Oncotarget

Research Papers:

p38 MAPK-induced MDM2 degradation confers paclitaxel resistance through p53-mediated regulation of EGFR in human lung cancer cells

Shin-Hyung Park, Myeong-A Seong and Ho-Young Lee _

PDF  |  HTML  |  Supplementary Files  |  How to cite

Oncotarget. 2016; 7:8184-8199. https://doi.org/10.18632/oncotarget.6945

Metrics: PDF 2707 views  |   HTML 3389 views  |   ?  


Abstract

Shin-Hyung Park1, Myeong-A Seong1, Ho-Young Lee1

1College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea

Correspondence to:

Ho-Young Lee, e-mail: [email protected]

Keywords: paclitaxel resistance, epidermal growth factor receptor, p38 MAPK, p53, MDM2

Received: September 18, 2015     Accepted: January 06, 2016     Published: January 19, 2016

ABSTRACT

Paclitaxel (PTX) is a chemotherapeutic agent that is used to treat a variety of cancers, including non-small cell lung cancer (NSCLC). However, the emergence of drug resistance limits the utility of PTX. This study determined the signaling pathway that contributes to PTX resistance. We first established PTX resistant cell lines (H460/R and 226B/R) using a dose-escalating maintenance of PTX. We found that p38 MAPK and epidermal growth factor receptor (EGFR) were constitutively activated in these cell lines. The inhibition of p38 MAPK activity by SB203580 treatment or the transfection of dominant-negative p38 MAPK sensitized both cell lines to PTX treatment. Erlotinib, an EGFR inhibitor, also increased PTX-induced apoptosis in PTX resistant cells, which suggests a role for p38 MAPK and EGFR in the development of PTX resistance. We demonstrated that p38 MAPK enhanced EGFR expression via the induction of the rapid degradation of mouse double-minute 2 homolog (MDM2) and the consequent stabilization of p53, a transcription factor of EGFR. These results suggest for the first time that the p38 MAPK/p53/EGFR axis is crucial for the facilitation of PTX resistance in NSCLCs. We also propose a mechanism for the role of the tumor-suppressor p53 in drug resistance. These results provide a foundation for the future development of potential therapeutic strategies to regulate the p38 MAPK/p53/EGFR pathway for the treatment of lung cancer patients with PTX resistance.


Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 6945