Oncotarget

Research Papers:

Whole exome sequencing of urachal adenocarcinoma reveals recurrent NF1 mutations

Harshabad Singh _, Yang Liu, Xiuli Xiao, Ling Lin, Jaegil Kim, Paul Van Hummelen, Chin-Lee Wu, Adam J. Bass and Philip J. Saylor

PDF  |  HTML  |  Supplementary Files  |  How to cite  |  Order a Reprint

Oncotarget. 2016; 7:29211-29215. https://doi.org/10.18632/oncotarget.8640

Metrics: HTML 965 views  |   ?  


Abstract

Harshabad Singh1,2, Yang Liu2, Xiuli Xiao3, Ling Lin2, Jaegil Kim4, Paul Van Hummelen2, Chin-Lee Wu3, Adam J. Bass2, Philip J. Saylor1

1Massachusetts General Hospital Cancer Center, Boston, MA, USA

2Dana Farber Cancer Institute, Boston, MA, USA

3Department of Pathology, Massachusetts General Hospital, Boston, MA, USA

4Broad Institute, Cambridge, MA, USA

Correspondence to:

Adam J. Bass, email: adam_bass@dfci.harvard.edu

Philip J. Saylor, email: psaylor@mgh.harvard.edu

Keywords: urachal adenocarcinoma, NF1, whole exome sequencing

Received: March 04, 2016     Accepted: March 18, 2016     Published: April 7, 2016

ABSTRACT

Urachal adenocarcinoma is a rare bladder malignancy arising from the urachal remnant. Given its rarity and the lack of knowledge about its genetic characteristics, optimal management of this cancer is not well defined. Practice patterns vary and outcomes remain poor. In order to identify the genomic underpinnings of this malignancy, we performed whole exome sequencing using seven tumor/normal pairs of formalin fixed archival specimens. We identified recurrent evidence of MAP-kinase pathway activation as three patients had neurofibromin 1 (NF1) mutations, with one of these patients also harboring an oncogenic KRAS G13D mutation. We also observed recurrent evidence of Wnt/β-catenin pathway activation as three patients had oncogenic mutations in APC or RNF43. In addition, somatic copy number analysis revealed focal chromosome 12p amplifications in three samples, resembling findings from testicular germ cell tumors. We describe the genomic landscape of this malignancy in our institutional cohort and propose investigation of the therapeutic potential for MAP-K pathway inhibition in the subset of patients who show evidence of its activation.


Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 License.
PII: 8640