Oncotarget

Research Papers:

Novel fluorinated carbonic anhydrase IX inhibitors reduce hypoxia-induced acidification and clonogenic survival of cancer cells

Justina Kazokaitė, Raymon Niemans, Virginija Dudutienė, Holger M. Becker, Jānis Leitāns, Asta Zubrienė, Lina Baranauskienė, Gabor Gondi, Reinhard Zeidler, Jurgita Matulienė, Kaspars Tārs, Ala Yaromina, Philippe Lambin, Ludwig J. Dubois and Daumantas Matulis _

PDF  |  HTML  |  Supplementary Files  |  How to cite  |  Order a Reprint

Oncotarget. 2018; 9:26800-26816. https://doi.org/10.18632/oncotarget.25508

Metrics: PDF 478 views  |   HTML 845 views  |   ?  


Abstract

Justina Kazokaitė1,2, Raymon Niemans2, Virginija Dudutienė1, Holger M. Becker3, Jānis Leitāns4, Asta Zubrienė1, Lina Baranauskienė1, Gabor Gondi5,6, Reinhard Zeidler5,6, Jurgita Matulienė1, Kaspars Tārs1, Ala Yaromina2, Philippe Lambin2, Ludwig J. Dubois2,* and Daumantas Matulis1,*

1Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Vilnius, Lithuania

2Department of Radiotherapy (The M-Lab Group), GROW – School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University Medical Centre, Maastricht, The Netherlands

3Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany

4Latvian Biomedical Research and Study Center, Riga, Latvia

5Department of Gene Vectors, Helmholtz Center for Environmental Health, Munich, Germany

6Department of Otorhinolaryngology, Klinikum der Universität München, Munich, Germany

*These authors are contributed equally to this work

Correspondence to:

Daumantas Matulis, email: matulis@ibt.lt, daumantas.matulis@bti.vu.lt

Keywords: cancer; hypoxia; drug design; sulfonamide; carbonic anhydrase IX

Received: April 12, 2018     Accepted: May 14, 2018     Published: June 01, 2018

ABSTRACT

Human carbonic anhydrase (CA) IX has emerged as a promising anticancer target and a diagnostic biomarker for solid hypoxic tumors. Novel fluorinated CA IX inhibitors exhibited up to 50 pM affinity towards the recombinant human CA IX, selectivity over other CAs, and direct binding to Zn(II) in the active site of CA IX inducing novel conformational changes as determined by X-ray crystallography. Mass spectrometric gas-analysis confirmed the CA IX-based mechanism of the inhibitors in a CRISPR/Cas9-mediated CA IX knockout in HeLa cells. Hypoxia-induced extracellular acidification was significantly reduced in HeLa, H460, MDA-MB-231, and A549 cells exposed to the compounds, with the IC50 values up to 1.29 nM. A decreased clonogenic survival was observed when hypoxic H460 3D spheroids were incubated with our lead compound. These novel compounds are therefore promising agents for CA IX-specific therapy.


Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 License.
PII: 25508