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ABSTRACT

Long non-coding RNAs (lncRNAs) have recently been shown as novel promising 
diagnostic or prognostic biomarkers for various cancers. However, lncRNA expression 
patterns and their predictive value in early diagnosis of myocardial infarction (MI) have 
not been systematically investigated. In our study, we performed a comprehensive 
analysis of lncRNA expression profiles in MI and found altered lncRNA expression 
pattern in MI compared to healthy samples. We then constructed a lncRNA-mRNA 
dysregulation network (DLMCEN) by integrating aberrant lncRNAs, mRNAs and their 
co-dysregulation relationships, and found that some of mRNAs were previously 
reported to be involved in cardiovascular disease, suggesting the functional roles 
of dysregulated lncRNAs in the pathogenesis of MI. Therefore, using support vector 
machine (SVM) and leave one out cross-validation (LOOCV), we developed a 9-lncRNA 
signature (termed 9LncSigAMI) from the discovery cohort which could distinguish 
MI patients from healthy samples with accuracy of 95.96%, sensitivity of 93.88% 
and specificity of 98%, and validated its predictive power in early diagnosis of MI 
in another completely independent cohort. Functional analysis demonstrated that 
these nine lncRNA biomarkers in the 9LncSigAMI may be involved in myocardial 
innate immune and inflammatory response, and their deregulation may lead to the 
dysfunction of the inflammatory and immune system contributing to MI recurrence. 
With prospective validation, the 9LncSigAMI identified by our work will provide 
additional diagnostic information beyond other known clinical parameters, and 
increase the understanding of the molecular mechanism underlying the pathogenesis 
of MI.

INTRODUCTION

Myocardial Infarction (MI), commonly known as 
heart attack, is a serious result of coronary artery disease 
(CAD) caused by sudden blockage or extremely reduced 
blood flow in a coronary artery. MI remains the major 
cause of death and mortality globally, including China 
[1]. Over the past years, there is a sharply increasing trend 
in the morbidity of MI in China. Although statistics in 
2011 suggested that there were about two million cases 

of MI accounting for 0.87% of cardiovascular disease 
(CVD)[2], it is estimated by that the number of patients 
with MI will increase to 23 million by 2030 [3]. Early 
diagnosis identifying subpopulations at high risk of having 
an infarct is crucial for deciding early tailored treatment 
to reduce MI mortality. Although currently available 
biomarkers, such as cardiac troponin and creatine kinase-
MB (CK-MB), have used to assist with timely diagnosis 
[4, 5], some novel molecular biomarkers have highlighted 
their promising potentials and important roles for early 
management in MI.
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Recent genome sequencing and transcriptomics 
analyses have revealed that only less than two percent 
of the human genome consists of protein-coding RNA, 
whereas the majority of the genome can be transcribed 
into RNA transcripts without protein coding capacity 
[6]. These non-coding RNAs (ncRNAs) can be classified 
into two types based on their size: short RNAs and long 
non-coding RNAs (lncRNAs). Short RNAs, including 
microRNAs (miRNAs), have been widely studied 
during the past ten years. Many studies have reported 
the dysregulation of miRNA expression in MI, including 
miR-15 [7], miR-21 [8], miR-24 [9], miR-29 [10] and so 
on. LncRNAs, a major class of ncRNAs, was defined 
as ncRNA transcript with greater than 200 nucleotides. 
Since the lncRNAs H19 and Xist were firstly found to be 
involved in epigenetic regulation in the early 1990s [11, 
12], increasing evidence has shown that lncRNAs are 
involved in the complex gene regulation network by as 
key molecular players at epigenetic, transcriptional and 
post-transcriptional levels [13, 14]. A handful of studies 
have revealed dysregulated expression of lncRNAs in a 
variety of disease states highlighting their potential clinical 
application as diagnostic and prognostic biomarkers or 
therapeutic targets in the pathology of diverse diseases, 
including cancers [15–17]. Some studies have reported 
several lncRNA-focus signatures which could be useful to 
predict patients’ prognosis or metastasis in various cancers 
[18–28]. Recent studies have shown the close association 
between MI and altered lncRNA expression [29, 30], 
highlighting the potential of lncRNAs as biomarkers 
in early diagnosis of MI. However, lncRNA expression 
patterns and their predictive value for MI have not been 
systematically investigated.

In this study, we obtained lncRNA expression 
profiles and investigated the expression patterns between 
MI patients and healthy samples by re-annotating the 
publicly available Affymetrix microarray. Furthermore, 
we constructed and analyzed a dysregulated lncRNA-
mRNA co-expression network that is associated with the 
occurrence of MI. We aimed to detect potential lncRNA 
biomarkers closely correlated with MI, and to develop 
novel lncRNA signature for identifying subpopulations at 
high risk of having an infarct

RESULTS

Identification of deregulated mRNA and lncRNA 
in AMI patients

We first performed SAM analysis to investigate the 
expression patterns of mRNAs and lncRNAs between AMI 
patients and healthy samples from the discovery cohort 
and identified 191 and 11 differentially expressed mRNAs 
and lncRNAs (logFC ≤1 or logFC >1, FDR-adjusted p 
<0.05). Among them, 175 mRNAs and 9 lncRNAs were 

over-expressed and 16 mRNAs and 2 lncRNAs were 
down-expressed in AMI patients compared with healthy 
samples (Supplementary Table S1).

Construction and analysis of dysregulated 
lncRNA-mRNA co-expression network

We first investigated the co-expression correlations 
between differentially expressed mRNAs and 
differentially expressed lncRNAs. The lncRNA-mRNA 
pairs with a high PCC (>0.5) were selected as significantly 
dysregulated lncRNA-mRNA co-expression pairs and 
were integrated into the DLMCEN, in which there are 
1822 edges between 188 mRNAs and 11 lncRNAs 
(Figure 1A). The investigation of the degree distribution 
of nodes in DLMCEN revealed a power-law distribution 
with a slope of -1.674 and R2 = 0.999 (Figure 1B), 
suggesting that DLMCEN has scale-free characteristics 
like many other biological networks distinguished from 
random networks. Moreover, the degree and betweenness 
centrality of lncRNAs are significantly higher than those 
of mRNAs (Wilcoxon rank-sum test) (Figure 1C and 1D), 
demonstrating that dysregulated lncRNAs tended to be 
hub nodes and played more important roles than mRNAs 
in the occurrence of AMI.

Construction of SVM-based lncRNA signature in 
AMI diagnosis from the discovery cohort

To identify an optimal lncRNA signature predictive 
of AMI, we have searched for lncRNA combinations 
among the 11 dysregulated lncRNAs in the DLMCEN, 
whose expression pattern can best distinguish AMI 
patients from the control samples, using SVM and 
LOOCV strategy in the discovery cohort. As shown 
in Figure 2A, a signature of 9 lncRNAs (termed 
9LncSigAMI) with the highest accuracy was identified 
(Table 1). The classification of 99 samples in the discovery 
cohort using the 9LncSigAMI classifier achieved an 
accuracy of 95.96% with a sensitivity of 93.88% and a 
specificity of 98% (Figure 2B). The discriminatory power 
measured by AUC is 0.985 (Figure 2B). We also applied 
hierarchical clustering analysis to expression data of nine 
lncRNAs in the 9LncSigAMI from 49 AMI patients and 
50 healthy samples and found 2 major sample clusters 
with clear differences in lncRNA expression patterns. As 
shown in Figure 2C, all healthy samples were grouped into 
Cluster 2 and most of AMI patients (33/49, 67.35%) were 
grouped into Cluster 1, revealing a significant association 
between lncRNA expression pattern and samples’ disease 
status (p=5.431e-12, Chi-square test; Figure 2C). The 
above results demonstrated the good performance of 
the 9LncSigAMI in distinguishing AMI patients from 
healthy samples in the discovery cohort. Of these nine 
diagnostic biomarkers, eight lncRNAs tended to be risky 
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lncRNAs whose up-regulated expression associated with 
AMI occurrence and only one lncRNAs was protective 
lncRNAs whose down-regulated expression associated 
with AMI occurrence (Figure 2C and 2D).

Validation of the 9LncSigAMI with an additional 
independent cohort

To evaluate the robustness of the 9LncSigAMI, we 
conducted a further validation of the predictive power of 
9LncSigAMI using an additional independent cohort of 
52 samples from Suresh’s study [31] (denoted “validation 
cohort”). We first performed a hierarchical clustering 
analysis based on the expression pattern of these nine 
diagnostic biomarkers. 52 samples in the validation cohort 
were clearly clustered into two distinct subgroups (Figure 
3A), with significantly different disease status (p= 2.27e-

02, Chi-square test). As observed in the discovery cohort, 
eight protective lncRNAs showed a higher expression 
in healthy samples in Cluster 1 and one risky lncRNA 
showed a higher expression in AMI samples in Cluster 2.

We further assessed the predictive power of 
the 9LncSigAMI using SVM algorithm and LOOCV 
procedure. On the validation cohort, the 9LncSigAMI 
for distinguishing AMI patients from healthy samples 
achieves an AUC of 0.771 with a sensitivity of 
70.97% and a specificity of 61.91% (Figure 3B). The 
9LncSigAMI correctly classified 22 out of 31 AMI 
samples and 13 out of 21 control samples, resulting in 
67.31% prediction accuracy. These results suggested that 
the 9LncSigAMI signature identified here was accurate 
and reliable for discriminating AMI patients from normal 
samples.

Figure 1: Construction and analysis of MI-related dysregulated lncRNA-mRNA co-expression network. A. The DLMCEN 
generated by the procedure described in the Methods, including 1822 edges between 188 mRNAs and 11 lncRNAs. B. Degree distribution 
of the DLMCEN. C. The LncRNAs have significantly higher degrees than mRNAs in the DLMCEN. D. The lncRNAs have significantly 
higher betweenness centrality than mRNAs the DLMCEN.
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Identification of associated biological pathways 
of the 9LncSigAMI

As an initial step to infer potential biological 
functions of the 9LncSigAMI, we first examined the 
expression correlation between mRNAs and nine 
lncRNAs using the Pearson correlation coefficient and 
identified 517 mRNAs positively correlated with at 
least one of the nine lncRNAs. Then GO and KEGG 
function enrichment analysis for mRNAs co-expressed 

with lncRNAs was conducted to identify associated 
biological processes and pathways of the 9LncSigAMI. 
Results with GO analysis revealed that mRNAs co-
expressed with nine lncRNAs tended to be significantly 
enriched in 30 GO terms in the “Biological Process” 
(GOTERM-BP-FAT) (adjusted p-value < 0.10 and 
an enrichment score of >1.5) (Supplementary Table 
S2), which were grouped into four functional clusters 
including immune response, inflammatory response, 
regulation of cytokine and cell death (Figure 4A). The 

Figure 2: Identification and predictive value of SVM-based lncRNA signature in AMI diagnosis from the discovery 
cohort. A. Classification performance of different numbers of lncRNA biomarkers. B. Performance evaluation of the 9LncSigAMI in early 
diagnosis using LOOCV procedure in the discovery cohort. C. The hierarchical clustering heat map of 99 samples based on expression 
profiles of 9 lncRNAs in the 9LncSigAMI in the discovery dataset. D. The expression levels of 9 lncRNAs in the 9LncSigAMI between 
MI patients and healthy samples
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analysis of KEGG showed that mRNAs co-expressed 
with nine lncRNAs were involved in several pathways 
including Hematopoietic cell lineage, Cytokine-cytokine 
receptor interaction, Adipocytokine signaling pathway, 
Toll-like receptor signaling pathway, Chemokine 
signaling pathway and NOD-like receptor signaling 
pathway (Supplementary Table S3). These biological 
processes and pathways have been reported to be close 
with myocardial infarction [32–39], suggesting that 
the perturbation of nine lncRNAs in the 9LncSigAMI 
played important parts in the occurrence of AMI by 
interacting with mRNAs involved in known MI-related 
biological processes and pathways.

DISCUSSION

Increasing evidence has revealed that lncRNA has 
complex and important roles in cardiovascular diseases, 
including MI [40, 41]. For example, the down-regulated 
expression of lncRNA UCA1 has been observed at the 
early state of AMI patients [29]. Vausort and colleagues 
measured expression levels of five lncRNAs in 414 
patients using quantitative PCR, and identified a lncRNA 
MIAT highly relevant to MI [30]. The above studies 
have demonstrated the potential roles of lncRNAs as 
promising novel biomarkers for the diagnosis and/or 
prognosis of MI. However, the current research strategies 
focused on molecular diagnostic or prognostic biomarkers 
have mainly analyzed expression profiles of mRNA or 
miRNAs [5] [42, 43]. Although transcriptome analysis 
has been reported in the AMI mouse model [44], there 
is a lack of the investigation into expression patterns and 
diagnostic values of lncRNA in MI patients owing to the 
limitation of available expression data in human. Recent 

studies revealed that lncRNA expression profiles could 
be obtained by re-annotating the probes in the commonly 
used microarrays [18, 19, 23, 45].

In this study, we obtained and analyzed lncRNA 
expression profiles of 151 samples (80 AMI patients 
and 71 healthy samples) by repurposing two publicly 
available microarray expression datasets to determine 
whether there is significantly altered lncRNA expression 
pattern between AMI patients and healthy samples. We 
observed significantly different lncRNA expression 
patterns in AMI patients compared to healthy samples 
and identified 11 differentially expressed lncRNAs, 
implying that these dysregulated lncRNAs may be 
associated with MI. Previous studies have demonstrated 
that lncRNAs function as key regulators of gene 
expression by interacting with protein-coding genes to 
participate in biological processes [46, 47]. Therefore, 
to identify functional lncRNAs and its partners, we 
investigated the co-expression relationship between 
dysregulated lncRNAs and dysregulated mRNAs 
and constructed a dysregulated lncRNA-mRNA co-
expression network (DLMCEN). As general biological 
networks, the DLMCEN exhibited scale-free and 
modular characteristics. These dysregulated lncRNAs 
were found to be topologically central within DLMCEN 
and have maximal informational connections with other 
dysregulated mRNAs. After a comprehensive searching 
in both genetic association database (GAD) and Online 
Mendelian Inheritance in Man database (OMIM), 
58 protein-coding genes in the DLMCEN have been 
found to be associated with cardiovascular disease, 18 
of which were involved in MI (Supplementary Table 
S4). These observations indicated that the altered 
expression of these 11 lncRNAs in the DLMCEN 

Table 1: The detailed information of lncRNA biomarkers in the 9LncSigAMI

LncRNA ID Ensembl name Genome locations logFC

ENSG00000246526 RP11-539L10.2 Chr 4: 6,687,448-6,690,519 (-) -1.02

ENSG00000232451 AC016768.1 Chr 2: 23,018,125-23,199,056 (-) 1.30

ENSG00000258086 RP11-753H16.5 Chr 12: 54,353,792-54,466,985 (+) 1.08

ENSG00000249835 VCAN-AS1 Chr 5: 83,531,352-83,581,320 (-) 1.26

ENSG00000276107 CTD-2033D15.2 Chr 15: 39,586,561-39,587,293 (+) 1.15

ENSG00000279980 GABARAPL3 Chr 15: 90,347,587-90,349,437 (+) 1.04

ENSG00000270075 RP11-127L20.5 Chr 10: 104,312,141-104,313,881(+) 1.11

ENSG00000228262 LINC01320 Chr 2: 34,677,555-34,738,231 (+) 1.27

ENSG00000236266 RP3-467L1.4 Chr 1: 7,810,242-7,827,342 (-) 1.08
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Figure 3: Validation of the 9LncSigAMI in the additional independent cohort. A. The hierarchical clustering heat map of 52 
samples based on expression profiles of 9 lncRNAs in the 9LncSigAMI in the test cohort. B. Performance evaluation of the 9LncSigAMI 
in early diagnosis using LOOCV procedure in the test cohort.
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contributed to the development of MI and could be 
used as potential biomarkers for early diagnosis of MI 
patients. Hierarchical clustering analysis revealed that 
these dysregulated lncRNAs in the DLMCEN were 
significantly correlated with disease status, highlighting 
their potential clinically application to assess the risk 
of MI and improve diagnosis prediction of MI. To 
identifying an optimal lncRNA signature considering a 
balance between accuracy and the number of lncRNAs, 
we used SVM and random forest method to detect a 
combination of lncRNAs that has a remarkable ability 
to distinguish AMI patients from healthy samples. After 
the feature selection procedure, 9 of 11 dysregulated 
lncRNAs was identified as optimal lncRNAs biomarkers 
with the highest accuracy. Thus, we developed an SVM-
based diagnostic predictor as a lncRNA signature based 
on expression profiles of nine lncRNAs. The superior 
performance of the 9LncSigAMI in early AMI detection 
was further validated in the discovery cohort and another 
completely independent cohort.

Since only a few of lncRNAs have been annotated 
functionally, we performed bioinformatics analysis to 
infer possible associated biological roles of MI-related 
lncRNAs. From the co-expression network based on 
dysregulated lncRNAs and mRNAs, we performed 
functional enrichment analysis for co-expressed 
mRNAs and found that these mRNAs were enriched 
in several known MI-related biological processes 
and pathways. For example, TLR4, the members of 
the Toll-like receptors (TLR) family in the Toll-like 
receptor signaling pathway, have been found to play 

a detrimental role in myocardial ischemia/reperfusion 
(I/R) injury [48]. Cytokines, an inflammatory factor, 
were observed to be significantly up-regulated or 
down-regulated expression in AMI patients, and the 
altered cytokine expression had impacts on the immune 
functions in patients with AMI [33]. Chemokines, a 
family of chemotactic cytokines, acted as a modulator in 
complex biological processes such as cell proliferation 
and gene transcription, and its overexpression may be a 
reparative response following MI [37]. Therefore, it is a 
plausible inference that these nine lncRNA biomarkers 
may be involved in myocardial innate immune and 
inflammatory response, and their deregulation may lead 
to the dysfunction of the inflammatory and immune 
system contributing to MI recurrence.

In summary, we performed a comprehensive 
survey of the expression profiles of lncRNAs and coding 
RNAs from MI patients and healthy samples in a large 
of samples and constructed a dysregulated lncRNA-
mRNA co-expression network which will improve our 
understanding of MI-related lncRNAs from a network 
view. Furthermore, we developed and validated a SVM-
based lncRNA signature in use for early diagnosis 
of AMI with high accuracy. To our knowledge, this 
study is the first to access the application of lncRNAs 
for diagnostic prediction of MI. With prospective 
validation, the lncRNA signature identified by our work 
will provide additional diagnostic information beyond 
other known clinical parameters, and increase the 
understanding of the molecular mechanism underlying 
the pathogenesis of MI.

Figure 4: Function enrichment maps of the diagnostic lncRNAs. A. The functional enrichment map of GO terms with each 
node represents a GO term and an edge represents the proportion of shared genes between connecting GO terms. B. The enriched KEGG 
pathways ranked by −log10 (p-value).
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MATERIALS AND METHODS

Gene expression profile dataset

The gene expression profile data based on 
Affymetrix Human Genome U133 Plus 2.0 Array (HG-
U133_Plus_2.0) from two independent nonoverlapping 
cohorts of AMI patients were obtained from the 
publicly available GEO database (www.ncbi.nlm.nih.
gov/geo/). The initial discovery cohort of 49 AMI 
patients and 50 healthy samples were obtained from 
GEO (GSE66360, http://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE66360) and used to identify 
novel lncRNAs biomarkers for AMI diagnosis. Another 
AMI patient dataset was also downloaded from GEO 
(GSE48060, http://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE48060)[31], denoted “validation cohort”, 
including 31 AMI patients and 21 healthy samples and 
was considered as an independent test cohort to validate 
the diagnostic power of lncRNA biomarkers.

Acquisition of lncRNA expression profiles

The raw expression profile data (.CEL files) of 
99 samples in the discovery cohort and 52 samples in 
the validation cohort were downloaded from the GEO 
database. The probe set sequences of Affymetrix HG-
U133_Plus_2.0 were obtained from the Affymetrix 
website (http://www.affymetrix.com). LncRNA expression 
data of 151 samples were obtained using the probe re-
annotation strategy as previously described [18, 19, 24]. 
Briefly, probe sets of HG-U133_Plus_2.0 array were 
aligned to the human genome (GRCh38) and lncRNA 
gene sequence from GENCODE (release 23) using 
SeqMap tool with no mismatch [49]. Then lncRNA-
specific probes were obtained by mapping the genomic 
locations of probes to the genomic locations of lncRNAs. 
Finally, expression data of 2332 lncRNA were obtained 
for further analysis.

Expression profiles analysis

The significance analysis of microarrays (SAM) 
method was used to identify differentially expressed 
lncRNAs and mRNAs between AMI patients and healthy 
samples. The expression variation from AMI patients to 
healthy samples was characterized by logFC (log 2 fold 
change) and associated p-values adjusted after Benjamini-
Hochberg false discovery rate (FDR) control approach 
[50]. Down- and up-regulated mRNAs and lncRNAs 
were selected with the cut-off criterion of a logFC < 
−1 and logFC >1 respectively, with FDR-adjusted p < 
0.05. Hierarchical clustering analysis was carried out 
to investigate the patterns of lncRNA expression in the 
different samples, and the chi-square test was used to 
analyze the correlations between AMI status and lncRNA 
biomarkers.

Construction and analysis of dysregulated 
lncRNA-mRNA co-expression network

The dysregulated lncRNA-mRNA co-expression 
network (DLMCEN) in AMI patients was constructed 
as follows: Firstly, Pearson correlation coefficient (PCC) 
was calculated by measuring the expression relationships 
between differentially expressed mRNAs and differentially 
expressed lncRNAs. Then lncRNA-mRNA pairs with a 
high PCC (>0.5) were selected as dysregulated lncRNA-
mRNA co-expression pairs. Finally, a DLMCEN was 
constructed for AMI by assembling all dysregulated 
lncRNA-mRNA co-expression pairs identified above. 
A node represents a lncRNA or mRNA, and mRNA 
and lncRNA are connected if they are differentially co-
expressed.

Construction of SVM-based lncRNA signature in 
AMI diagnosis

A lncRNA-focus predictive signature for sample 
classification was developed using the support vector 
machine (SVM) with the sigmoid kernel. The performance 
of SVM-based lncRNA signature was estimated using the 
leave one out cross-validation (LOOCV). Sensitivity, 
specificity and accuracy were calculated through a 2 × 
2 contingency table, and the ROC curve was drawn by 
plotting true positive rates (sensitivity) against false 
positive rates (1-specificity).

To construct an optimal lncRNA signature in AMI 
diagnosis, optimal lncRNA biomarkers were selected 
using the random forest supervised classification 
algorithm as follows: (i) candidate lncRNA biomarkers 
were ranked according to their random forest importance 
value. (ii) The SVM-based signature was developed by 
adding one lncRNA at a time in a top-down order starting 
with the first two lncRNAs in the lncRNA ranking list, 
and the performance of the SVM-based signature was 
evaluated using LOOCV. (iii) The optimal number of 
lncRNA biomarkers in the signature could be found when 
achieving the highest classification accuracy.

Functional analysis of lncRNA biomarkers

The expression correlations between lncRNA 
biomarkers and mRNAs were calculated using the 
Pearson correlation coefficients (PCCs). The mRNAs 
positively correlated with biomarkers (PCCs>0.60) was 
chosen as co-expressed mRNAs associated with lncRNA 
signature. We performed bioinformatics analysis to 
predict the function of lncRNA signature by functional 
enrichment analysis of Gene Ontology (GO) and Kyoto 
encyclopedia of genes and genomes (KEGG) for co-
expressed mRNAs. Functional enrichment analysis was 
carried out using DAVID Bioinformatics Tool (version 
6.7) which is widely used to discover the biological 
implications of a set of genes [51]. Enriched GO terms 



Oncotarget73549www.impactjournals.com/oncotarget

limited in “Biological Process” (GOTERM-BP-FAT) and 
KEGG pathways with an adjusted p-value of <0.10 using 
the Benjamini-Hochberg procedure and an enrichment 
score of >1.5 were considered as significant functional 
annotations. Enrichment maps of significant GO terms 
were constructed and visualized using the Enrichment 
Map plugin in Cytoscape software [52].
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