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Research progress of neuroblastoma related gene variations
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ABSTRACT
Neuroblastoma, the most common extracranial solid tumor among children, is an 

embryonal tumor originating from undifferentiated neural crest cell. Neuroblastomas 
are highly heterogeneous, represented by the wide range of clinical presentations 
and likelihood of cure, ranging from spontaneous regression to relentless progression 
despite rigorous multimodal treatments. Approximately, 50% of cases are high-risk 
with overall survival rates less than 40%. With the efforts to collect large numbers 
of clinically annotated specimens and the advancements in technologies, researchers 
have revealed numerous genetic alterations that may drive tumor growth. However, 
the most lack mutations in genes that are recurrently mutated, which inspires 
researchers to identify disrupted pathways instead of single mutated genes to unearth 
biological systems perturbed in neuroblastoma. Stratification of patients and target 
therapy based on their molecular signatures have been the center of focus. This 
review provides a comprehensive summary of the recent advances in identification 
of candidate genes variations, targeted approaches to high-risk neuroblastoma and 
evaluates the methods utilized for detection, which will provide new avenues to 
develop therapies and further genetic researches.

INTRODUCTION

Neuroblastoma(NB), a childhood cancer of 
the developing sympathetic nervous system, is the 
most common pediatric solid tumor, accounting for 
approximately 7% of childhood malignancies and 15% 
of pediatric oncology deaths [1]. According to the Cancer 
Statistics Review of Surveillance, Epidemiology, and 
End Results Program (SEER) conducted by the United 
States, more than 650 cases are diagnosed each year in 
North America [2, 3]. The incidence is about 10.54 cases 
per 1 million per year in children younger than 15 years 
[4, 5]. Prognosis of NB is associated with a number of 
factors, including International Neuroblastoma Risk 
Group (INRG) staging, age at diagnosis, histopathological 
classification, degree of tumor differentiation, 
amplification of N-MYC, loss of heterozygosity of 

11q and DNA ploidy [6]. Based on the above factors, 
neuroblastoma patients can be classified into 4 groups: 
extremely lowrisk , lowrisk , moderaterisk , and highrisk 
[6]. Patients with low or intermediate risk can achieve an 
overall survival (OS) rate greater than 95% with surgery 
alone [7]. Furthermore, some studies have shown that 
infants with localized tumors can be cured without any 
treatment, including surgery [8, 9]. Approximately 50% 
of cases are high-risk with overall survival rates less than 
40% [10]. High-risk patients often go through rigorous 
treatment consisting of 3 treatment blocks: Induction 
(chemotherapy and tumor resection), consolidation (high-
dose chemotherapy with autologous stem-cell rescue and 
external-beam radiotherapy) and post-consolidation (anti-
ganglioside 2 immunotherapy with cytokines and cis-
retinoic acid) [7]. Heterogeneity is a clinical hallmark of 
NB, represented by its wide range of clinical behaviors 
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and diverse response to treatments [11]. A subset of tumor 
will undergo spontaneous regression; while others will 
progress relentlessly into high-risk metastatic disease 
with poor prognosis despite the use of multimodal 
intensive treatment. Such diversity can be attributed to 
molecular differences [11]. Currently, molecular signature 
only constitutes a small portion of parameters used for 
prognostic evaluation, including MYCN amplification, 
11q absence and DNA ploidy. However other molecular 
oriented parameters, such as mutations in ATRX, ALK, 
and variations of chromosome fragments, such as 1p and 
17q, have not yet been included in the evaluation systems 
of NB. The most likely reason is that neuroblastomas 
show some mutations (mentioned below), but the most 
lack mutations in genes that are frequently mutated [12]. 
Surprisingly, some studies have shown high-risk NB 
was associated with fewer recurrent somatic mutations 
[13]. And compared with adult cancers, neuroblastomas 
show lower number of activating mutations affect protein 
functions [12].

This review primarily focuses on both germline 
mutations predisposing children to the development 
of neuroblastoma and somatic events associated with 
neuroblastoma pathogenesis and clinical phenotypes. 
Through the comprehensive summary, it may provide 
some tips in the studies of genetic studies or targeted 
therapies for neuroblastoma.

GERMLINE MUTATIONS OF NB

Recent studies have shown that germline mutations 
of NB can be classified into two types, namely familial, 
and sporadic genetic susceptible genes. 

Familial NB

Familial NB, primarily featuring rare mutations 
of certain genes, merely accounts for 1 percent of all 
the NB patients [14]. Familial NB is incomplete explicit 
autosomal dominant inheritance. In contrast to sporadic 
cases, familial cases occur at a younger age, related 
to multifocal primary tumors [15]. According to the 
literatures, germline mutations in familial NB mainly 
occur in two genes, namely paired-like homeobox 2B 
(PHOX2B) and anaplastic lymphoma kinase (ALK).

PHOX2B, the first identified predisposition 
gene related to NB [16], locates in 4p12 area of human 
chromosome, which encodes and regulates transcription 
factor of neural crest development. Most of patients 
harboring PHOX2B mutations are accompanied 
by complications, including congenital centrum 
hypopnea syndrome, congenital megacolon, multiple 
neurofibromatosis and pheochromocytoma [17, 18]. 
Several mutations in the PHOX2B have been identified in 
sporadic and familial neuroblastoma [17]. These mutations 

are believed to interfere with the PHOX2B protein’s role 
in promoting nerve cell differentiation. However, germline 
mutations of PHOX2B accounted for merely 6.4 % of 
hereditary neuroblastoma cases and were rarely detected 
in more common sporadic cases of the disease, indicating 
that the gene was not the major pathogenic gene [17, 19]. 

ALK gene mutations are more common than 
PHOX2B gene mutations in familial NB. ALK gene lies 
in human chromosome 2p23, encoding tyrosine kinase 
receptor that belongs to insulin receptor superfamily. 
It plays an important role in brain and specific neuron 
development. Amplification or mutation of ALK promotes 
phosphorylation of ALK, leading to increased kinase 
activity and ultimately results in tumorigenesis [20, 21]. In 
familial NB, ALK mutations often occur in coding areas, 
such as hotspots F1174, F1245 and R1275. Among these 
loci, the R1275Q mutation is the most common germline 
ALK mutation, occurring in about 45% of hereditary 
neuroblastomas [22]. These mutations also occur in 
the somatic cells, the most common somatic mutation 
in neuroblastoma, accounting for 6%-12% of sporadic 
neuroblastoma [12, 20, 23-28]. Among these mutations, 
ALK R1275Q is also the most common somatic ALK 
alteration [29, 30]. In addition, F1174L mutants are 
observed in a higher frequency in MYCN-amplified 
tumors [31], suggesting their pathogenic association [32]. 
ALK interacts with MYCN via multiple mechanisms: 
ALK was found to induce the expression of MYCN by 
promotor activation [33] and activation through ERK5 
[34]; In addition, phosphoinositide 3-kinase/AKT further 
activates the ALK downstream signaling controlling 
glycogen synthase kinase 3 beta activity and MYCN 
protein stabilization. The observed synergistic effect of 
that mutant ALK accelerated tumor formation in MYCN 
transgenic mice [32, 35, 36] could be explained by the 
above mechanism.

With the knowledge of familial NB, recent years 
some researchers have proposed that screening of germline 
mutation of ALK and PHOX2B for sick children with NB 
family history or two-sided adrenal gland goiter should 
be performed. If ALK or PHOX2B gene was mutated, 
the sick children should undergo abdomen ultrasound and 
urine catecholamine levels detection every three months 
until the sick children reach 5 years old even though they 
are asymptomatic [37]. However, A recent study from 
pediatric cancer genome project suggested that less than 
8.5% of pediatric cancer patients including neuroblastoma 
could be detected germline mutated predisposition genes. 
In addition, only 40% of their patients with germline 
mutations were pathogenic or probably pathogenic and 
that could be evaluated had a family history of cancer 
[38]. Derived from these, family history did not predict 
the presence of an underlying predisposition syndrome in 
most patients. This conclusion challenges the conventional 
belief for family history of NB.Thus, due to lack of enough 
evidences, screening of sick children with familial NB has 
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yet to be further improved. 

Sporadic NB

Sporadic neuroblastoma is more common. Through 
using genome-wide association studies (GWAS), 
several common genomic variables (single nucleotide 
polymorphisms [SNPs] and copy number variations 
[CNVs]) associated with sporadic neuroblastoma have 
been identfied.These genomic variables could be classified 
into three categories, among which two categories were 
related to NB risks. The first category was found in NB 
patients with high risk, including CASC15/14, BARD1, 
LMO1, LIN28B and HACE1 [37, 39]. The second 
category occurred in NB patients with low risk, including 
genes DUSP12, DDX, IL31RA and HSD17B12 [40]. The 
third category was variation of germline copy numbers, 
for example, gene NBPF23 [41]. 

Maris et al. identified common SNPs at 6p22 
within CASC15 and CASC14 genes associated with 
neuroblastoma risk. Homozygosity for the at-risk G allele 
of rs6939340, the most significantly associated SNP, has 
an increased risk of developing neuroblastoma with odds 
ratio of 1.97. These gene variations were more likely to 
occur among stage 4 NB patients and individuals who 
carried MYCN amplification [42]. 

Several SNPs in BRCA1 associated RING domain 1 
(BARD1) located in the area 2q35 of human chromosome 
were related with invasive NB. The function of the protein 
encoded by gene BARD1 is to form heterodimer in 
conjunction with BRCA1 protein. Stable formation of the 
heterodimer may be critical for BRCA1 exerting cancer 
inhibition [43]. A study comparing 397 high-risk cases 
and 2,043 controls revealed six new SNPs at 2q35 within 
the BARD1 gene locus significantly associated with 
NB [43]. They show that common variation in BARD1 
associates with the risk of the aggressive and most 
clinically corresponding subtype of human neuroblastoma. 
Furthermore, Pugh et al. tested tumor tissue DNA and 
the matching peripheral blood DNA by using the next 
sequence, discovering gene BARD1 could undergo 
germline mutations (c.334C > T, c.1921C > T) [12]. 

The LMO1 risk alleles and copy-number gains 
are associated with increased LMO1 expression in NB 
primary tumors and cell lines, consistent with a gain of 
functional role in tumorigenesis [44]. The protein coded 
by gene LMO1 was transcription factor, including two 
LIM areas rich in cysteine, which played a role in protein 
interactions. Previous studies also indicate that LMO1 
participates in regulation of nerve system development 
[45]. In the first GWAS performed on Chinese children, 
Wang et al. found that LMO1 on chromosome 11p15.4 
was related to susceptibility of NB. They conducted NB 
GWAS including 549 cases (244 NB patients and 305 
healthy controls). Eleven SNPs located within LMO1 were 
found significantly associated with NB, and rs204926 

was confirmed to have the closest relationship [39]. At 
the somatic level, the LMO1 is mutated in 12% of NB, 
primarily through duplication, and this is associated with 
disease progression and poor survival [44]. 
LIN28B

Given the central role of MYCN in neuroblastoma 
biology, understanding its upstream regulators is also 
important. LIN28B has been shown to positively regulate 
MYCN levels through let-7 binding [2]. MYCN indirectly 
affects the expression of LIN28B through regulating miR-
26a-5p( MiR-26a-5p and miR-26b-5p regulate LIN28B 
expression), and directly regulates LIN28B expression 
through a binding site within LIN28B promoter [46]. 
Taken together, these data points to a complex reciprocal 
regulatory relationship between the two genes [47]. 
LIN28B-let-7-MYCN regulation and control system 
blocked the differentiation of normal neuroblasts cells 
[48]. 

Besides common SNP variations, neuroblastoma 
was the first tumor that germline copy number variation 
was found to contribute to its susceptibility [41]. NBPF23 
(Neuroblastoma breakpoint family, member 23) is located 
on chromosome 1q21.1 harboring a region where varies in 
copy number among population. Furthermore hemizygous 
deletion of this region is significantly associated with 
neuroblastoma [37]. The neuroblastoma breakpoint 
family (NBPF) has been found to play regulatory roles 
in neuroblastoma development and human evolution. 
However, the mechanism for the regulation and function 
of this family is still unknown. NBPF may function as 
DNA-binding transcription factor in nucleus, which 
provides important new insights into the functions of 
NBPF genes in the human cells [49].

Other germline mutations related to NB

DNA repair genes. DNA repair genes have been 
reported in oncogenesis of multiple cancers including 
neuroblastoma, such as BRCA1/2, PALB2, FANCD2 
and CHEK2 et al. [50-55]. Pugh et al. performed whole 
genome sequencing of peripheral blood DNA samples 
on 240 cases of NB patients, and found a few germline 
mutations including CHEK2 (c.433C > T, c.542G > 
A and c.539G > A), PINK1 (c.1040T > C and c.836G 
> A), BARD1(c.334C > T and c.1921C > T) and 
PALB2 (c.1684+1C > A) [12]. Brooks et al. reported 
20 cases of pediatric cancer including neuroblastoma 
among 379 families, uncovering mutations in either 
BRCA1 or BRCA2 [54]. Other studies also identified a 
deletion/insertion in the FANCD2 gene in nephro- and 
neuroblastomas [55]. Particularly, germline mutations 
in BRCA2 and PALB2, that PALB2 binds to the N 
terminus of BRCA2 and has a key role in localization 
and stabilization of BRCA2, have been detected that they 
were associated with the development of neuroblastoma 
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[51, 52].
STK11

Papillary thyroid carcinoma (PTC), known as a 
secondary malignancy after treatment for neuroblastoma 
(NB), is rare in children. Targeted next-generation 
sequencing analysis for a 46 cancer-gene profile was 
performed on both tumors and peripheral blood DNA. A 
heterozygous missense mutation in STK11 (F354L) was 
identified in both NB and PTC. This mutation was also 
detected in peripheral blood cells [56]. However, the role 
of this gene in NBs requires further study.

SOMATIC MUTATIONS IN NB

Somatic events of NB can be classified as copy 
number variations and somatic gene mutations.
Copy number variations

Copy number variant (CNV) is an important 
and major source of variation in the human genome, 
comprising of large insertions and deletions that lead 
to gain or lose segments of chromosomes. Traditional 
genome-wide approaches to detect CNVs make use of 
single nucleotide polymorphism (SNP) array data or array 
comparative genome hybridization (aCGH) [57-59]. The 
minimum detectable size and breakpoint resolution are 
limited, for all results relying on the density of probes 
on the array. NGS offers higher sensitivity, and is a 
cost-effective alternative for CNV testing [60-62]. Copy 
number variation is relative to the structure variation of 
genome, including MYCN and other genes amplifications 
and chromosomal gains and losses. Comparing to adult 
tumors, the number of genetic somatic mutations in 
neuroblastoma was low, but the frequency of recurrent 
copy number variations was relatively high. Therefore 
CNVs could be used as biomarkers for neuroblastoma 
[26].
Somatic DNA amplification

DNA amplification plays a critical role in the 
development of solid tumors, potentially by causing 
overexpression of oncogenes. MYCN was the first proto-
oncogene found to be amplified with significant clinical 
relevance, and its status was routinely used to direct 
treatment. As mentioned above, genes like LIN28B and 
ALK have been shown to regulate MYCN levels through 
certain mechanisms, bringing the old enemy into the focus 
of current and future targeted drug efforts.

MYCN, amplification of c-MYC homolog, has been 
shown to strongly correlate with poor prognosis [32, 63], 
considered as the best-characterized biomarker of risk for 
NB [63, 64]. It is located at chromosome 2p24 [65] and 
plays an important role in shortening cell cycle, promoting 
cell proliferation, inhibiting cell differentiation and 
apoptosis. Amplification of MYCN (no less than 10 times 
duplication of diploid genome or greater than 4 times 

duplication of number 2 chromosome related to signal) 
accounts for about 22% of gross occurrence of NB, mostly 
co-existing with other perilous factors [66].

Other regional amplifications. Previous studies have 
also reported other amplifications, such as ALK, DDX1 
and OCD1 amplifications, associated with low recurrence 
and often co-occurring with MYNC amplification. Apart 
from MYCN, ALK is the most frequently amplified 
gene, accounting for 4% of NBs [23-25], followed by 
DDX1, located in close vicinity of MYCN [67]. ODC1 
amplification at band 2p25, somatic amplification at 
12q13-15 locus containing CDK4 (12q13_14) and 
MDM2 (12q15) were always found to be co-amplified 
with MYCN [26, 68, 69]. The NAG gene mapped in close 
vicinity to MYCN on chromosome band 2p24 was also 
found to be co-amplified with MYCN [70]. However, 
in the cases with absence of MYCN amplification, the 
amplicons at 12q13-14 and 12q13-15 , and CDK6 gene 
at 7q21, CCND1 gene at 11q13 were also detected [69]. 
Surprisingly, most of these genes are involved in cell 
cycle. This suggests that cell cycle regulators could play a 
role in neuroblastoma tumorigenesis.
Somatically chromosomal gains and losses

Somatically chromosomal imbalance is a key feature 
of NB: they occur as genomic amplifications or deletions 
as well as whole or segmental chromosome imbalances. 
Many chromosome alterations (whole chromosome gains 
or losses), resulting in hyperdiploidy, are associated with 
low-risk disease and favorable outcomes, while segmental 
chromosomal alterations (deletions of chromosome arms 
1p, 3p, 4p, 9p, 11q and gains of chromosome arms 1q, 
2p, 17q) are associated with more aggressive diseases [16, 
71]. 
Loss of 1p and 11q

Loss of heterozygosity at chromosome 1p36, 
occurring in 23%-35% patients, is associated with other 
high-risk clinical and genomic features, such as older age, 
MYCN amplification, and metastatic disease [72-75]. 
Compared to the tumors without MYCN amplification, 
tumors with MYCN amplification generally had larger 
1p deletions (the median size of deletion for MYCN-
amplified tumors was 84 Mb and for non-amplified 46 
Mb) [76]. Genes located at chromosome 1p36 including 
CHD5, CAMTA1 and PIK3CD are mostly likely to be 
deleted in the tumor [77-79]. CHD5 was first identified 
as a candidate tumor suppressor gene(TSG) which was 
frequently deleted in 1p36.31 of NBs [80]. High CHD5 
is strongly related to favorable clinical, biological 
features and outcome. On the contrary, low/absent 
expression is associated with older age, higher stage, 
MYCN amplification and a poor outcome [81, 82]. Loss of 
chromosome 11q, most commonly seen in tumors without 
MYCN amplification, occurs in approximately 33% of 
neuroblastomas and is associated with a poor prognosis 
[72]. The related genes located at chromosome 11q 
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include CADM1 and ATM [83, 84]. CAMTA1 qualifies 
as a TSG in NB. Low CAMTA1 expression is associated 
with unfavorable features (advanced stage, MYCN 
amplification) and poor outcome [79, 85].
17q gain

The most frequently identified genomic alteration of 
neuroblastoma cells is somatic gain of the distal portion 
of chromosome 17q, which occurs in at least half of 
primary tumors, predicting an overall poor prognosis, and 
frequently associated with other parameters of aggressive 
disease such as older age, MYCN amplification, and 
chromosome 1p deletion [86, 87]. At least two genes, 
survivin/BIRC5 and nm23/NME1, mapping to 17q 
gain regions, have been implicated contributing to the 
aggressive phenotype of neuroblastomas. Survivin/
BIRC5 is an anti-apoptotic protein, and its expression 
is associated with poor prognosis, and nm23/NME1 
encodes a nucleoside diphosphate kinases, involved in cell 
proliferation and differentiation. Overexpression of NME1 
is associated with unfavorable outcome and aggressive 
features [79, 88, 89].
Loss of 9p and 3p

Caren et al. employed SNPs chip to analyze NB 
samples, and found chromosome 9p might undergo 
homozygous or heterozygosis loss. The genes involved 
included CDKN2A and CDKN2B. A region of 
homozygous deletion was discovered in one NB tumor 
sample, located in chromosome 3p24.1, harboring the 
gene RBMS3. They also detected two homozygous 
deletions in a NB cell line Kelly, one in chromosome 3p, 
covering the gene LSAMP, the other in gene PTPRD in 
chromosome 9p [76].

Somatic mutations of NB

Compared with adult tumors, mutation frequencies 
of tumor cell of children are relatively lower [90], but 
activating mutations frequently affect specific biological 
processes in aggressive neuroblastoma [91]. 

ATRX, a gene plays an important role in epigenetic 
regulation, was found to be mutated in approximately 50% 
of adolescent and young adults with neuroblastoma [28, 
92]. Although located in chromosome X, ATRX mutations 
were found in both males and females, consistent with 
previous reports [28]. Putative genetic loss-of-function 
alterations in the ATRX gene have been identified in nearly 
10% of neuroblastomas [12, 27], and enriched in older 
patients [28]. In infant tumors or in tumors with MYCN 
amplification, no ATRX mutations are found, indicating 
ATRX alterations occur in a subtype of NB. Although the 
mechanism is poorly understood, neuroblastoma tumors 
with ATRX loss of function mutations were found to 
have lengthened telomeres. Nevertheless, these findings 
suggest that anti-telomerase-based therapies might benefit 
neuroblastoma patients with ATRX mutations [21, 93]. 

Other genes involved in chromatin regulation. 
Protein products encoded by gene ARID1A located 
at chromosome 1p35.3 and gene ARID1B located at 
chromosome 6q25.1 are SWI/SNF family members [94]. 
They regulate gene expression by modifying chromatin 
structure. Mark Sausen et al. [26] detected gene ARID1A 
could undergo nonsense, missense, disconnection 
mutation, and heterozygosity deficiency of somatic cell; 
ARID1B could suffer heterozygosity deficiency and point 
mutation of somatic cell. They contributed to failures of 
early stage treatment for NB patients and low survival rate 
to mutations of the two genes, suggesting ARID1A and 
ARID1B as contributors to neuroblastoma oncogenesis 
[26]. Interestingly, several sequence alterations in other 
genes involved in chromatin regulation in neuroblastoma 
have been found, including EP300, CREBBP, TTF2, 
KDM5A, CHD9, and gene IKZF1 [91], which might 
undergo somatic mutations and promote NB occurrence 
[44]. Thus, Chromatin remodeling may play an important 
role in the occurrence of NB.

PTPN11, locates at chromosome 12q24, encoding 
protein SHP-2, has an important role in signal transduction 
downstream of growth factor receptor signalling. 
Activating mutations of PTPN11 have been associated 
with developmental pathologies in neuroblastoma. 
Through activation of the RAS-ERK signalling pathway, 
SHP2 is ubiquitously expressed and regulates cell survival 
and proliferation. Therefore, reduction of SHP2 activity to 
suppress tumour cell growth is a potential target of cancer 
therapy [95-97].

NTRK1 encodes TrkA, which is a high affinity 
nerve growth factor (NGF) receptor. TrkA is involved 
in neural crest cell differentiation, and its expression has 
been reported to be associated with a favourable prognosis 
in neuroblastoma [98, 99]. NTRK1 has been detected in 
NB to undertake c.1810C > T mutation, which is common 
in NB for baby younger than 18 months without MYCN 
multiplication [100].

PROMISING THERAPEUTIC TARGETS 

With the efforts to collect large numbers of 
clinically annotated specimens and the advancements 
in technologies, researchers have discovered numerous 
therapeutic targets and subsequently developed agents 
to target them. Although the most frequent alteration in 
neuroblastoma is the amplification of MYCN, it’s difficult 
to target MYCN directly. As an alternative to target 
MYCN, we could target effector molecules downstream/
upstream of MYCN in MYCN-related signaling pathways, 
such as the p53/MDM2/p14 (ARF) pathway, WNT/β-
catenin pathway, and PI3K/mTOR pathway [64, 79, 
101-107]. Some studies have shown that PI3 or Aurora 
A kinase inhibition can destabilize MYCN protein. 
Currently, an Aurora A kinase inhibitor is being evaluated 
in combination with irinotecan and temozolomide in a 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Sausen M%5BAuthor%5D&cauthor=true&cauthor_uid=23202128
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phase I clinical trial [7]. ALK alterations may arise in 
relapsed patients [108], occupying the position after the 
MYCN in the NB candidate genes. Crizotinib is a dual 
ALK/MET inhibitor, approved by the US food and drug 
administration (FDA) for patients with NSCLC harboring 
ALK rearrangements. However, a phase I clinical trial 
evaluating the efficacy of crizotinib as a single-agent 
revealed unfavorable results in neuroblastoma patients 
[109]. Therefore, the proportion of ALK-positive 
neuroblastoma patients benefits from Crizotinib is 
limited [110-112]. ATRX was found to be mutated in 
approximately 50% of adolescent and young adults 
with neuroblastoma [28, 92]. Preclinical and clinical 
investigations are required to prove the efficacy of ATRX 
inhibitors in this group of patients. The identification of 
carcinogenic mutations and an increased understanding 

of how these mutations trigger tumorigenesis enable 
researchers to develop agents to target such alteration. 

CONCLUSIONS AND PERSPECTIVES

In summary, the research on the pathogenesis of NB 
is facing a great challenge for its extremaly low mutation 
frequency. Occurrence of NB may be a multi-stage process 
with the simultaneous activation of multiple carcinogenic 
signalling routes, suggesting that growing interest should 
be stimulated in identifying disrupted pathways, instead 
of single mutated genes, thereby unearthing biological 
systems perturbed in neuroblastoma. There are a 
number of proteins and pathways that are relevant to NB 
pathogenesis. Major genes and pathways include(Table 
1): a) The signaling pathway network common to many 

Table 1: Classification of functions of candidate genes relating to NB
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RTKs and other intracellular kinases, represented by 
RAS, RAF, PI3K, MAPK, MEK, AKT and mTOR [113]. 
These signal routes lead to cancer via mechanisms such as 
apoptosis, multiplication, DNA repair, cancer cell transfer 
and angiogenesis. The RAS pathway is among the most 
frequently mutated pathways in human cancer. Studies 
showed that RAS mutations could be predictive markers 
for treatment in neuroblastomas [114]; b) Embryonic 
development-related signaling pathways, such as Wnt, 
Notch and Hedgehog [115]. Taking NOTCH signal as 
an example, inhibiting Notch signal leads to NB cells 
differentiate more maturely [116]. At the early stage of 
nerve development, Notch signalling route may regulate 
multiplication, differentiation and apoptosis of cells, 
which may take part in generation of tumor angiogenesis 
through connecting to signal PI3K-AKT [117]. The Notch 
pathway may be activated by the homeobox transcription 
factor PHOX2B [118]. 

Since 2005, GWAS has been frequently used for 
tumor studies by means of comparison between different 
frequencies of SNP in cases and controls to seek risk 
mutations. However , GWAS is not a powerful approach 
for studying rare or uncommon SNPs, because GWAS 
results tend to have problems such as false positive, false 
negative, only a few single nucleotide polymorphisms 
detected locate in functional areas, and insensibility to rare 
mutation and structure mutation, leading to limitation of its 
application [119]. The paradigm of DNA next generation 
sequencing(NGS) could process millions of DNA 
templates in parallel, resulting in a low cost per base and 
a throughput on the gigabase (Gb) scale [120]. Progress 
of sequencing technique of new generation promotes fast 
development of whole genome sequencing, whole genome 
exon sequencing and depth sequencing of target genes, 
which is possible to solve the above-mentioned problems. 
Moreover, according to the characteristics of gene variants 
in neuroblastoma, perhaps the main power of NGS was 
the possibility to combine both mutation and copy-number 
events, to generate broad cataloging of genetic variations 
in neuroblastomas. However, the biggest challenge for us 
is that we must be able to distinguish functionally relevant 
mutations from nonpathogenic variants. This distinction is 
critical not only to correlate these with oncogenic potency, 
but also to deliver to the research of pathogenesis of NB. 
Thus, deep resequencing of target genes captured is a 
key method to locate potential pathopoiesia mutation of 
neuroblastoma, featuring high degree of specificity and 
feasibility, which provides potential new target spots for 
therapy intervening measure.
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