Oncotarget

Research Papers:

JNJ-26481585 primes rhabdomyosarcoma cells for chemotherapeutics by engaging the mitochondrial pathway of apoptosis

Ulrike Heinicke, Johanna Kupka and Simone Fulda _

PDF  |  HTML  |  Supplementary Files  |  How to cite  |  Order a Reprint

Oncotarget. 2015; 6:37836-37851. https://doi.org/10.18632/oncotarget.6097

Metrics: PDF 752 views  |   HTML 1151 views  |   ?  


Abstract

Ulrike Heinicke1, Johanna Kupka1 and Simone Fulda1,2,3

1 Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt, Germany

2 German Cancer Consortium (DKTK), Heidelberg, Germany

3 German Cancer Research Center (DKFZ), Heidelberg, Germany

Correspondence to:

Simone Fulda, email:

Keywords: apoptosis, cell death, rhabdomyosarcoma, HDACI, mitochondria

Received: May 31, 2015 Accepted: September 26, 2015 Published: October 12, 2015

Abstract

Rhabdomyosarcoma (RMS) is a common soft-tissue sarcoma in childhood with a poor prognosis, highlighting the need for new treatment strategies. Here we identify a synergistic interaction of the second-generation histone deacetylase inhibitor (HDACI) JNJ-26481585 and common chemotherapeutic drugs (i.e. Doxorubicin, Etoposide, Vincristine, Cyclophosphamide and Actinomycin D) to trigger apoptosis in RMS cells. Importantly, JNJ-26481585/Doxorubicin cotreatment also significantly suppresses long-term clonogenic survival of RMS cells and tumor growth in vivo in a preclinical RMS model. Mechanistically, JNJ-26481585/Doxorubicin cotreatment causes upregulation of the BH3-only proteins Bim and Noxa as well as downregulation of the antiapoptotic proteins Mcl-1 and Bcl-xL. These changes in the ratio of pro- and antiapoptotic Bcl-2 proteins contribute to JNJ-26481585/Doxorubicin-mediated apoptosis, since knockdown of Bim or Noxa significantly inhibits cell death. Also, JNJ-26481585 and Doxorubicin cooperate to stimulate activation of Bax and Bak, which is required for JNJ-26481585/Doxorubicin-induced apoptosis, since silencing of Bax or Bak protects against apoptosis. Consistently, overexpression of Bcl-2 significantly reduces JNJ-26481585/Doxorubicin-mediated apoptosis. JNJ-26481585/Doxorubicin cotreatment leads to caspase activation and caspase-dependent apoptosis, since the broad-range caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD.fmk) rescues cells from apoptosis. In conclusion, the second-generation HDACI JNJ-26481585 cooperates with chemotherapeutics to engage mitochondrial apoptosis in RMS cells, demonstrating that JNJ-26481585 represents a promising strategy for chemosensitization of RMS.


Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 License.
PII: 6097