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ABSTRACT

Cell-to-cell expression heterogeneity within a single tumor is a common 
phenotype among various cancer types including squamous cell carcinoma. To further 
study the fundamentals and importance of heterogeneity of cell functions and its 
potential mechanisms, we performed single-cell RNA-seq (scRNA-seq) on human 
squamous cell carcinoma of the bladder (SCCB) and its corresponding physiologically 
normal epithelia. Extensive differentially expressed genes were uncovered by 
comparing cancer and normal single cells, which were preferentially enriched in 
cancer-correlated pathways, such as p53 signaling and bladder cancer pathway. 
Furthermore, the most diversely expressed genes were particularly enriched in MAPK 
signaling pathway, such as CACNG4, CACNA1E and CACNA1H, which involve in cancer 
evolution and heterogeneity formation. Co-expression network and hub-gene analyses 
revealed several remarkable “hub genes” of each regulatory module. Some of them 
are cancer related, such as POU2F3, NKD1 and CYP2C8, while LINC00189, GCC2 and 
OR9Q1 genes are rarely reported in human diseases. The genes within an interesting 
module are highly correlated with others, which could be treated as potential targets 
for SCCB patients. Our findings have fundamental implications for SCCB biology and 
therapeutic strategies.

INTRODUCTION

Squamous cell carcinoma of urinary bladder 
(SCCB), though accounting less than 10% of primary 
bladder carcinomas, has showed frequent relapse (>50%) 
and metastasis compared to urothelial carcinoma (UC) [1, 
2], highlighting the complex and yet poorly understood 
mechanisms of SCCB.

Recently, an increasing number of studies have 
revealed the presence of tumor heterogeneity, which holds 
a challenge to cancer diagnosis and therapy. It described 
as modifiability within tumors, and diverse outcomes and 

therapeutic responses are correlated to different tumor 
stages, genetic lesions and expression programs [3–5]. 
Alternatively, cells generated from one tumor commonly 
comprise distinct mutations, or display diverse phenotypic, 
or epigenetic status [6–8]. Previous studies identified 
that UC mostly exhibit mixed histologies within a single 
tumor, with squamous components being the most common 
ones [9–12]. However, the definition of SCCB should be 
reserved exclusively for those with and only with squamous 
components [13]. And yet for all that, it remains unknown 
whether intratumoral heterogeneity takes responsibility for 
the treatment failure and metastasis of SCCBs [14].
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Single-cell RNA-seq (scRNA-seq) analysis has 
been demonstrated to be an efficient method to reveal 
gene-expression heterogeneity and uncover characteristics 
of each subpopulation within a tumor at single cell level 
[15, 16]. In this study, we performed the single-cell 
tagged reverse transcription (STRT) on a SCCB case and 
has demonstrated the complexity of the genetic patterns 
within the tumor, providing a better comprehending of 
heterogeneous expression profile in SCCB.

RESULTS

Clinicopathology of the case

The subject was initially diagnosed with bladder 
tumor by computed tomography (CT) and further 
confirmed as SCCB by cystoscope biopsy (Supplementary 
Figure S1). No other organ metastasis was identified 
before operation by systematic examination. No 
neoadjuvant or nor adjuvant chemotherapy was 
administered pre-operation. Macroscopically, the tumor 
was 3.0 cm in diameter and located in posterior wall of 
urinary bladder. After radical cystectomy, histological 
examination demonstrated that the specimen infiltrated to 
the outside of the bladder wall and the adjacent intestinal 
canal was also infiltrated, with no lymph node metastasis 
found. The patient died six months after the operation 
because of intestinal metastasis.

Data description and quality control (QC)

To investigate the intratumoral heterogeneity 
systematically, we isolated individual cells by Fluorescence 
Activated Cell Sorting (FACS) from a piece of fresh 
radically resected and dissociated human SCCB as well 
as normal urothelial tissues, and performed scRNA-seq 
based on the STRT method (75 tumor cells, 18 normal 
cells and 3 negative control) [17]. The mean sequencing 
depth of all samples is 0.38M reads/sample (ranged from 
0.01M~2.42M), which is sufficient for STRT method to 
detect gene expression profile. The average mapping rate 
of all samples is 64.87% (ranged from 28.4%~91.9%). 
We attached these details in Supplementary Table S1. 
In addition, we filtered the cells with detected genes 
less than 3000, retaining 67 tumor cells and 7 normal 
cells, respectively (Supplementary Figure S2). Principal 
Component Analysis (PCA) indicated no normal cell 
pollution in tumor cells (Supplementary Figure S3). These 
cells were chosen for further analysis.

Analyses of differentially expressed genes of 
cancer

As bulk approaches commonly fail to uncover the 
subtle but potentially biologically significant differences 
between seemingly identical cells (Figure 1a), we 

compared the differences between cancer and normal at 
single cells level by differentially expressed gene (DEG) 
analysis using NOISeq (Supplementary Table S2 and 
Supplementary Figure S4, probability > 0.999) [20]. We 
noticed many cell cycle correlated genes, such as CDK1 
(↑), CDC26 (↑), CCND1 (↑) and SMAD3 (↓). Cancer 
is demonstrated as the pathological manifestation of 
unbounded cell division. And CCND1 is a crucial regulator 
of the G1 progression, regarded as a dominant positive 
regulator of the G1 restriction point [21]. Upregulation 
of CCND1 was uncovered in various cancers, indicating 
its potential effects on tumorigenesis process, providing 
a therapeutic target of this patient. In addition, to further 
find the pivotal gene sets that function in the tumorigenesis 
of SCCB, we paid attention to the significant pathways 
(Figure 1b) that were enriched by DEGs. Compared to the 
normal cells, we identified that pathways in cancer, p53 
signaling, cell cycle and bladder cancer pathways were 
significantly enriched (Supplementary Figure S5 and S6, 
Supplementary Table S3). Enormous studies have proved 
that tumor suppressor gene TP53 and signaling pathway 
were imputed to the tumorigenesis and therapy resistance 
process and, therefore, has been regarded as a vital cellular 
drug target [22, 23].

Intra-tumor heterogeneity

We first examined gene expression profile of 
pathways that have been widely reported in bladder cancer 
or squamous-cell carcinoma, such as receptor tyrosine 
kinases (RTKs) (Figure 1c) and epigenetic pathways [24, 
25], which are important therapeutic targets for bladder 
cancer (Supplementary Figure S7) [26, 27], as well as the 
MAPK, JAK-STAT, Notch, PI3K and VEGF pathways 
(Supplementary Figure S8-S12). We identified obvious 
mosaic expression pattern of genes in these pathways, 
such as EGFR, TGFB2, IL6ST, BMPR2, PDGFA, FGFR1, 
FGF12, NOTCH2, JAG1, HSPA9, etc. These findings 
indicated that the expression level heterogeneity was existed 
across individual tumor cells of SCCB, inconsistent with the 
features of SCCB definition (purity component), which may 
compromise therapies targeting specific signaling.

Correlations between individual tumor cells from 
the same tumor showed a broad spread (correlation 
coefficient r ~ 0.15 to 0.89) (Supplementary Figure S13), 
consistent with intratumoral heterogeneity. However, 
no obvious subpopulation was identified within tumor 
cells. We calculated the coefficient of variation (CV) of 
each gene to uncover their contribution to intra-tumor 
heterogeneity (mean RPM > 10, Figure 1d). According 
to the variability of these highly expressed genes (RPM 
> 100), we extracted the most 100 variably and most 
100 stably expressed gene sets, individually for further 
analyses. Recent studies showed that cell cycle is a 
confounding factor of expression heterogeneity [28, 29]. 
As expected, the variably expressed gene group contains 
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many cell cycle related genes. In addition, six genes 
were significantly enriched in MAPK signaling pathway 
(RPS6KA1, RAC2, CACNG4, CACNA1E, CACNA1H 
and MAPKAPK5, p = 1.93×10-5, FDR = 3.59×10-3), 
which was identified as a pivotal pathway for human 
cancer cell survival, dissemination and resistance to drug 

therapy [30], suggesting the potential role of this pathway 
on the intratumor heterogeneity formation of SCCB. In 
contrast, majority of these stably expressed genes were 
housekeeping genes and enriched in ubiquitin mediated 
proteolysis, proteasome pathways, results consistent with 
our expectations.

Figure 1: a. Bulk approaches were conducted on a “population level” by using the average transcriptomes of millions of cells, frequently fail 
to uncover the subtle but potentially biologically significant differences between seemingly identical cells, while single-cell transcriptomics 
will uncover the gene expression at single cell level; b. Pathway enrichment of these differentially expressed genes; c. Variation in expression 
of RTKs pathway in tumor and normal single cells population; d. Coefficient of variation analyses of these genes highly expressed in 
cancer cells; according to the variability of these highly expressed genes (RPM > 100), the most 50 variably (red) and most 50 stably 
(blue) expressed genes were marked, individually; e. Gene co-expression modules derived from 74 single cells based on expression level 
(modules are distinguished by colors); f. Hub-gene network of the “darkorange” module in e, and the size of the dots represents hubness. 
Pink highlights the genes being discussed in the text.
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Gene co-expression network analysis

To understand the co-expression profile between 
genes at a system level, we performed Weighted Gene 
Co-expression Network Analysis (WGCNA) using the 
expression profile of all single cells [31]. We selected 5530 
genes with high variability (mean RPM > 10, SD > 100) 
for co-expression analysis, and detected 48 different co-
expressed modules (Figure 1e). We focused on the top 5 
largest modules (“darkorange”, “blue”, “brown”, “yellow” 
and “green”) for further analysis. Several widely reported 
cancer related pathways were uncovered within the five 
modules, such as pathways in cancer, VEGF and MAPK 
signaling pathways. The largest module (“darkorange”) 
containing highly differentially expressed genes between 
cancer and normal single cells, was enriched in both 
cancer and cell cycle pathways (p = 6.9×10-6, FDR = 
5.95×10-5, Supplementary Figure S14, Supplementary 
Table S4) while the second largest module (“blue” in 
Figure 1e) were dominated by the neurotrophic signaling 
pathway (p = 7.27×10-9, FDR = 1.35×10-6), spliceosom (p 
= 1.02×10-7, FDR = 9.45×10-6) and pathways in cancer 
(p = 4.76, FDR = 3.49×10-6, Supplementary Figure 
S15, Supplementary Table S4). In addition, the pathway 
enrichment of the other three modules were presented in 
Supplementary Figure S16-S18 and Supplementary Table 
S4.

Hub-gene-network analysis

Hub-gene-network analysis of these modules 
demonstrated hierarchical organizations of highly connected 
genes in individual modules, through which key controlling 
(hub) genes in the modular network can be uncovered. 
Several significant hub genes of the “darkorange” 
module were uncovered, such as GCC2 (↓), OR9Q1 (↓), 
TUBGCP2 (↓), LINC00189 (↓) and ARHGAP15 (↓) 
(Figure 1f). With these genes rarely reported in previous 
cancer studies, it remains an intriguing question for future 
research. We recognized LINC00189, is one of the major 
regulators of “darkorange” module network, potentially 
participating in the tumorigenesis of SCCB. In addition, 
ArhGAP15 is a potential regulator of Rac1, a member 
of the Ras superfamily of GTPases involved in signaling 
pathways controlling cell proliferation and apoptosis [32]. 
Previous study identified that ArhGAP15 gene knocking 
out influences the apoptosis induced by ethanol in bovine 
fibroblast cells [33].

On the other hand, “hub genes” of four other 
modules contain POU2F3 (↑), CENPH (↑), PCSK6 (↑) 
and HERC2 (↑), BCAR3 (↑), DOHH (↑), NLK (↑), SCN2A 
(↑), CACNA2D3 (↓) and CTNND2 (↓), which were 
commonly reported related to cancer (Supplementary 
Figure S19). Especially, POU2F3 is a keratinocyte-
specific POU transcription factor expressed in stratified 
squamous epithelia [34, 35], and its expression is tied 
to squamous epithelial stratification [36]. POU2F3 

activates genes encoding cytokeratin 10 and SPRR2A, 
POU2F3, promoting keratinocyte proliferation and 
enhancing keratinocyte differentiation, and subsequently 
contribute to epidermal stratification [34, 37, 38]. Besides, 
down-regulation of POU2F3 was reported correlated to 
the process of both cervical intraepithelial neoplasia (CIN) 
and cervical cancer (CC) [39].

DISCUSSION

In the present work, we conducted scRNA-seq 
of individual cells generated from one tumor-normal 
paired SCCB case. We observed obvious differences in 
expression patterns of genes and pathways between cancer 
and normal single cells, which may contribute to SCCB 
processing. We revealed the intratumor heterogeneity 
within SCCB single cells in expression, and considered 
that genes encompassed in MAPK signaling pathway 
involved in cancer evolution and heterogeneity formation. 
With the combination of co-expression network modules 
of SCCB single cells and “hub gene” analysis, several 
“hub genes” were identified, such as POU2F3 (↑), NKD1 
(↑) and ARHGAP15 (↓), and the expression networks 
could collapse when their expression was interfered.

As bulk approaches, which conducted on a 
“population level” by using the average transcriptomes of 
millions of cells, frequently fail to uncover the subtle but 
potentially biologically significant differences between 
seemingly identical cells. Single-cell transcriptomics will 
contribute to the reconstitution of temporal transcription 
networks during developmental processes [40] or when 
cells are exposed to external stimuli [29], either of 
which can be masked at the population level. Here we 
demonstrated the significant DEGs between cancer and 
normal single cells population, and identified several 
interesting pathways, including pathways in cancer, cell 
cycle and P53 signaling pathways. Cancer is usually 
described as a pathological manifestation of uncontrolled 
cell division [41]. We noticed several cell cycle related 
genes such as CDK1 (↑), CCND1 (↑) and SMAD3 (↓), 
that have been widely investigated in various cancers. 
Therefore, it has been anticipated for long that our 
understanding of the basic principles of cell cycle control 
would lead to effective cancer therapies.

WGCNA is used to uncover the gene co-expression 
modules and therapeutic targets in SCCB. Several 
computational methods have been proposed for combining 
biological pathway information and gene sets into 
transcriptome data analysis, such as gene set enrichment 
analysis (GSEA) [42]. WGCNA shares the philosophy of 
GSEA to concentrate on gene sets as against to individual 
gene, and gene sets of the modules are tracked back to 
the RNA-seq data by applying unsupervised clustering. 
The expression profiles of intramodular hub genes within 
an interesting module are highly correlated to dozens of 
targets (in present data, r2 > 0.999). Although these targets 
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are statistically equivalent, they may differ biologically. In 
our data, we revealed a batch of interesting “hub genes” of 
each co-expression module, including GCC2 (↓), OR9Q1 
(↓), LINC00189 (↓), ARHGAP15 (↓), POU2F3 (↑) and 
NKD1 (↑) [39, 43–45]. Some of them were commonly 
investigated in cancer, while others were rarely reported, 
such as GCC2 and LINC00189, which may hold significant 
role in regulating specific module networks. Of these hub 
genes, we noticed POU2F3 is reported as a pivotal factor 
in the complex regulatory network of differentiation, 
especially tied to squamous epithelial stratification [36]. 
In addition, POU2F3 was also reported might be a cancer-
related tumor suppressor in both intraepithelial neoplasia 
and cervical cancer [39], highlighted the importance of 
POU2F3 in bladder squamous cell carcinoma. However, 
further functional validations are necessary for these hub 
genes, such as RNAi tests, biomarkers availability tests 
and druggability tests. Comprehending how broadly 
cancer-related modules interact with specific molecular 
lesions in an individual cancer patient is critical to identify 
new molecular targets.

Single-cell transcriptomics offers us unprecedented 
chance to master the transcriptional stochasticity and cellular 
heterogeneity, which are important for maintaining cell 
functions and for promoting disease progression or treatment 
response, while these details are commonly masked in bulk-
cell studies. STRT is a PCR-based multiplexed scRNA-seq 
method performed on the Illumina platform, regarding as a 
good method to detect single cell expression profile in a high 
throughput and low cost way offered by the early barcoding 
strategy. However, because STRT quantifies transcripts 
through reads mapping to 5’ ends of mRNA [46], the data 
could not be used to reveal genetic variations, such as somatic 
point mutations and structural variations (gene fusion, 
alternative splicing, etc.). Several other limitations should 
also be illustrated as follow: 1) the veracity. Single cell RNA-
seq comprises sequential steps of target cell isolation, RNA 
extraction, fragmentation, and reverse transcription. Each 
step introduces biases and artifacts that may influence the 
coverage, accuracy, and timeliness of transcript expression 
and therefore disrupt both the internal characterization 
and quantification of transcripts. It is therefore important 
to control the quality of the data prior to including the 
datasets in a meaningful global study; 2) owing to the 
limitation of STRT method (basing on the STRT method, we 
barcoded mRNA of each cell and reversed them into cDNA 
respectively, and then perform cDNA amplification after pool 
them together), we cannot validate specific genes identified 
by the analyses from the amplification products by qPCR. 
Currently, the STRT method was modified by introducing 
“unique molecular identifiers (UMI)” and implying on 
a microfluidic platform (Fluidigm C1 AutoPrep), which 
substantially decreased the bias of PCR and increased the 
stability of RNA amplification [47]. Recently, Simone 
Picelli et al. [48] optimized the method of Smart-seq named 
Smart-seq2 in terms of improved sensitivity, accuracy 

and full-length coverage across transcripts and decreased 
cost. Furthermore, Tamar Hashimshony et al. [49] made 
significant improvements that makes CEL-Seq2 uniquely 
suited to scRNA-Seq analysis in terms of economics, 
resolution, and ease of use. In addition to external molecule 
controls, improved single-cell chemistry and physics [50, 
51], incorporation of molecular barcoding system [18] have 
significantly decreased the noise level within each study.

Taken together, we have leveraged single cell RNA-
Seq to characterize heterogeneous gene expression profiles 
within a SCCB case and interrelated their transcriptional, 
functional, and genetic diversity. In addition, “hub 
gene” networks are uncovered by WGCNA, a powerful 
method in providing useful information associated with 
cell-type specificity. The discovery of these modules 
should lead to a better comprehension of the molecular 
features of different cell types along the differentiation 
and evaluation of SCCB in the future. These findings are 
to incur fundamental recalibration on tumor biology and 
therapeutic strategies.

MATERIALS AND METHODS

Human tumor specimens

Surgically resected squamous cell carcinoma of 
urinary bladder (SCCB) specimens were collected at 
Shenzhen Second People’s Hospital with approval by the 
Institutional Review Board. The fresh tissues (cancer and 
normal control specimens from one patient) were minced 
(5-10mm in maximum dimension) during surgery, and 
kept in cryopreservation medium (10% DMSO+90% 
DMEM medium with 30% FBS) under -80°C.

Cell isolation and mRNA sequencing

5 mL of STRT buffer (20 mM Tris-HCl at pH 8.0, 
75 mM KCl, 6 mM MgCl2, 0.02% Tween-20) with 400 
nM STRT-V3-T30 and 1:50,000 Life Technologies ERCC 
Spike-In Mix 1 were added into each well of the 96-well 
plate. The frozen tissues were thawed and digested into 
single cell suspension using 0.1% collagenase I (1mg/ml, 
200U/ml) and 0.05% collagenase IV (0.1mg/ml, 20U/ml) 
for 2 hours under 37°C. Both single tumor cells and normal 
cells were sorted into the 96-well plate by Fluorescence-
activated cell sorting (FACS) (75 tumor cells and 18 normal 
cells, 3 negative control). All of the following STRT steps 
including cDNA amplification and library construction 
were according to the protocols set by Saiful Islam et al. 
[17] The final cDNA library was sequenced on an Illumina 
HiSeq2000 using the customized sequencing primer STRT-
SEQ-V3. Single-end reads of 50bp were generated along 
with 8-bp index reads corresponding to the cell-specific 
barcodes. The sequencing data from this study have been 
submitted to the NCBI Sequence Read Archive (http://www.
ncbi.nlm.nih.gov/sra) under accession no. SRP078083.
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Data processing

Data analysis pipeline was basically followed 
the previous methods [18]. Generally, raw reads were 
separated into different FASTQ files by barcode, and 
trimmed the low-quanlity bases and polluted adapter 
sequence, and reads that less than 25 bp or contain more 
than 6 sequential “A” at 3′ site. The “valid STRT reads” 
were mapped to the human genome (GRCh37, http://
www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/) 
using Tophat 2.0.12 with default parameters expect 
“--bowtie1”. Unmapped reads were discarded. Then, a 
homemade Perl script was used to count the reads that 
align to exons and in the sense orientation toward the 
expression value for each annotated feature in the NCBI 
37.1 assembly. Finally, the reads count of each gene 
were normalized to Reads Per Million (RPM), which 
is different from the commonly used RPKM measure 
that we do not divided reads count by the gene length, 
because each mRNA gives rise to a single sequenceable 
fragment near its 5’ end. To exclude poor quality cells, 
single cells with expressed genes more than 3000 were 
retained for downstream analysis.

Differential expression analysis

The DEG analysis was performed between tumor 
cells and normal cells using NOISeq with recommended 
parameters (“noiseqbio” function), which can take the 
RPM matrix as input [19]. Genes with probability > 
0.999 were extracted as confident differentially expressed 
genes. The “MD plot” were generated using the “DE.plot” 
function of NOISeq with parameters “q = 0.999, graphic 
= “MD”)”.

Heterogeneity analysis of single cells

Cell-to-cell similarity was quantified as Pearson’s 
Correlation Coefficient, and the variability of gene A 
expression among single cells were estimated as the 
coefficient of variation (CV), which was generated as the 
standard deviation of gene A expression divided by the 
mean expression of gene A among single cells.

Co-expression network analysis

To minimize the influence of the stochastic 
differences during the experimental and sequencing 
procedures, genes with a mean of RPM less than 10 
or a variance of RPM less than 100 were filtered out. 
The co-expression networks were constructed from 
the single cells using the weighted co-expression 
network analysis (WGCNA) R package. Soft power 
parameter was estimated and used to derive a pairwise 
distance matrix for selected genes using the topological 
overlap measure, and the dynamic hybrid cut method 
with minimum module size of 30 genes was used to 

detect clusters. The node centrality, defined as the 
sum of within-cluster connectivity measures, was 
used to rank genes for “hubness” within each cluster. 
Hard threshold of edge distances were set separately 
to limit the numbers of edges and nodes, and the 
constructed network of each module were denoted using 
Cystoscape 3.2.1.
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