consequently, the present study tested 
the group difference of nodal efficiency at a cost of 0.095.

Nodal efficiency reflects the effect of the disorder 
on the local nodal features of the brain networks. Figure 
5 and Table 4 show that ADHD subjects had significantly 
decreased nodal efficiency in the left inferior temporal, 
left pars triangularis, right entorhinal, right medial 
orbitofrontal, and right transverse temporal cortex regions 
and significantly increased nodal efficiency in the left 
paracentral lobule, and bilateral superior frontal cortex 
regions.

Correlation analysis between ADHD clinical 
symptoms and cortical thickness

Correlation analyses were conducted to evaluate the 
relationship between cortical thickness and ADHD clinical 
symptom (ADHD_Index) (Table 5). The ADHD Rating 
Scale (ADHD-RS) IV was applied to supply dimensional 
measurements of ADHD symptoms. With this scale, we 
obtained an ADHD_Index for all subjects, which measured 
the overall extent of symptoms of ADHD. By calculation, 
we found that the ADHD_Index scores of ADHD patients 
were significantly correlated with the cortical thicknesses 
of many brain regions, such as the frontal, temporal and 
parietal cortex regions. In addition, most brain regions 
were negatively correlated with the ADHD_Index, which 
indicated that the smaller cortical thicknesses of these 
brain regions, the more obvious the symptoms would be 
in ADHD subjects.

DISCUSSION

In the present study, cortical thickness data based 
on MRI were used to construct brain structural networks 
(undirected binary) for ADHD patients and normal control 
children. The main findings of the present research are as 

Figure 4: The permutation test results of global and local efficiency at a cost of 0.095. Error bars indicate the upper and lower 
boundaries of the 95% confidence interval; hollow squares indicate mean differences of global (left) or local (right) efficiency; and filled 
squares indicate differences of global (left) or local (right) efficiency between ADHD and control groups.
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follows: 1) a slice of brain regions showed significant 
ADHD-associated thinning focused on the frontal and 
temporal regions; 2) abnormal cortical correlations were 
observed in ADHD patients compared with controls; 
3) brain structural networks demonstrated small-world 
topology in both groups; however, ADHD patients showed 
altered topological properties, such as increased local 
efficiency and decreased global efficiency compared with 
the control subjects; 4) calculation of nodal efficiency 
demonstrated that several brain regions were altered in 
ADHD patients; and 5) cortical thickness of a multitude 
of brain regions was negatively correlated with ADHD 
clinical symptoms. 

Given that cortical thickness describes the density, 
arrangement of neurons, and size, it is usually taken as 
suggestive of the cognitive abilities of humans [19]. 
Previous studies stated that cortical thinning was 
associated with brain disorders. Alzheimer’s disease has 
already been characterized by cortical thinning [20], post-
traumatic stress disorder (PTSD) patients exhibited a 
decrease in cortical thickness in some regions [21], and 
Parkinson disease patients show cortical thinning in the 
parietal and left temporal, right lateral occipital, premotor, 
and frontal regions [22]. Similarly, we found that several 
brain regions showed significant ADHD-associated 
thinning, mainly focused in the frontal and temporal 

regions (Table 2), which is in accordance with other 
cortical thickness studies of ADHD [23, 24]. This result 
demonstrated that a pattern of cortical thinning in ADHD 
occurs mainly in the frontal and temporal lobe, which 
include critical areas related to attentional mechanisms. 

Empirical research of interregional morphological 
covariations indicated they might be associated with 
definite neuroanatomical pathways in the human brain 
[9]. Altered coordination of the brain morphology of 
ADHD patients might manifest as disruption of the 
neuroanatomical paths of patients, which might further 
affect brain function. Moreover, we found that ADHD 
children showed altered correlations (both increased 
positive correlation and decreased positive correlation) in 
areas of the default mode network, this result is in line 
with the research of He [20]. The default network is an 
anatomically defined, specific, and interconnected brain 
area, which is commonly shown to be active when a person 
does not concentrate on the outside world [25]. Teasdale 
[26] highlighted the competition between outside world 
attention and resources for internal modes of cognition. 
When an external task is carried out, a focus of attention 
to internal psychological content might slow performance 
or cause mistakes in the immediate task [27]. However, 
Gilbert [28] noted that the default network is related to a 
broadly tuned form of watchfulness. According to these 

Figure 5: ADHD related changes in nodal efficiency at a cost of 0.095. Error bars indicate the upper and lower boundaries of 
the 95% confidence interval. The hollow squares and filled squares correspond to the mean differences of nodal efficiency and differences 
of nodal efficiency between ADHD and control groups, respectively. See Table 5 for details of the regions. See Appendix for abbreviations 
of the regions.
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past evidences, we infer that abnormal cortical thickness 
correlations of default regions in ADHD patients might 
affect their attention task performance. 

Since Watts and Strogatz [7] quantitatively 
described small world networks, research into brain 
function networks with small-world features have been 
performed effectively utilizing a variety of methods, such 
as Magnetoencephalography [29], Electroencephalogram 
[13], MRI [9], and fMRI [17]. The present study found 
that the structural networks in the ADHD group were 
different from that of the control group. These results 
were in agreement with a study by Wang [17] on the 
morphological features of the brain.

The findings of structural (corpus callosum) [30] 
and diffusion tensor imaging (thalamocortical fibers 
and corticopontine fibers) [31] indicated that ADHD is 
associated with a loss of long-range connections [32]. 
These abnormalities could interfere with the long-range 
information communication in the brain. In this study, 
the global efficiency of the ADHD group was abnormally 
decreased over the entire cost range, which indicated 
that global efficiency was influenced by a lack of long-
range fiber connections [17, 33]. In contrast, long-range 
exchange among different regions of the brain was 
more effective in normal children. Therefore, the global 
information exchange characteristics of the brain networks 
were less effective in ADHD children than in normal 
children.

The current study also found that ADHD patients 
had increased local efficiency compared with normal 
children. The underlying mechanisms of the increased 
local features have been widely discussed in many brain 
disorder studies. For example, Fallani [14] noted that the 
enhanced local characteristics in spinal injury subjects 
might be related to functional reorganization. Latora and 
Marchiori [33] suggested that networks with stronger local 
characteristics would have better fault tolerance ability in 
the face of external attacks. In this work, the increased 
local efficiency in the ADHD group might represent a 
compensatory action to suppress the influence of disease 
on the brain networks. These findings are in line with the 
work of Wang [17].

The brain network abnormal conversion to a 
regular or random network caused by disease manifested 
a non-optimal organizational network. Previous studies 
demonstrated the structure of the small world network had 
higher global coordination and faster flow of information 
than the regular network [34, 35]. In the current study, the 
brain structural networks of both groups showed small-
world properties; however, the enhanced local efficiency 
and reduced global efficiency in the ADHD group 
(compared to the controls) demonstrated the network of 
the ADHD group led to a shift in the topologic structure 
towards a regular network, which might reflect abnormal 
changes in the brain structural networks of ADHD 
children. 

Nodal efficiency tests the degree of the node 
connecting with all other nodes in a graph, which 
represents the significance of the nodal region in the 
entire network [36]. This study found abnormal nodal 
efficiency in some brain regions in ADHD patients, 
mainly in the frontal and temporal regions (Figure 5 
and Table 4). The orbitofrontal region is associated 
with the executive function network. In this study, the 
nodal efficiency of the medial orbitofrontal (MOF) 
region was significantly decreased in the ADHD group, 
consistent with previous studies [37-39] that confirmed 
cortical atrophy, and suggested dopamine receptor and 
neurotransmitter reduction in the orbitofrontal region 
cortex might cause abnormal executive function in 
patients with ADHD. We also found the pars triangularis 
inferior frontal (PTRI) cortex had significantly decreased 
nodal efficiency. The PTRI is part of the inferior frontal 
gyrus, which has a major role in the response inhibitory 
ability [40]. The lower nodal efficiency of the PTRI 
cortex in ADHD patients might indicate a dysfunction in 
response inhibition, which is regarded as the central defect 
in ADHD [41]. In addition, several temporal regions, 
including the inferior temporal (IT), entorhinal (ENT), 
and transverse temporal (TT), regions of ADHD patients 
manifested obviously reduced nodal efficiency. Increasing 
evidence has demonstrated the temporal lobe has a key 
role in ADHD. Furthermore, temporal lobe dysfunction 
might be associated with behavioral problems with 
response variability of ADHD patients [42], and the right 
temporal lobe is a highly affected locus in ADHD [43]. 
The precise neurobiological mechanism in the temporal 
regions and its influence on ADHD remains unclear; 
however, our results suggest that research on ADHD 
should expand to less studied brain areas, such as the 
temporal lobe.

In contrast, three brain regions were observed 
to have a notable increase in nodal efficiency in the 
ADHD group. These findings were in accordance with 
previous studies showing ADHD-related abnormalities 
in these regions. Tomasi [44] reported the functional 
connectivity density (FCD) of the superior frontal cortex 
was increased in ADHD children and had a positive 
correlation relationship with hyperactivity and impulsive 
behavior. Fisher [45] reported the EEG activity of ADHD 
subjects was increased in the paracentral lobule cortex. 
In summary, these results suggest that regions with 
abnormal nodal efficiency in brain structural networks are 
significantly affected and altered by ADHD.

The correlations between cortical thicknesses of 
brain regions and clinical symptoms of ADHD (ADHD_
Index) were also assessed in this study. We found that 
the cortical thicknesses of many regions were negatively 
correlated with the ADHD_Index (Table 5). Because 
the ADHD_Index reflects the level of ADHD, a higher 
ADHD_Index score indicates more serious ADHD. The 
results of our study indicated that the greater ADHD 
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symptom severity, the thinner the cortical thickness 
in the related brain regions. Interestingly, our results 
also identified that regions (left inferior temporal, left 
orbitofrontal, right medial orbitofrontal, and bilateral 
superior frontal) with a thinner cortical thickness in 
ADHD patients (Table 2) were associated with the severity 
of ADHD symptoms (Table 5). Furthermore, abnormal 
nodal efficiency (Figure 5 and Table 4) indicated that these 
five brain regions with thinner cortical thickness have a 
major role in the pathogenesis of ADHD. It was previously 
suggested that the above-mentioned regions were critical 
for response inhibition and executive function; thus, in 
future studies, quantitative morphological changes in 
these five regions might be promising measures for the 
diagnosis of ADHD in the clinic.

In conclusion, the current study observed abnormal 
cortical thickness and correlations in ADHD. Furthermore, 
our work revealed an extensive range of distribution 
changes in the brain anatomical networks and in the 
topological structure of the brain networks (which shifted 
to regular networks) in ADHD children. We also identified 
abnormal brain regions in the structural networks and 
confirmed altered morphologic features in these regions 
were associated with ADHD. These findings, consistent 
with previous ADHD studies using functional and 
structural imaging data, might aid our understanding of 
neural network disorders in ADHD, and provide evidence 
for the relationship between ADHD and cerebral disorder. 
However, because the correlation coefficient of cortical 
thickness is a statistical value, the ADHD and normal 
control groups could only construct one brain structural 
network, respectively. Therefore, the present study did 
not analyze the correlation between network properties 
(global and local efficiency as well as nodal efficiency) 
and ADHD_index or cortical thickness. Further studies 
should be carried out to analyze this issue. In addition, 
more accurate brain template should be used, and female 
pediatric patients should be recruited in future studies.

MATERIALS AND METHODS

Subjects

Eighty children (40 ADHD and 40 typically-
developing controls) participated in the experiment 
(ADHD-200: Peking University; http://fcon_1000.
projects.nitrc.org/indi/adhd200/). The ADHD patients 
were recruited from the Institute of Mental Health, 
Peking University. Normal controls were recruited from 
a local school. The age, gender balance, and IQ of the 
two groups are shown in Table 1. All subjects were right 
handed; had no lifetime history of neurological disease, 
head trauma, or other psychical illness; had full-scale 
IQ scores above 80 (Wechsler Intelligence Scale for 
Chinese Children-Revised, WISCC-R). The Computerized 

Diagnostic Interview Schedule IV (C-DIS-IV), which is 
based on DSM-IV, was used to diagnose ADHD. The 
ADHD Rating Scale (ADHD-RS) IV was employed to 
provide dimensional measures of ADHD symptoms. After 
diagnostic screening, all of the ADHD children recruited 
in this study were type of ADHD-Inattentive. The MINI 
Kid (Mini International Neuropsychiatric Interview) 
assessment was employed to ascertain the control group 
was healthy. The ethics committees of Peking University 
approved the study. According to the Declaration of 
Helsinki, written informed consent was obtained from the 
parents of all participants. Parents and teachers were the 
informant in diagnosis.

MRI acquisition

MRI scans were performed on a Siemens Trio 3-T 
scanner (Siemens, Erlangen, Germany). All participants 
lay supine with a cushion and thermoplastic mask to 
reduce head movement effects. T1 images were collected 
for each subject with T1-weighted magnetization prepared 
rapid gradient-echo (MP-RAGE) sequences: sagittal 3D 
fast field echo scan with 128 slices, matrix = 256 × 256, 
time repetition [TR] = 2,530 ms, time inversion [TI] = 
1,100 ms, thickness/gap = 1.33/0 mm, time echo [TE] = 
3.39 ms, flip angle = 7°, and field of view = 256 mm × 
256 mm. 

Measurements of cortical thickness

A 3D reconstruction of brain structure and brain 
region segmentation was performed using FreeSurfer 
software (http://surfer.nmr.mgh.harvard.edu/) on the Linux 
system. Using a 9-parameter linear transformation [46], 
the original MRI scans were registered into stereotaxic 
space [47]. Then, utilizing Non-parametric Non-uniform 
intensity Normalization algorithms [48], the images were 
corrected without artifacts. The corrected and registered 
images were used to reconstruct a highly accurate brain 
model and further divided into cerebrospinal fluid, white 
matter, and gray matter [49]. The pial, gray and white 
matter, and surfaces were then extracted from each volume 
of MRI [50] and the gray matter thickness was computed at 
any point in the cortical cortex. The surface reconstruction 
of each subject was later transformed into to a sphere with 
minimal distortion. The surfaces (sulcal/gyral) were then 
aligned with an average, canonical surface [51]. Figure 
1A shows the different cortical thickness maps of the 
two groups. The present study used the Desikan-Killiany 
template (aparc.annot) in FreeSurfer [52] to parcellate 
the brain region. The Desikan-Killiany template includes 
68 separate anatomical cortical regions of interest (34 in 
each hemisphere, Figure 1B and Appendix A), and has 
been widely used in segmentation of the cerebral cortex 
of adolescents and children [53, 54]. Finally, the cortical 
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thickness for each region of interest was determined as the 
average thickness of all region vertices.

Anatomical connectivity matrix and brain 
network construction

To measure the anatomical connectivity between 
brain regions, linear regression was applied at each region 
to remove several sources of influence (mean overall 
cortical thickness, age, and IQ) of cortical thickness; the 
residuals of this regression were then used instead of the 
original mean cortical thickness of the corresponding 
regions. Pearson’s correlation coefficients between the 
residuals of each pair of the 68 regions were calculated 
to produce a symmetric correlation matrix for each 
subject (68 × 68), where the values of the diagonal were 
neglected (Figure 1C). Finally, the correlation matrix for 
each group was processed into a binarized matrix through 
the threshold.

This study utilized an undirected binary graph to 
explore the features of brain structural networks. The 
symmetric correlation matrices were converted to a 
binary graph by a threshold (Figure 1D). In the present 
study, network cost was employed to measure the 
threshold because it provided a physiologically significant 
description of a network’s performance [36]. Network 
cost, CG, which is important for network efficiency, 
measures the cost to build a network. It is defined as 
follows:

( 1) / 2G
KC

N N
=

−  (1)
Note that K and N are the sum of edges (regions 

undirected connections) and nodes (each brain region) 
in graph G. N (N-1)/2 is the number of all the possible 
edges in the graph. Given that there is no definite way to 
choose the precise threshold, we investigated a wide range 
of values of threshold. Here, the range of cost threshold 
was set an empirical range of values (from 0.05 to 0.4, 
step 0.005) to make the resulting matrices have sparse 
properties, and the small-world attributes estimable [8, 
9, 17, 36]. Then we explored the differences in network 
features between the two groups at each cost value.

Calculation of the network characteristic 
parameters

Optimized networks are defined as a high clustering 
coefficient and a low shortest path length; such networks 
are called small-world networks [7]. However, in recent 
small-world investigations, efficiency measurement has 
been a more effective method to analyze the network of 
local and global behavior and process the disconnected or 
non-sparse graphs [17, 33, 36]. In the present study, we 
explored brain structural networks in ADHD and normal 
control children using efficiency measures. 

The efficiency of graph G is computed as follows:

,

1 1( )
( 1) i j G i j

E G
N N L≠ ∈

=
− ∑

 (2)
Note that Li, j is the shortest path length between any 

two nodes i and j. When G indicates an entire network, 
E (G) measures the global efficiency. Eglob (G) is a global 
characteristic that evaluates the efficiency of transmission 
of information in the network. When considering a 
subgraph of G, E (Gi) is the local efficiency of the local 
network Gi (Gi consists of the nearest neighbors of node i) 
and measures the local network information transmission 
efficiency. Therefore, the local efficiency of the whole 
network is defined as:

1( )loc i
i G

E G G
N ∈

= ∑
 (3)

where Eloc (G) is the mean efficiency E (Gi) of all 
subgraphs involved in the graph [33].

In addition, we also performed regional nodal 
efficiency measurements, defined as:

,

1 1( , )
1nodal

j G i j

E G i
N L∈

=
− ∑

 (4)
where Enodal (G, i) represents the exchange efficiency 

between a node i and all the other nodes in graph G.
Generally, statistical comparisons of small-world 

properties require comparable random and regular 
networks [7]. The theoretical networks are different 
from the experimental networks in the present study and 
thus cannot supply an effective contrast for our research 
of networks. Therefore, we also generated regular and 
random networks that maintained the same number 
of edges and nodes precisely. Then, we compared the 
efficiency of G with that of a regular network (Greg) and a 
random network (Grand). If Eloc (Grand) < Eloc (G) < Eloc (Greg) 
and Eglob (Greg) < Eglob (G) < Eglob (Grand), the research graph 
G is designated as an optimal small-world network [36].

Statistical analysis

The Statistical Package for Social Studies (SPSS, 
version 13.0; SPSS, Inc., USA) and MATLAB (The 
MathWorks, Natick, MA, USA) were used for all 
statistical analyses. 

To test the differences in cortical thickness, a two 
- groups (ADHD vs. Control) * 1 condition (thickness) 
analysis of variance (ANOVA) was performed for 
different cortical Regions of Interest (ROIs). Before this 
analysis, a linear regression was used to remove other 
effects (mean overall cortical thickness, age, and IQ) of 
cortical thickness; the residuals were used as the substitute 
for the original ROIs mean cortical thickness. P values < 
0.05 were considered to indicate statistical significance. 

To investigate whether the interregional correlation 
of cortical thickness between the two groups was 
significantly different, the present study used Fisher’s 
r-to-z transform to convert the correlation coefficients to 
z values. Then, we compared these transformed z values 
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to investigate the significance of the between-group 
differences in correlations. The present study used the non-
parameter permutation test [55] of 5000 times to compare 
the correlation measures. Considering the correction for 
multiple comparisons, the FDR (false discovery rate) 
method was applied. A value of P < 0.05 was considered 
statistically significant.

Because of the calculation characteristics of the 
brain structural network, the present study used the non-
parameter permutation test [55] of 5000 times to compare 
the global efficiency (Eglob (G)), local efficiency (Eloc (G)), 
and regional nodal efficiency (Enodal (G, i)) at each cost 
value to assess the differences of small-world topological 
features between the two groups. Each distribution 
adopted the 95 percentile point as the threshold, and the 
probability of a type I error was 0.05 (one-tailed test).

Spearman’s test was performed to analyze 
correlations between the average cortex thickness and 
clinical symptoms of ADHD (ADHD_Index in ADHD 
200: Peking University). The significance value was set as 
P < 0.05 for this correlation analysis.
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