Oncotarget

Research Papers:

V-ATPase-dependent repression of androgen receptor in prostate cancer cells

Yamhilette Licon-Munoz, Colleen A. Fordyce, Summer Raines Hayek and Karlett J. Parra _

PDF  |  HTML  |  Supplementary Files  |  How to cite

Oncotarget. 2018; 9:28921-28934. https://doi.org/10.18632/oncotarget.25641

Metrics: PDF 1716 views  |   HTML 3105 views  |   ?  


Abstract

Yamhilette Licon-Munoz1, Colleen A. Fordyce1, Summer Raines Hayek1 and Karlett J. Parra1

1Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, 87131, USA

Correspondence to:

Karlett J. Parra, email: [email protected]

Keywords: prostate cancer; androgen receptor; V-ATPase; concanamycin; HIF-1α

Received: January 11, 2018    Accepted: June 04, 2018    Published: June 22, 2018

ABSTRACT

Prostate Cancer (PCa) is the most commonly diagnosed cancer and the third leading cause of death for men in the United States. Suppression of androgen receptor (AR) expression is a desirable mechanism to manage PCa. Our studies showed that AR expression was reduced in LAPC4 and LNCaP PCa cell lines treated with nanomolar concentrations of the V-ATPase inhibitor concanamycin A (CCA). This treatment decreased PSA mRNA levels, indicative of reduced AR activity. V-ATPase-dependent repression of AR expression was linked to defective endo-lysosomal pH regulation and reduced AR expression at the transcriptional level. CCA treatment increased the protein level and nuclear localization of the alpha subunit of the transcription factor HIF-1 (HIF-1α) in PCa cells via decreased hydroxylation and degradation of HIF-1α. The addition of iron (III) citrate restored HIF-1α hydroxylation and decreased total HIF-1α levels in PCa cells treated with CCA. Moreover, iron treatment partially rescued CCA-mediated AR repression. Dimethyloxalylglycine (DMOG), which prevents HIF-1α degradation independently of V-ATPase, also decreased AR levels, supporting our hypothesis that HIF-1α serves as a downstream mediator in the V-ATPase-AR axis. We propose a new V-ATPase-dependent mechanism to inhibit androgen receptor expression in prostate cancer cells involving defective endosomal trafficking of iron and the inhibition of HIF-1 α-subunit turnover.


Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 25641