Oncotarget

Research Papers:

Serum starvation raises turnover of phosphorylated p62/SQSTM1 (Serine 349), reveals expression of proteasome and N-glycanase1 interactive protein RAD23B and sensitizes human synovial fibroblasts to BAY 11-7085-induced cell death

Biserka Relic _, Edith Charlier, Celine Deroyer, Olivier Malaise, Yannick Crine, Sophie Neuville, Philippe Gillet, Dominique de Seny and Michel G. Malaise

PDF  |  HTML  |  How to cite

Oncotarget. 2018; 9:35830-35843. https://doi.org/10.18632/oncotarget.26295

Metrics: PDF 1788 views  |   HTML 3444 views  |   ?  


Abstract

Biserka Relic1, Edith Charlier1, Celine Deroyer1, Olivier Malaise1, Yannick Crine1, Sophie Neuville1, Philippe Gillet2, Dominique de Seny1 and Michel G. Malaise1

1Department of Rheumatology, GIGA Research, University Hospital Sart-Tilman, Liege, Belgium

2Department of Orthopedic Surgery, University Hospital Sart-Tilman, Liege, Belgium

Correspondence to:

Biserka Relic, email: [email protected]

Keywords: p62/SQSTM1 phosphorylation; proteasome; autophagy; serum starvation; RAD23B

Received: May 25, 2018     Accepted: October 24, 2018     Published: November 09, 2018

ABSTRACT

Phosphorylation of p62/SQSTM1 (p62) on Serine 349 (P-Ser349 p62) as well as proteasome dysfunction have been shown to activate the cell protective Keap1/Nrf2 pathway. We showed previously that BAY 11-7085-induced human synovial fibroblast cell death includes autophagy and p62 downregulation. In this work, we have studied expression of P-Ser349 p62 in human synovial fibroblasts. Results showed that P-Ser349 p62 was not detected in synovial cell extracts unless cells were cultured in the presence of proteasome inhibitor (MG132). MG132 revealed P-Ser349 p62 turnover, that was further increased by concomitant autophagy inhibition and markedly enhanced in serum starved cells. Starvation sensitized synovial fibroblasts to BAY 11-7085 while MG132 protected both non-starved and starved cells from BAY 11-7085-induced cell death. Lentivirus mediated overexpression of phosphorylation-mimetic p62 mutant S349E markedly protected synovial fibroblasts from BAY 11-7085. Inhibitor of Keap1-P-S349 p62 interaction, K67, had synergistic effect with MG132. Starvation increased p62 molecular weight, that was reversed by serum and bovine serum albumin re-feeding. Furthermore, starvation markedly induced RAD23B. Increased endo-β-N-acetylglucosaminidase (ENGase) turnover was detected in starved synovial fibroblasts. PNGase F treatment produced faster migration p62 form in human synovial tissue extracts but starvation-like p62 form of higher molecular weight in synovial cell extracts. Co-transfection of NGLY1, with p62 or p62 mutants S349A and S349E markedly stabilized p62 expressions in HEK293 cells. Tunicamycin upregulated p62 and protected synovial fibroblasts from BAY 11-7085-induced cell death. These results showed that P-Ser349 p62 has pro-survival role in human synovial fibroblasts and that de-glycosylation events are involved in p62 turnover.


Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 26295